A faster healing process was observed in superficial skin wounds after irradiation with the EMOLED photocoagulator. The instrument consists of a compact handheld photocoagulation device, useful for inducing coagulation in superficial abrasions. The illumination is provided by a high power blue LED. Blue light is selectively absorbed by haemoglobin and converted into heat through a photothermal effect. In this study, 10 Sprague Dawley rats were mechanically abraded in four regions of their back: two regions were used as a control and the other two were treated with EMOLED. The photothermal effect was monitored by an infrared thermocamera in order to avoid accidental thermal damage. Visual observations, histopathological analysis and non-linear microscopic imaging performed after 8 days from the treatment showed no adverse reactions and no thermal damage in both treated areas and surrounding tissues. Moreover, a faster healing process and a better-recovered morphology was evidenced in the treated tissue with respect to the untreated tissue. Compared to the control regions, a reduced inflammatory response, a higher collagen content, and a skin morphology more similar to normal skin were observed in the treated regions. Collagen organization in the two regions was characterized using image pattern analysis algorithms on SHG images, demonstrating a fully recovered aspect of dermis as well as a faster neocollagenesis in the treated regions. This study demonstrates that the selective photothermal effect we used for inducing immediate coagulation in superficial wounds is associated to a minimal inflammatory response, which provides reduced recovery times and improved healing process

Irradiation with EMOLED improves the healing process in superficial skin wounds / Riccardo Cicchi; Francesca Rossi; Francesca Tatini; Stefano Bacci; Gaetano De Siena; Domenico Alfieri; Roberto Pini; Francesco S Pavone. - STAMPA. - (2014), pp. 892604-892606. (Intervento presentato al convegno SPIE BIOS).

Irradiation with EMOLED improves the healing process in superficial skin wounds

Riccardo Cicchi
Membro del Collaboration Group
;
BACCI, STEFANO
Membro del Collaboration Group
;
PAVONE, FRANCESCO SAVERIO
Membro del Collaboration Group
2014

Abstract

A faster healing process was observed in superficial skin wounds after irradiation with the EMOLED photocoagulator. The instrument consists of a compact handheld photocoagulation device, useful for inducing coagulation in superficial abrasions. The illumination is provided by a high power blue LED. Blue light is selectively absorbed by haemoglobin and converted into heat through a photothermal effect. In this study, 10 Sprague Dawley rats were mechanically abraded in four regions of their back: two regions were used as a control and the other two were treated with EMOLED. The photothermal effect was monitored by an infrared thermocamera in order to avoid accidental thermal damage. Visual observations, histopathological analysis and non-linear microscopic imaging performed after 8 days from the treatment showed no adverse reactions and no thermal damage in both treated areas and surrounding tissues. Moreover, a faster healing process and a better-recovered morphology was evidenced in the treated tissue with respect to the untreated tissue. Compared to the control regions, a reduced inflammatory response, a higher collagen content, and a skin morphology more similar to normal skin were observed in the treated regions. Collagen organization in the two regions was characterized using image pattern analysis algorithms on SHG images, demonstrating a fully recovered aspect of dermis as well as a faster neocollagenesis in the treated regions. This study demonstrates that the selective photothermal effect we used for inducing immediate coagulation in superficial wounds is associated to a minimal inflammatory response, which provides reduced recovery times and improved healing process
2014
Photonic Therapeutics and Diagnostics
SPIE BIOS
Riccardo Cicchi; Francesca Rossi; Francesca Tatini; Stefano Bacci; Gaetano De Siena; Domenico Alfieri; Roberto Pini; Francesco S Pavone
File in questo prodotto:
File Dimensione Formato  
56) SPIE BIOS 8926 14.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 502.36 kB
Formato Adobe PDF
502.36 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/844320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact