A series of sulfonamides incorporating sugar moieties and the sulfanilamide scaffold have been investigated for their interaction with the secretory isoform of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), CA VI. This isoform is secreted in saliva, tears, and milk of mammals - where it plays important physiological roles - even if little is understood at this moment regarding its inhibition, due to the lack of potent and/or selective inhibitors. Here we report a series of low nanomolar and subnanomolar CA VI inhibitors, belonging to the glycosylamine-sulfanilamide class. The glucose, ribose, arabinose, xylose, and fucose derivatives showed excellent CA VI inhibitory activity, with K(i)s in the range of 0.56-5.1 nm, whereas the least active derivatives, incorporating gallactose, mannose, and rhamnose scaffolds showed inhibition constants in the range of 10.1-34.1 nm. Many of these sulfonamides were also selective inhibitors for their interaction with CA VI over the physiologically dominant and ubiquitous isoform CA II, with selectivity ratios of 4.11-35.93 for inhibiting the secreted over the cytosolic isozyme. Because of their high water solubility and high affinity for CA VI over CA II, these compounds are useful tools for better understanding the secreted CA isoform CA VI.

Carbonic anhydrase inhibitors: glycosylsulfanilamides act as subnanomolar inhibitors of the human secreted isoform VI / J. Winum;J. Montero;D. Vullo;C. T. Supuran. - In: CHEMICAL BIOLOGY & DRUG DESIGN. - ISSN 1747-0285. - STAMPA. - 74:(2009), pp. 636-639. [10.1111/j.1747-0285.2009.00902.x]

Carbonic anhydrase inhibitors: glycosylsulfanilamides act as subnanomolar inhibitors of the human secreted isoform VI.

VULLO, DANIELA;SUPURAN, CLAUDIU TRANDAFIR
2009

Abstract

A series of sulfonamides incorporating sugar moieties and the sulfanilamide scaffold have been investigated for their interaction with the secretory isoform of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), CA VI. This isoform is secreted in saliva, tears, and milk of mammals - where it plays important physiological roles - even if little is understood at this moment regarding its inhibition, due to the lack of potent and/or selective inhibitors. Here we report a series of low nanomolar and subnanomolar CA VI inhibitors, belonging to the glycosylamine-sulfanilamide class. The glucose, ribose, arabinose, xylose, and fucose derivatives showed excellent CA VI inhibitory activity, with K(i)s in the range of 0.56-5.1 nm, whereas the least active derivatives, incorporating gallactose, mannose, and rhamnose scaffolds showed inhibition constants in the range of 10.1-34.1 nm. Many of these sulfonamides were also selective inhibitors for their interaction with CA VI over the physiologically dominant and ubiquitous isoform CA II, with selectivity ratios of 4.11-35.93 for inhibiting the secreted over the cytosolic isozyme. Because of their high water solubility and high affinity for CA VI over CA II, these compounds are useful tools for better understanding the secreted CA isoform CA VI.
2009
74
636
639
J. Winum;J. Montero;D. Vullo;C. T. Supuran
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/776185
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact