Odorants can be perceived via the nose during an inhalation or sniff (orthonasal perception) and via the mouth, nasopharynx and nasal cavity during mastication or drinking (retronasal perception). Previous data suggest that orthonasal perception provides a more efficient route with greater difficulty being reported when detecting [Halpern BP. Retronasal and orthonasal smelling. Chemosense 2004;6:1-7; Voirol E, Daget N. Comparative study of nasal and retronasal olfactory perception. Lebensmittel-Wissenschaft Technol 1986;19:316-9] and identifying [Heilmann S, Hummel T. A new method for comparing orthonasal and retronasal olfaction. Behav Neurosci 2004;118:412-9; Sun BC, Halpern BP. Identification of air-phase retronasal and orthonasal odorant pairs. Chem Senses 2005;30:1-14] single odorants retronasally. Whether the poorer sensitivity obtained via the retronasal route is largely due to the greater adsorption of odorants by the nasopharyngeal mucus compared to the nasal mucus thereby reducing their peak concentration and/or slowing their passage, has not been resolved. Importantly, the question of whether solubility of odorants in mucus or water predicts the outcomes for perception of stimuli presented via the retronasal route has not been resolved. Accordingly, the present study investigates this question by determining whether the solubility of an odorant in mucus predicts which component of a binary odour mixture is perceived first during retronasal perception. The results indicate that solubility in mucus rather than solubility in water is a better predictor of which odour will be perceived first and identified more readily during the retronasal perception of a binary mixture. In addition, lower intensity levels of single odorants occurred via the retronasal route suggesting that adsorption was greater via this route. Whether this was due to nasopharyngeal mucus having a greater adsorptive area or different composition compared to the orthonasal pathway is not known.

Temporal processing of olfactory stimuli during retronasal perception / F. J. Wilkes; D. G. Laing; I. Hutchinson; A. L. Jinks; E. Monteleone. - In: BEHAVIOURAL BRAIN RESEARCH. - ISSN 0166-4328. - STAMPA. - 200:(2009), pp. 68-75. [10.1016/j.bbr.2008.12.031]

Temporal processing of olfactory stimuli during retronasal perception.

MONTELEONE, ERMINIO
2009

Abstract

Odorants can be perceived via the nose during an inhalation or sniff (orthonasal perception) and via the mouth, nasopharynx and nasal cavity during mastication or drinking (retronasal perception). Previous data suggest that orthonasal perception provides a more efficient route with greater difficulty being reported when detecting [Halpern BP. Retronasal and orthonasal smelling. Chemosense 2004;6:1-7; Voirol E, Daget N. Comparative study of nasal and retronasal olfactory perception. Lebensmittel-Wissenschaft Technol 1986;19:316-9] and identifying [Heilmann S, Hummel T. A new method for comparing orthonasal and retronasal olfaction. Behav Neurosci 2004;118:412-9; Sun BC, Halpern BP. Identification of air-phase retronasal and orthonasal odorant pairs. Chem Senses 2005;30:1-14] single odorants retronasally. Whether the poorer sensitivity obtained via the retronasal route is largely due to the greater adsorption of odorants by the nasopharyngeal mucus compared to the nasal mucus thereby reducing their peak concentration and/or slowing their passage, has not been resolved. Importantly, the question of whether solubility of odorants in mucus or water predicts the outcomes for perception of stimuli presented via the retronasal route has not been resolved. Accordingly, the present study investigates this question by determining whether the solubility of an odorant in mucus predicts which component of a binary odour mixture is perceived first during retronasal perception. The results indicate that solubility in mucus rather than solubility in water is a better predictor of which odour will be perceived first and identified more readily during the retronasal perception of a binary mixture. In addition, lower intensity levels of single odorants occurred via the retronasal route suggesting that adsorption was greater via this route. Whether this was due to nasopharyngeal mucus having a greater adsorptive area or different composition compared to the orthonasal pathway is not known.
2009
200
68
75
F. J. Wilkes; D. G. Laing; I. Hutchinson; A. L. Jinks; E. Monteleone
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/395634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact