The N-terminal region of a 32 kDa cell-surface-binding protein, encoded by the D8L gene of vaccinia virus, shows sequence homology to CAs (carbonic anhydrases; EC 4.2.1.1). The active CAs catalyse the reversible hydration of CO2 to bicarbonate participating in many physiological processes. The CA-like domain of vaccinia protein [vaccCA (vaccinia virus CA-like protein)] contains one of the three conserved histidine residues required for co-ordination to the catalytic zinc ion and for enzyme activity. In the present study, we report the engineering of catalytically active vaccCA mutants by introduction of the missing histidine residues into the wild-type protein. The wild-type vaccCA was inactive as a catalyst and does not bind sulfonamide CA inhibitors. Its position on a phylogram with other hCAs (human CAs) shows a relationship with the acatalytic isoforms CA X and XI, suggesting that the corresponding viral gene was acquired from the human genome by horizontal gene transfer. The single mutants (vaccCA N92H/Y69H) showed low enzyme activity and low affinity for acetazolamide, a classical sulfonamide CA inhibitor. The activity of the double mutant, vaccCA N92H/Y69H, was much higher, of the same order of magnitude as that of some human isoforms, namely CA VA and CA XII. Moreover, its affinity for acetazolamide was high, comparable with that of the most efficient human isoenzyme, CA II (in the low nanomolar range). Multiplication of vaccinia virus in HeLa cells transfected with the vaccCA N92H/Y69H double mutant was approx. 2-fold more efficient than in wild-type vaccCA transfectants, suggesting that the reconstitution of the enzyme activity improved the virus life cycle.

Reconstitution of carbonic anhydrase activity of the cell-surface-binding protein of vaccinia virus / A. Ohradanova;D. Vullo;J. Kopacek;C. Temperini;T. Betakova;S. Pastorekova;J. Pastorek;C. T. Supuran. - In: BIOCHEMICAL JOURNAL. - ISSN 0264-6021. - STAMPA. - 407:(2007), pp. 61-67. [10.1042/BJ20070816]

Reconstitution of carbonic anhydrase activity of the cell-surface-binding protein of vaccinia virus.

VULLO, DANIELA;SUPURAN, CLAUDIU TRANDAFIR
2007

Abstract

The N-terminal region of a 32 kDa cell-surface-binding protein, encoded by the D8L gene of vaccinia virus, shows sequence homology to CAs (carbonic anhydrases; EC 4.2.1.1). The active CAs catalyse the reversible hydration of CO2 to bicarbonate participating in many physiological processes. The CA-like domain of vaccinia protein [vaccCA (vaccinia virus CA-like protein)] contains one of the three conserved histidine residues required for co-ordination to the catalytic zinc ion and for enzyme activity. In the present study, we report the engineering of catalytically active vaccCA mutants by introduction of the missing histidine residues into the wild-type protein. The wild-type vaccCA was inactive as a catalyst and does not bind sulfonamide CA inhibitors. Its position on a phylogram with other hCAs (human CAs) shows a relationship with the acatalytic isoforms CA X and XI, suggesting that the corresponding viral gene was acquired from the human genome by horizontal gene transfer. The single mutants (vaccCA N92H/Y69H) showed low enzyme activity and low affinity for acetazolamide, a classical sulfonamide CA inhibitor. The activity of the double mutant, vaccCA N92H/Y69H, was much higher, of the same order of magnitude as that of some human isoforms, namely CA VA and CA XII. Moreover, its affinity for acetazolamide was high, comparable with that of the most efficient human isoenzyme, CA II (in the low nanomolar range). Multiplication of vaccinia virus in HeLa cells transfected with the vaccCA N92H/Y69H double mutant was approx. 2-fold more efficient than in wild-type vaccCA transfectants, suggesting that the reconstitution of the enzyme activity improved the virus life cycle.
2007
407
61
67
A. Ohradanova;D. Vullo;J. Kopacek;C. Temperini;T. Betakova;S. Pastorekova;J. Pastorek;C. T. Supuran
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/776041
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact