The paper considers the problem of determining a suitable link structure for a set of networked interdependent processes, then providing a simplified description for their unknown underlying topology, also giving useful insights about their mutual influences. There are many scenarios where this problem has a prominent relevance. Indeed, it is often possible to measure the outputs of a large number of systems which are not independent, with no a priori knowledge of what the interconnections are. Examples can be found in fields as diverse as Economics, Biology, Ecology and Neural Sciences. The main idea of this work is to provide both a qualitative and quantitative description of the links among the processes in terms of modeling errors, assuming no a priori knowledge about the network features. To this aim, Wiener filtering and graph theory are exploited in a linear framework, in order to reconstruct a suitable connected and acyclic scheme for the internal connections of the whole system. Moreover, we show the consistency of the proposed technique, when the underlying network is actually connected and acyclic, proving that the structure obtained through the identification method coincides with the actual one and that this goal cannot be achieved via simple Wiener filtering. An application to real data illustrates the effectiveness of the suggested approach.

Modeling the topology of a dynamical network via Wiener filtering approach / Innocenti, Giacomo; Donatello, Materassi. - In: AUTOMATICA. - ISSN 0005-1098. - STAMPA. - 48:(2012), pp. 936-946. [10.1016/j.automatica.2012.02.026]

Modeling the topology of a dynamical network via Wiener filtering approach

INNOCENTI, GIACOMO;
2012

Abstract

The paper considers the problem of determining a suitable link structure for a set of networked interdependent processes, then providing a simplified description for their unknown underlying topology, also giving useful insights about their mutual influences. There are many scenarios where this problem has a prominent relevance. Indeed, it is often possible to measure the outputs of a large number of systems which are not independent, with no a priori knowledge of what the interconnections are. Examples can be found in fields as diverse as Economics, Biology, Ecology and Neural Sciences. The main idea of this work is to provide both a qualitative and quantitative description of the links among the processes in terms of modeling errors, assuming no a priori knowledge about the network features. To this aim, Wiener filtering and graph theory are exploited in a linear framework, in order to reconstruct a suitable connected and acyclic scheme for the internal connections of the whole system. Moreover, we show the consistency of the proposed technique, when the underlying network is actually connected and acyclic, proving that the structure obtained through the identification method coincides with the actual one and that this goal cannot be achieved via simple Wiener filtering. An application to real data illustrates the effectiveness of the suggested approach.
2012
48
936
946
Innocenti, Giacomo; Donatello, Materassi
File in questo prodotto:
File Dimensione Formato  
AUT2012.pdf

Accesso chiuso

Descrizione: Pre-print
Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 527.73 kB
Formato Adobe PDF
527.73 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/842740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact