Multidrug resistance (MDR) is a kind of resistance of cancer cells to multiple classes of chemotherapic drugs that can be structurally and mechanistically unrelated. Classical MDR regards altered membrane transport that results in lower cell concentrations of cytotoxic drug and is related to the over expression of a variety of proteins that act as ATP-dependent extrusion pumps. P-glycoprotein (Pgp) and multidrug resistance protein (MRP1) are the most important and widely studied members of the family that belongs to the ABC superfamily of transporters. It is apparent that, besides their role in cancer cell resistance, these proteins have multiple physiological functions as well, since they are expressed also in many important non-tumoural tissues and are largely present in prokaryotic organisms. A number of drugs have been identified which are able to reverse the effects of Pgp, MRP1 and sister proteins, on multidrug resistance. The first MDR modulators discovered and studied in clinical trials were endowed with definite pharmacological actions so that the doses required to overcome MDR were associated with unacceptably high side effects. As a consequence, much attention has been focused on developing more potent and selective modulators with proper potency, selectivity and pharmacokinetics that can be used at lower doses. Several novel MDR reversing agents (also known as chemosensitisers) are currently undergoing clinical evaluation for the treatment of resistant tumours. This review is concerned with the medicinal chemistry of MDR reversers, with particular attention to the drugs that are presently in development.

The medicinal chemistry of multidrug resistance (MDR) reversing drugs / E. TEODORI; S. DEI; S. SCAPECCHI; F. GUALTIERI. - In: IL FARMACO. - ISSN 0014-827X. - STAMPA. - 57:(2002), pp. 385-415.

The medicinal chemistry of multidrug resistance (MDR) reversing drugs

TEODORI, ELISABETTA;DEI, SILVIA;SCAPECCHI, SERENA;GUALTIERI, FULVIO
2002

Abstract

Multidrug resistance (MDR) is a kind of resistance of cancer cells to multiple classes of chemotherapic drugs that can be structurally and mechanistically unrelated. Classical MDR regards altered membrane transport that results in lower cell concentrations of cytotoxic drug and is related to the over expression of a variety of proteins that act as ATP-dependent extrusion pumps. P-glycoprotein (Pgp) and multidrug resistance protein (MRP1) are the most important and widely studied members of the family that belongs to the ABC superfamily of transporters. It is apparent that, besides their role in cancer cell resistance, these proteins have multiple physiological functions as well, since they are expressed also in many important non-tumoural tissues and are largely present in prokaryotic organisms. A number of drugs have been identified which are able to reverse the effects of Pgp, MRP1 and sister proteins, on multidrug resistance. The first MDR modulators discovered and studied in clinical trials were endowed with definite pharmacological actions so that the doses required to overcome MDR were associated with unacceptably high side effects. As a consequence, much attention has been focused on developing more potent and selective modulators with proper potency, selectivity and pharmacokinetics that can be used at lower doses. Several novel MDR reversing agents (also known as chemosensitisers) are currently undergoing clinical evaluation for the treatment of resistant tumours. This review is concerned with the medicinal chemistry of MDR reversers, with particular attention to the drugs that are presently in development.
2002
57
385
415
E. TEODORI; S. DEI; S. SCAPECCHI; F. GUALTIERI
File in questo prodotto:
File Dimensione Formato  
Farmaco_MDR_02.pdf

Accesso chiuso

Descrizione: articolo
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 759.18 kB
Formato Adobe PDF
759.18 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/311246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 175
  • ???jsp.display-item.citation.isi??? 167
social impact