Poly(ADP-ribose) polymerase 1 (PARP-1) is an abundant nuclear enzyme involved in DNA repair. The therapeutic efficacy of drugs that inhibit PARP-1 in various disorders underscores the active role of PARP-1 in cell death. Although it is well established that excessive DNA damage causes PARP-1 hyperactivation, which leads to cell death by energy failure, a new mechanistic perspective is emerging following the identification of various PARPs that exhibit different features and subcellular distributions. Studies demonstrating the significant role of PARP-1 in the regulation of gene transcription have further increased the intricacy of poly(ADP-ribosyl)ation in the control of cell homeostasis and challenge the notion that energy collapse is the sole mechanism by which poly(ADP-ribose) formation contributes to cell death. The hypothesis that PARPs might regulate cell fate as essential modulators of death and survival transcriptional programs will be discussed with particular focus on the regulation of transcription factors such as nuclear factor kappaB and p53. (An animation depicting the involvement of PARP-1 in the 'suicide hypothesis' is available at http://archive.bmn.com/supp/tips/tips2303a.html)

Poly(ADP-ribose) polymerase: killer or conspirator? The 'suicide hypothesis' revisited / A. Chiarugi. - In: TRENDS IN PHARMACOLOGICAL SCIENCES. - ISSN 0165-6147. - STAMPA. - 23:(2002), pp. 122-129.

Poly(ADP-ribose) polymerase: killer or conspirator? The 'suicide hypothesis' revisited.

CHIARUGI, ALBERTO
2002

Abstract

Poly(ADP-ribose) polymerase 1 (PARP-1) is an abundant nuclear enzyme involved in DNA repair. The therapeutic efficacy of drugs that inhibit PARP-1 in various disorders underscores the active role of PARP-1 in cell death. Although it is well established that excessive DNA damage causes PARP-1 hyperactivation, which leads to cell death by energy failure, a new mechanistic perspective is emerging following the identification of various PARPs that exhibit different features and subcellular distributions. Studies demonstrating the significant role of PARP-1 in the regulation of gene transcription have further increased the intricacy of poly(ADP-ribosyl)ation in the control of cell homeostasis and challenge the notion that energy collapse is the sole mechanism by which poly(ADP-ribose) formation contributes to cell death. The hypothesis that PARPs might regulate cell fate as essential modulators of death and survival transcriptional programs will be discussed with particular focus on the regulation of transcription factors such as nuclear factor kappaB and p53. (An animation depicting the involvement of PARP-1 in the 'suicide hypothesis' is available at http://archive.bmn.com/supp/tips/tips2303a.html)
2002
23
122
129
A. Chiarugi
File in questo prodotto:
File Dimensione Formato  
2002 TIPS.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 5.18 MB
Formato Adobe PDF
5.18 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/606557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact