MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, interplaying with transcription factors in complex regulatory networks. Menin is the product of the MEN1 oncosuppressor gene, responsible for multiple endocrine neoplasia type 1 syndrome. Recent data suggest that menin functions as a general regulator of transcription. Menin expression modulates mesenchymal cell commitment to the myogenic or osteogenic lineages. The microRNA 26a (miR-26a) modulates the expression of SMAD1 protein during the osteoblastic differentiation of human adipose tissue-derived stem cells (hADSCs). We used siRNA silencing against MEN1 mRNA and pre-miR-26 mimics to study the interplay between them and to investigate the interplay between menin and miR-26a as regulators of osteogenic differentiation in the hADSCs. We found that in hADSCs the siRNA-induced silencing of MEN1 mRNA resulted in a down regulation of miR-26a, with a consequent up-regulation of SMAD1 protein. Chromatin immunoprecipitation (ChIP) showed that menin occupies the miR-26-a gene promoter, thus inducing its expression and confirming that menin is a positive regulator of miR-26a. In conclusion, results from this study evidenced, for the first time, a direct interaction between menin transcription factor and miRNA, interaction that seems to play a pivotal role during the hADSCs osteogenesis, thus suggesting a novel target for bone disease RNA-based therapy.

The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases / E. Luzi; F. Marini; I. Tognarini; G. Galli; A. Falchetti; M.L. Brandi. - In: NUCLEIC ACID THERAPEUTICS. - ISSN 2159-3337. - ELETTRONICO. - 22:(2012), pp. 103-108. [10.1089/nat.2012.0344]

The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases.

LUZI, ETTORE;MARINI, FRANCESCA;TOGNARINI, ISABELLA;GALLI, GIANNA;FALCHETTI, ALBERTO;BRANDI, MARIA LUISA
2012

Abstract

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, interplaying with transcription factors in complex regulatory networks. Menin is the product of the MEN1 oncosuppressor gene, responsible for multiple endocrine neoplasia type 1 syndrome. Recent data suggest that menin functions as a general regulator of transcription. Menin expression modulates mesenchymal cell commitment to the myogenic or osteogenic lineages. The microRNA 26a (miR-26a) modulates the expression of SMAD1 protein during the osteoblastic differentiation of human adipose tissue-derived stem cells (hADSCs). We used siRNA silencing against MEN1 mRNA and pre-miR-26 mimics to study the interplay between them and to investigate the interplay between menin and miR-26a as regulators of osteogenic differentiation in the hADSCs. We found that in hADSCs the siRNA-induced silencing of MEN1 mRNA resulted in a down regulation of miR-26a, with a consequent up-regulation of SMAD1 protein. Chromatin immunoprecipitation (ChIP) showed that menin occupies the miR-26-a gene promoter, thus inducing its expression and confirming that menin is a positive regulator of miR-26a. In conclusion, results from this study evidenced, for the first time, a direct interaction between menin transcription factor and miRNA, interaction that seems to play a pivotal role during the hADSCs osteogenesis, thus suggesting a novel target for bone disease RNA-based therapy.
2012
22
103
108
E. Luzi; F. Marini; I. Tognarini; G. Galli; A. Falchetti; M.L. Brandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/639888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
social impact