Abstract The dependence of pulsed wave Doppler bandwidth on parameters typical of linear transducer arrays used in commercial Duplex and color flow mapping systems is investigated experimentally. For a single flow line it is observed that this bandwidth generally depends not only on the scatterer velocity and the beam-to-how angle, but also on the flow line range and orientation. This is due to the fact that in Duplex and color flow systems the transducer is differently focused in the scan and elevation planes and its aperture and focal lengths are often made to vary, depending on the distance of the flow line from the transducer. It is however experimentally demonstrated that, at points where the ultrasound beamwidths in the scan and elevation planes are both comparable to the sample volume length, the Doppler bandwidth is independent of the beam-to-flow angle. It is also shown that this invariance can be extended to other ranges by appropriately modifying the array aperture. Finally, as an application of this independence, the flow-line velocity magnitude in these beam regions is estimated with better than 5% uncertainty through a simple bandwidth measurement.

Velocity magnitude estimation with linear arrays using Doppler bandwidth / P. Tortoli; G. Guidi; L. Mantovani; V. Newhouse. - In: ULTRASONICS. - ISSN 0041-624X. - STAMPA. - 39:(2001), pp. 157-161. [10.1016/S0041-624X(00)00060-3]

Velocity magnitude estimation with linear arrays using Doppler bandwidth

TORTOLI, PIERO;GUIDI, GABRIELE;
2001

Abstract

Abstract The dependence of pulsed wave Doppler bandwidth on parameters typical of linear transducer arrays used in commercial Duplex and color flow mapping systems is investigated experimentally. For a single flow line it is observed that this bandwidth generally depends not only on the scatterer velocity and the beam-to-how angle, but also on the flow line range and orientation. This is due to the fact that in Duplex and color flow systems the transducer is differently focused in the scan and elevation planes and its aperture and focal lengths are often made to vary, depending on the distance of the flow line from the transducer. It is however experimentally demonstrated that, at points where the ultrasound beamwidths in the scan and elevation planes are both comparable to the sample volume length, the Doppler bandwidth is independent of the beam-to-flow angle. It is also shown that this invariance can be extended to other ranges by appropriately modifying the array aperture. Finally, as an application of this independence, the flow-line velocity magnitude in these beam regions is estimated with better than 5% uncertainty through a simple bandwidth measurement.
2001
39
157
161
P. Tortoli; G. Guidi; L. Mantovani; V. Newhouse
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/307693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact