Sco proteins are widespread in eukaryotic and in many prokaryotic organisms. They have a thioredoxin-like fold and bind a single copper(I) or copper(II) ion through a CXXXC motif and a conserved His ligand, with both tight and weak affinities. They have been implicated in the assembly of the CuA site of cytochrome c oxidase as copper chaperones and/or thioredoxins. In this work we have structurally characterized a Sco domain which is naturally fused with a typical electron transfer molecule, i.e., cytochrome c, in Pseudomonas putida. The thioredoxin-like Sco domain does not bind copper(II), binds copper(I) with weak affinity without involving the conserved His, and has redox properties consisting of a thioredoxin activity and of the ability of reducing copper(II) to copper(I), and iron(III) to iron(II) of the cytochrome c domain. These findings indicate that the His ligand coordination is the discriminating factor for introducing a metallochaperone function in a thioredoxin- like fold, typically responsible for electron transfer processes. A comparative structural analysis of the Sco domain from P. putida versus eukaryotic Sco proteins revealed structural determinants affecting the formation of a tight-affinity versus a weak-affinity copper binding site in Sco proteins. © SBIC 2010.

SCO proteins are involved in electron transfer processes / L.Banci; I.Bertini; S.Ciofi-Baffoni; T.Kozyreva; M.Mori; S.Wang. - In: JBIC. - ISSN 0949-8257. - STAMPA. - 16(3):(2011), pp. 391-403. [10.1007/s00775-010-0735-x]

SCO proteins are involved in electron transfer processes

BANCI, LUCIA;BERTINI, IVANO;CIOFI BAFFONI, SIMONE;KOZYREVA, TATIANA;MORI, MIRKO;WANG, SHENLIN
2011

Abstract

Sco proteins are widespread in eukaryotic and in many prokaryotic organisms. They have a thioredoxin-like fold and bind a single copper(I) or copper(II) ion through a CXXXC motif and a conserved His ligand, with both tight and weak affinities. They have been implicated in the assembly of the CuA site of cytochrome c oxidase as copper chaperones and/or thioredoxins. In this work we have structurally characterized a Sco domain which is naturally fused with a typical electron transfer molecule, i.e., cytochrome c, in Pseudomonas putida. The thioredoxin-like Sco domain does not bind copper(II), binds copper(I) with weak affinity without involving the conserved His, and has redox properties consisting of a thioredoxin activity and of the ability of reducing copper(II) to copper(I), and iron(III) to iron(II) of the cytochrome c domain. These findings indicate that the His ligand coordination is the discriminating factor for introducing a metallochaperone function in a thioredoxin- like fold, typically responsible for electron transfer processes. A comparative structural analysis of the Sco domain from P. putida versus eukaryotic Sco proteins revealed structural determinants affecting the formation of a tight-affinity versus a weak-affinity copper binding site in Sco proteins. © SBIC 2010.
2011
16(3)
391
403
L.Banci; I.Bertini; S.Ciofi-Baffoni; T.Kozyreva; M.Mori; S.Wang
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/406017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact