When the free energy surface of the lithium hydroxide monohydrate crystal was explored, the high-pressure solid-state phase transition was determined. The high-pressure phase has been obtained through ab initio Car-Parrinello molecular dynamics simulation in the isothermic-isobaric ensemble. The recent metadynamics method has been applied to overcome the high activation energy barriers typical of rare events, like solid-state phase transition at high pressures. In the LiOH-H2O system, there are two kinds of H bonds: water-water and hydroxyl-water. The effect of the pressure has been investigated, to give further insight into the high-pressure phase. The strengthening of the H bonds of the system produces modifications in the water and the hydroxyl ion dipole electronic environment. The infrared spectra of both phases have been calculated and compared with experiments, and the assignment of the external modes has been discussed.

Solid-State Phase Transition Induced by Pressure in LiOH.H2O / ELISA DI PIETRO; M. PAGLIAI; G. CARDINI; VINCENZO SCHETTINO. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - STAMPA. - 110:(2006), pp. 13539-13546. [10.1021/jp061620a]

Solid-State Phase Transition Induced by Pressure in LiOH.H2O

PAGLIAI, MARCO;CARDINI, GIANNI
;
SCHETTINO, VINCENZO
2006

Abstract

When the free energy surface of the lithium hydroxide monohydrate crystal was explored, the high-pressure solid-state phase transition was determined. The high-pressure phase has been obtained through ab initio Car-Parrinello molecular dynamics simulation in the isothermic-isobaric ensemble. The recent metadynamics method has been applied to overcome the high activation energy barriers typical of rare events, like solid-state phase transition at high pressures. In the LiOH-H2O system, there are two kinds of H bonds: water-water and hydroxyl-water. The effect of the pressure has been investigated, to give further insight into the high-pressure phase. The strengthening of the H bonds of the system produces modifications in the water and the hydroxyl ion dipole electronic environment. The infrared spectra of both phases have been calculated and compared with experiments, and the assignment of the external modes has been discussed.
2006
110
13539
13546
ELISA DI PIETRO; M. PAGLIAI; G. CARDINI; VINCENZO SCHETTINO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/312775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact