Abstract In several murine models of autoimmune arthritis, Th17 cells are the dominant initiators of inflammation. In human arthritis the majority of IL-17-secreting cells within the joint express a cytokine phenotype intermediate between Th17 and Th1. Here we show that Th17/1 cells from the joints of children with inflammatory arthritis express high levels of both Th17 and Th1 lineage-specific transcription factors, RORC2 and T-bet. Modeling the generation of Th17/1 in vitro, we show that Th17 cells "convert" to Th17/1 under conditions that mimic the disease site, namely low TGFbeta and high IL-12 levels, whereas Th1 cells cannot convert to Th17. Th17/1 cells from the inflamed joint share T-cell receptor (TCR) clonality with Th17 cells, suggesting a shared clonal origin between Th17 and Th17/1 cells in arthritis. Using CD161, a lectin-like receptor that is a marker of human Th17, we show synovial Th17 and Th17/1 cells, and unexpectedly, a large proportion of Th1 cells express CD161. We provide evidence to support a Th17 origin for Th1 cells expressing CD161. In vitro, Th17 cells that convert to a Th1 phenotype maintain CD161 expression. In the joint CD161+ Th1 cells share features with Th17 cells, with shared TCR clonality, expression of RORC2 and CCR6 and response to IL-23, although they are IL-17 negative. We propose that the Th17 phenotype may be unstable and that Th17 cells may convert to Th17/1 and Th1 cells in human arthritis. Therefore therapies targeting the induction of Th17 cells could also attenuate Th17/1 and Th1 effector populations within the inflamed joint.

Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment / Nistala K; Adams S; Cambrook H; Ursu S; Olivito B; de Jager W; Evans JG; Cimaz R; Bajaj-Elliott M; Wedderburn LR. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - ELETTRONICO. - 107:(2009), pp. 14751-14756. [10.1073/pnas.1003852107]

Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment.

CIMAZ, ROLANDO;
2009

Abstract

Abstract In several murine models of autoimmune arthritis, Th17 cells are the dominant initiators of inflammation. In human arthritis the majority of IL-17-secreting cells within the joint express a cytokine phenotype intermediate between Th17 and Th1. Here we show that Th17/1 cells from the joints of children with inflammatory arthritis express high levels of both Th17 and Th1 lineage-specific transcription factors, RORC2 and T-bet. Modeling the generation of Th17/1 in vitro, we show that Th17 cells "convert" to Th17/1 under conditions that mimic the disease site, namely low TGFbeta and high IL-12 levels, whereas Th1 cells cannot convert to Th17. Th17/1 cells from the inflamed joint share T-cell receptor (TCR) clonality with Th17 cells, suggesting a shared clonal origin between Th17 and Th17/1 cells in arthritis. Using CD161, a lectin-like receptor that is a marker of human Th17, we show synovial Th17 and Th17/1 cells, and unexpectedly, a large proportion of Th1 cells express CD161. We provide evidence to support a Th17 origin for Th1 cells expressing CD161. In vitro, Th17 cells that convert to a Th1 phenotype maintain CD161 expression. In the joint CD161+ Th1 cells share features with Th17 cells, with shared TCR clonality, expression of RORC2 and CCR6 and response to IL-23, although they are IL-17 negative. We propose that the Th17 phenotype may be unstable and that Th17 cells may convert to Th17/1 and Th1 cells in human arthritis. Therefore therapies targeting the induction of Th17 cells could also attenuate Th17/1 and Th1 effector populations within the inflamed joint.
2009
107
14751
14756
Nistala K; Adams S; Cambrook H; Ursu S; Olivito B; de Jager W; Evans JG; Cimaz R; Bajaj-Elliott M; Wedderburn LR
File in questo prodotto:
File Dimensione Formato  
pnas-kiran.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/594832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 339
  • ???jsp.display-item.citation.isi??? 324
social impact