NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.

Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: Evaluation of estimation errors in spectral sensitivity measurements / L. Facheris;F. Cuccoli;F. Argenti. - STAMPA. - 7107:(2008), pp. 1-10. (Intervento presentato al convegno Proceedings of SPIE - Remote Sensing of Clouds and the Atmosphere XIII tenutosi a Cardiff, Wales nel 15-17 Sept. 2008) [10.1117/12.799130].

Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: Evaluation of estimation errors in spectral sensitivity measurements

FACHERIS, LUCA;CUCCOLI, FABRIZIO;ARGENTI, FABRIZIO
2008

Abstract

NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.
2008
Proceedings of SPIE - Remote Sensing of Clouds and the Atmosphere XIII
Proceedings of SPIE - Remote Sensing of Clouds and the Atmosphere XIII
Cardiff, Wales
15-17 Sept. 2008
L. Facheris;F. Cuccoli;F. Argenti
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/521899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact