Generation of force and shortening in striated muscle is due to the cyclic interactions of the globular portion (the head) of the myosin molecule, extending from the thick filament, with the actin filament. The work produced in each interaction is due to a conformational change (the working stroke) driven by the hydrolysis of ATP on the catalytic site of the myosin head. However, the precise mechanism and the size of the force and length step generated in one interaction are still under question. Here we reinvestigate the endothermic nature of the force-generating process by precisely determining, in tetanised intact frog muscle fibres under sarcomere length control, the effect of temperature on both isometric force and force response to length changes. We show that raising the temperature: (1) increases the force and the strain of the myosin heads attached in the isometric contraction by the same amount (similar to70 %, from 2 to 17degreesC); (2) increases the rate of quick force recovery following small length steps (range between -3 and 2 nm (half-sarcomere)(-1)) with a Q(10) (between 2 and 12degreesC) of 1.9 (releases) and 2.3 (stretches); (3) does not affect the maximum extent of filament sliding accounted for by the working stroke in the attached heads (10 nm (half-sarcomere)(-1)). These results indicate that in isometric conditions the structural change leading to force generation in the attached myosin heads can be modulated by temperature at the expense of the structural change responsible for the working stroke that drives filament sliding. The energy stored in the elasticity of the attached myosin heads at the plateau of the isometric tetanus increases with temperature, but even at high temperature this energy is only a fraction of the mechanical energy released by attached heads during filament sliding.

Temperature dependence of the force-generating process in single fibres from frog skeletal muscle / G. PIAZZESI; M. RECONDITI; N. KOUBASSOVA; V. DECOSTRE; M. LINARI; L. LUCII; V. LOMBARDI.. - In: THE JOURNAL OF PHYSIOLOGY. - ISSN 1469-7793. - STAMPA. - 549:(2003), pp. 93-106. [10.1113/jphysiol.2002.038703]

Temperature dependence of the force-generating process in single fibres from frog skeletal muscle.

PIAZZESI, GABRIELLA;RECONDITI, MASSIMO;LINARI, MARCO;LOMBARDI, VINCENZO
2003

Abstract

Generation of force and shortening in striated muscle is due to the cyclic interactions of the globular portion (the head) of the myosin molecule, extending from the thick filament, with the actin filament. The work produced in each interaction is due to a conformational change (the working stroke) driven by the hydrolysis of ATP on the catalytic site of the myosin head. However, the precise mechanism and the size of the force and length step generated in one interaction are still under question. Here we reinvestigate the endothermic nature of the force-generating process by precisely determining, in tetanised intact frog muscle fibres under sarcomere length control, the effect of temperature on both isometric force and force response to length changes. We show that raising the temperature: (1) increases the force and the strain of the myosin heads attached in the isometric contraction by the same amount (similar to70 %, from 2 to 17degreesC); (2) increases the rate of quick force recovery following small length steps (range between -3 and 2 nm (half-sarcomere)(-1)) with a Q(10) (between 2 and 12degreesC) of 1.9 (releases) and 2.3 (stretches); (3) does not affect the maximum extent of filament sliding accounted for by the working stroke in the attached heads (10 nm (half-sarcomere)(-1)). These results indicate that in isometric conditions the structural change leading to force generation in the attached myosin heads can be modulated by temperature at the expense of the structural change responsible for the working stroke that drives filament sliding. The energy stored in the elasticity of the attached myosin heads at the plateau of the isometric tetanus increases with temperature, but even at high temperature this energy is only a fraction of the mechanical energy released by attached heads during filament sliding.
2003
549
93
106
G. PIAZZESI; M. RECONDITI; N. KOUBASSOVA; V. DECOSTRE; M. LINARI; L. LUCII; V. LOMBARDI.
File in questo prodotto:
File Dimensione Formato  
JPhysiol_2003_Piazzesietal.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 375.27 kB
Formato Adobe PDF
375.27 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/312529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 91
social impact