Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA·μg-1 Pd, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mA·μg-1 Pd for ethylene glycol and 1.84 mA·μg-1 Pd for glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW·cm -2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA·cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.

Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols / Bruno F. Machado; Andrea Marchionni; Revathi R. Bacsa; Marco Bellini; Julien Beausoleil; Werner Oberhauser; Francesco Vizza; Philippe Serp. - In: JOURNAL OF ENERGY CHEMISTRY. - ISSN 2095-4956. - ELETTRONICO. - 22:(2013), pp. 296-304. [10.1016/S2095-4956(13)60036-4]

Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols

BELLINI, MARCO;
2013

Abstract

Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA·μg-1 Pd, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mA·μg-1 Pd for ethylene glycol and 1.84 mA·μg-1 Pd for glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW·cm -2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA·cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.
2013
22
296
304
Bruno F. Machado; Andrea Marchionni; Revathi R. Bacsa; Marco Bellini; Julien Beausoleil; Werner Oberhauser; Francesco Vizza; Philippe Serp
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/823429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 32
social impact