Liver fibrogenesis is sustained by pro-fibrogenic myofibroblast-like cells (MFs), mainly originating from activated hepatic stellate cells (HSC/MFs) or portal (myo)fibroblasts, and is favoured by hypoxia-dependent angiogenesis. Human HSC/MFs were reported to express vascular-endothelial growth factor (VEGF) and VEGF-receptor type 2 and to migrate under hypoxic conditions. This study was designed to investigate early and delayed signalling mechanisms involved in hypoxia-induced migration of human HSC/MFs. Signal transduction pathways and intracellular generation of reactive oxygen species (ROS) were evaluated by integrating morphological, cell, and molecular biology techniques. Non-oriented and oriented migration were evaluated by using wound healing assay and the modified Boyden's chamber assay, respectively. The data indicate that hypoxia-induced migration of HSC/MFs is a biphasic process characterized by the following sequence of events: (a) an early (15 min) and mitochondria-related increased generation of intracellular ROS which (b) was sufficient to switch on activation of ERK1/2 and JNK1/2 that were responsible for the early phase of oriented migration; (c) a delayed and HIF-1α-dependent increase in VEGF expression (facilitated by ROS) and its progressive, time-dependent release in the extracellular medium that (d) was mainly responsible for sustained migration of HSC/MFs. Finally, immunohistochemistry performed on HCV-related fibrotic/cirrhotic livers revealed HIF-2α and haem-oxygenase-1 positivity in hepatocytes and α-SMA-positive MFs, indicating that MFs were likely to be exposed in vivo to both hypoxia and oxidative stress. In conclusion, hypoxia-induced migration of HSC/MFs involves an early, mitochondrial-dependent ROS-mediated activation of ERK and JNK, followed by a delayed- and HIF-1α-dependent up-regulation and release of VEGF. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

The biphasic nature of hypoxia-induced directional migration of activated human hepatic stellate cells / E. Novo;D. Povero;C. Busletta;C. Paternostro;L. V. di;S. Cannito;A. Compagnone;A. Bandino;F. Marra;S. Colombatto;E. David;M. Pinzani;M. Parola. - In: JOURNAL OF PATHOLOGY. - ISSN 0022-3417. - STAMPA. - 226:(2012), pp. 588-597. [10.1002/path.3005]

The biphasic nature of hypoxia-induced directional migration of activated human hepatic stellate cells.

MARRA, FABIO;PINZANI, MASSIMO;
2012

Abstract

Liver fibrogenesis is sustained by pro-fibrogenic myofibroblast-like cells (MFs), mainly originating from activated hepatic stellate cells (HSC/MFs) or portal (myo)fibroblasts, and is favoured by hypoxia-dependent angiogenesis. Human HSC/MFs were reported to express vascular-endothelial growth factor (VEGF) and VEGF-receptor type 2 and to migrate under hypoxic conditions. This study was designed to investigate early and delayed signalling mechanisms involved in hypoxia-induced migration of human HSC/MFs. Signal transduction pathways and intracellular generation of reactive oxygen species (ROS) were evaluated by integrating morphological, cell, and molecular biology techniques. Non-oriented and oriented migration were evaluated by using wound healing assay and the modified Boyden's chamber assay, respectively. The data indicate that hypoxia-induced migration of HSC/MFs is a biphasic process characterized by the following sequence of events: (a) an early (15 min) and mitochondria-related increased generation of intracellular ROS which (b) was sufficient to switch on activation of ERK1/2 and JNK1/2 that were responsible for the early phase of oriented migration; (c) a delayed and HIF-1α-dependent increase in VEGF expression (facilitated by ROS) and its progressive, time-dependent release in the extracellular medium that (d) was mainly responsible for sustained migration of HSC/MFs. Finally, immunohistochemistry performed on HCV-related fibrotic/cirrhotic livers revealed HIF-2α and haem-oxygenase-1 positivity in hepatocytes and α-SMA-positive MFs, indicating that MFs were likely to be exposed in vivo to both hypoxia and oxidative stress. In conclusion, hypoxia-induced migration of HSC/MFs involves an early, mitochondrial-dependent ROS-mediated activation of ERK and JNK, followed by a delayed- and HIF-1α-dependent up-regulation and release of VEGF. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
2012
226
588
597
E. Novo;D. Povero;C. Busletta;C. Paternostro;L. V. di;S. Cannito;A. Compagnone;A. Bandino;F. Marra;S. Colombatto;E. David;M. Pinzani;M. Parola
File in questo prodotto:
File Dimensione Formato  
2012 Novo J Pathol.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/606504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 67
social impact