We have previously shown that the caudal nucleus tractus solitarii is a site of action of some antitussive drugs and that the caudal ventral respiratory group (cVRG) region has a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. These findings led us to suggest that the cVRG region, and possibly other neural substrates involved in cough regulation, may be sites of action of antitussive drugs. To address this issue, we investigated changes in baseline respiratory activity and cough responses to tracheobronchial mechanical stimulation following microinjections (30-50 nl) of some antitussive drugs into the cVRG of pentobarbital-anesthetized, spontaneously breathing rabbits. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and baclofen at the lower concentrations (0.5 mM and 0.1 mM, respectively) decreased cough number, peak abdominal activity, and peak tracheal pressure and increased cough-related total cycle duration (Tt). At the higher concentrations (5 mM and 1 mM, respectively), both drugs abolished the cough reflex. DAMGO and baclofen also affected baseline respiratory activity. Both drugs reduced peak abdominal activity, while only DAMGO increased Tt, owing to increases in expiratory time. The neurokinin-1 (NK(1)) receptor antagonist CP-99,994 (10 mM) decreased cough number, peak abdominal activity, and peak tracheal pressure, without affecting baseline respiration. The NK(2) receptor antagonist MEN 10376 (5 mM) had no effect. The results indicate that the cVRG is a site of action of some antitussive agents and support the hypothesis that several neural substrates involved in cough regulation may share this characteristic.

Depression of cough reflex by microinjections of antitussive agents into caudal ventral respiratory group of the rabbit / Mutolo, Donatella; Bongianni, Fulvia; Cinelli, Elenia; Pantaleo, Tito. - In: JOURNAL OF APPLIED PHYSIOLOGY. - ISSN 8750-7587. - STAMPA. - 109:(2010), pp. 1002-1010. [10.1152/japplphysiol.00406.2010]

Depression of cough reflex by microinjections of antitussive agents into caudal ventral respiratory group of the rabbit

MUTOLO, DONATELLA;BONGIANNI, FULVIA;CINELLI, ELENIA;PANTALEO, TITO
2010

Abstract

We have previously shown that the caudal nucleus tractus solitarii is a site of action of some antitussive drugs and that the caudal ventral respiratory group (cVRG) region has a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. These findings led us to suggest that the cVRG region, and possibly other neural substrates involved in cough regulation, may be sites of action of antitussive drugs. To address this issue, we investigated changes in baseline respiratory activity and cough responses to tracheobronchial mechanical stimulation following microinjections (30-50 nl) of some antitussive drugs into the cVRG of pentobarbital-anesthetized, spontaneously breathing rabbits. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and baclofen at the lower concentrations (0.5 mM and 0.1 mM, respectively) decreased cough number, peak abdominal activity, and peak tracheal pressure and increased cough-related total cycle duration (Tt). At the higher concentrations (5 mM and 1 mM, respectively), both drugs abolished the cough reflex. DAMGO and baclofen also affected baseline respiratory activity. Both drugs reduced peak abdominal activity, while only DAMGO increased Tt, owing to increases in expiratory time. The neurokinin-1 (NK(1)) receptor antagonist CP-99,994 (10 mM) decreased cough number, peak abdominal activity, and peak tracheal pressure, without affecting baseline respiration. The NK(2) receptor antagonist MEN 10376 (5 mM) had no effect. The results indicate that the cVRG is a site of action of some antitussive agents and support the hypothesis that several neural substrates involved in cough regulation may share this characteristic.
2010
109
1002
1010
Mutolo, Donatella; Bongianni, Fulvia; Cinelli, Elenia; Pantaleo, Tito
File in questo prodotto:
File Dimensione Formato  
19_JAPtosse2010.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/394848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
social impact