Resorcin[4]arene cavitands with four quinoxaline bridges are a family of macrocycles that adopt, at elevated temperature, a contracted, vase-type conformation, capable of guest inclusion, whereas at low temperature they switch to an expanded, kite-type conformation with a large flat surface. The present investigations lay the foundation for the use of such dynamic cavitands as miniaturized mechanical grippers for supramolecular construction at the single-molecule level. New vase–kite switching modes, stimulated by pH changes or stoichiometric metal-ion complexation, have been discovered and monitored by 1H NMR and optical absorption spectroscopy. The solid-state geometries of the two states have been revealed by X-ray crystallography, and the kinetics and thermodynamics of the switching processes in solution as well as their solvent dependency has been investigated in great detail. Monolayers of the cavitand in the vase form have been studied by scanning tunneling microscopy at molecular resolution; conformational switching is also observed in Langmuir monolayers at the air/water interface. Synthetic protocols have been developed for preparation of partially and asymmetrically bridged resorcin[4]arene cavitands, which are also shown to undergo conformational switching. These synthetic advances pave the way to new, dynamic molecular receptors for steroids, tetrathiofulvalene-bridged grippers with the potential to undergo electrochemically induced conformational switching, and systems with greatly extended, rigid cavity walls functionalized at the termini by dipyrrometheneboron difluoride dyes. The latter cavitands are shown by fluorescence resonance energy transfer to undergo geometrically precisely defined motions between a contracted (≈ 7 Å linear extension) and a strongly expanded (≈ 7 nm linear extension) state.

Resorcin[4]arene cavitand-based molecular switches / V.A.AZOV; A.BEEBY; M.CACCIARINI; A.G.CHEETHAM; F.DIEDERICH; M.FREI; J.K.GIMZEWSKI; V.GRAMLICH; B.HECHT; B.JAUN; T.LATYCHEVSKAIA; A.LIEB; Y.LILL; F.MAROTTI; A.SCHLEGEL; R.R.SCHLITTLER; P.J.SKINNER; P.SEILER; Y.YAMAKOSHI. - In: ADVANCED FUNCTIONAL MATERIALS. - ISSN 1616-301X. - STAMPA. - 16:(2006), pp. 147-156. [10.1002/adfm.200500181]

Resorcin[4]arene cavitand-based molecular switches

CACCIARINI, MARTINA;
2006

Abstract

Resorcin[4]arene cavitands with four quinoxaline bridges are a family of macrocycles that adopt, at elevated temperature, a contracted, vase-type conformation, capable of guest inclusion, whereas at low temperature they switch to an expanded, kite-type conformation with a large flat surface. The present investigations lay the foundation for the use of such dynamic cavitands as miniaturized mechanical grippers for supramolecular construction at the single-molecule level. New vase–kite switching modes, stimulated by pH changes or stoichiometric metal-ion complexation, have been discovered and monitored by 1H NMR and optical absorption spectroscopy. The solid-state geometries of the two states have been revealed by X-ray crystallography, and the kinetics and thermodynamics of the switching processes in solution as well as their solvent dependency has been investigated in great detail. Monolayers of the cavitand in the vase form have been studied by scanning tunneling microscopy at molecular resolution; conformational switching is also observed in Langmuir monolayers at the air/water interface. Synthetic protocols have been developed for preparation of partially and asymmetrically bridged resorcin[4]arene cavitands, which are also shown to undergo conformational switching. These synthetic advances pave the way to new, dynamic molecular receptors for steroids, tetrathiofulvalene-bridged grippers with the potential to undergo electrochemically induced conformational switching, and systems with greatly extended, rigid cavity walls functionalized at the termini by dipyrrometheneboron difluoride dyes. The latter cavitands are shown by fluorescence resonance energy transfer to undergo geometrically precisely defined motions between a contracted (≈ 7 Å linear extension) and a strongly expanded (≈ 7 nm linear extension) state.
2006
16
147
156
V.A.AZOV; A.BEEBY; M.CACCIARINI; A.G.CHEETHAM; F.DIEDERICH; M.FREI; J.K.GIMZEWSKI; V.GRAMLICH; B.HECHT; B.JAUN; T.LATYCHEVSKAIA; A.LIEB; Y.LILL; F.MAROTTI; A.SCHLEGEL; R.R.SCHLITTLER; P.J.SKINNER; P.SEILER; Y.YAMAKOSHI
File in questo prodotto:
File Dimensione Formato  
147_ftp.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 559.38 kB
Formato Adobe PDF
559.38 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/333911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 84
social impact