Dendrimers have been described as one of the most tunable and therefore potentially applicable nanoparticles both for diagnostics and therapy. Recently, in order to realize drug delivery agents, most of the effort has been dedicated to the development of dendrimers that could internalize into the cells and target specific intracellular compartments in vitro and in vivo. Here, we describe cell internalization properties and diffusion of G4 and G4-C12 modified PAMAM dendrimers in primary neuronal cultures and in the CNS of live animals. Confocal imaging on primary neurons reveals that dendrimers are able to cross the cell membrane and reach intracellular localization following endocytosis. Moreover, functionalization of PAMAMs has a dramatic effect on their ability to diffuse in the CNS tissue in vivo and penetrate living neurons as shown by intraparenchymal or intraventricular injections. 100 nM G4-C12 PAMAM dendrimer already induces dramatic apoptotic cell death of neurons in vitro. On the contrary, G4 PAMAM does not induce apoptotic cell death of neural cells in the sub-micromolar range of concentration and induces low microglia activation in brain tissue after a week. Our detailed description of dendrimer distribution patterns in the CNS will facilitate the design of tailored nanomaterials in light of future clinical applications

In vivo distribution and toxicity of PAMAM dendrimers in the Central Nervous System depends on their surface chemistry / L. Albertazzi; L. Gherardini; M. Brondi; S. Sulis Sato; A. Bifone; T. Pizzorusso; G.M. Ratto; G. Bardi. - In: MOLECULAR PHARMACEUTICS. - ISSN 1543-8384. - STAMPA. - 10:(2013), pp. 249-260. [10.1021/mp300391v]

In vivo distribution and toxicity of PAMAM dendrimers in the Central Nervous System depends on their surface chemistry

PIZZORUSSO, TOMMASO;
2013

Abstract

Dendrimers have been described as one of the most tunable and therefore potentially applicable nanoparticles both for diagnostics and therapy. Recently, in order to realize drug delivery agents, most of the effort has been dedicated to the development of dendrimers that could internalize into the cells and target specific intracellular compartments in vitro and in vivo. Here, we describe cell internalization properties and diffusion of G4 and G4-C12 modified PAMAM dendrimers in primary neuronal cultures and in the CNS of live animals. Confocal imaging on primary neurons reveals that dendrimers are able to cross the cell membrane and reach intracellular localization following endocytosis. Moreover, functionalization of PAMAMs has a dramatic effect on their ability to diffuse in the CNS tissue in vivo and penetrate living neurons as shown by intraparenchymal or intraventricular injections. 100 nM G4-C12 PAMAM dendrimer already induces dramatic apoptotic cell death of neurons in vitro. On the contrary, G4 PAMAM does not induce apoptotic cell death of neural cells in the sub-micromolar range of concentration and induces low microglia activation in brain tissue after a week. Our detailed description of dendrimer distribution patterns in the CNS will facilitate the design of tailored nanomaterials in light of future clinical applications
2013
10
249
260
L. Albertazzi; L. Gherardini; M. Brondi; S. Sulis Sato; A. Bifone; T. Pizzorusso; G.M. Ratto; G. Bardi
File in questo prodotto:
File Dimensione Formato  
albertazzi.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/807277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 147
  • ???jsp.display-item.citation.isi??? 134
social impact