Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i) initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii) the second phase is due to the delayed reduction of Ca2+ release and /or reduction of the Ca2+ sensitivity of the myofibrils due to high [Pi]i.

Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers / Nocella M;Cecchi G;Bagni MA;Colombini B. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 8:(2013), pp. 1-11. [10.1371/journal.pone.0078918]

Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.

NOCELLA, MARTA;CECCHI, GIOVANNI;BAGNI, MARIA ANGELA;COLOMBINI, BARBARA
2013

Abstract

Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i) initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii) the second phase is due to the delayed reduction of Ca2+ release and /or reduction of the Ca2+ sensitivity of the myofibrils due to high [Pi]i.
2013
8
1
11
Nocella M;Cecchi G;Bagni MA;Colombini B
File in questo prodotto:
File Dimensione Formato  
pone.0078918.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 684.37 kB
Formato Adobe PDF
684.37 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/841098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact