This paper presents the assessment of a NDVI-based parametric model (C-Fix) and a bio-geochemical model (BIOME-BGC) for the simulation of semi-natural grassland primary productivity in Italy. The two models are first calibrated using the gross primary productivity (GPP) data of an eddy covariance flux tower placed over a Mediterranean-temperate hilly area in Central Italy. Next, they are applied to estimate the net primary productivity (NPP) of three independent areas representative of different co-climatic zones. The first area shows a typical Alpine climate, while the other two are characterized by more or less pronounced Mediterranean features. The accuracy of the NPP estimates is assessed through comparison with destructive dry matter measurements taken in the three areas. The results obtained support the capability of the two models to predict spatial NPP differences across the various grassland sites. The greatest estimation errors are found in the mountain area, mostly due to inaccuracies in the meteorological input data. These errors affect particularly the outputs of the bio-geochemical model and are mitigated by the use of C-Fix, which exploits the remotely sensed information related to the seasonal evolution of green biomass.

Simulation of grassland productivity by the combination of ground and satellite data / F. Maselli; G. Argenti; M. Chiesi; L. Angeli; D. Papale. - In: AGRICULTURE, ECOSYSTEMS & ENVIRONMENT. - ISSN 0167-8809. - STAMPA. - 165:(2013), pp. 163-172. [10.1016/j.agee.2012.11.006]

Simulation of grassland productivity by the combination of ground and satellite data

ARGENTI, GIOVANNI;
2013

Abstract

This paper presents the assessment of a NDVI-based parametric model (C-Fix) and a bio-geochemical model (BIOME-BGC) for the simulation of semi-natural grassland primary productivity in Italy. The two models are first calibrated using the gross primary productivity (GPP) data of an eddy covariance flux tower placed over a Mediterranean-temperate hilly area in Central Italy. Next, they are applied to estimate the net primary productivity (NPP) of three independent areas representative of different co-climatic zones. The first area shows a typical Alpine climate, while the other two are characterized by more or less pronounced Mediterranean features. The accuracy of the NPP estimates is assessed through comparison with destructive dry matter measurements taken in the three areas. The results obtained support the capability of the two models to predict spatial NPP differences across the various grassland sites. The greatest estimation errors are found in the mountain area, mostly due to inaccuracies in the meteorological input data. These errors affect particularly the outputs of the bio-geochemical model and are mitigated by the use of C-Fix, which exploits the remotely sensed information related to the seasonal evolution of green biomass.
2013
165
163
172
F. Maselli; G. Argenti; M. Chiesi; L. Angeli; D. Papale
File in questo prodotto:
File Dimensione Formato  
maselli et al 2013.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/789542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 39
social impact