Disasters from explosive volcanic eruptions are infrequent and experience in emergency planning and mitigation for such events remains limited. The need for urgently developing more robust methods for risk assessment and decision making in volcanic crises has become increasingly apparent as world populations continue to expand in areas of active explosive volcanism. Nowhere is this more challenging than at Vesuvius, Italy, with hundreds of thousands of people living on the flanks of one of the most dangerous volcanoes in the world. We describe how a new paradigm, evidence-based volcanology, has been applied in EXPLORIS to contribute to crisis planning and management for when the volcano enters its next state of unrest, as well as in long-term land-use planning. The analytical approach we adopted enumerates and quantifies all the processes and effects of the eruptive hazards of the volcano known to influence risk, a scientific challenge that combines field data on the vulnerability of the built environment and humans in past volcanic disasters with theoretical research on the state of the volcano, and including evidence from the field on previous eruptions as well as numerical simulation modelling of eruptive processes. Formal probabilistic reasoning under uncertainty and a decision analysis approach have provided the basis for the development of an event tree for a future range of eruption types with probability paths and hypothetical casualty outcomes for risk assessment. The most likely future eruption scenarios for emergency planning were derived from the event tree and elaborated upon from the geological and historical record. Modelling the impacts in these scenarios and quantifying the consequences for the circumvesuvian area provide realistic assessments for disaster planning and for showing the potential risk–benefit of mitigation measures, the main one being timely evacuation, but include for consideration protecting buildings against dilute, low dynamic pressure surges, and temporary roof supports in the most vulnerable buildings, as well as hardening infrastructure and lifelines. This innovative work suggests that risk-based methods could have an important role in crisis management at cities on volcanoes and small volcanic islands.

Developing an Event tree for probabilistic hazard and risk assessment at Vesuvius / NERI A;ASPINALL W.P; R CIONI;BERTAGNINI A;BAXTER P.J;ZUCCARO G;ANDRONICO D;COLE P.D;ESPOSTI ONGARO T;HINCKS T.K;MACEDONIO G;PAPALE P;ROSI M;SANTACROCE R;WOO G. - In: JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH. - ISSN 0377-0273. - STAMPA. - 178:(2008), pp. 397-415. [10.1016/j.jvolgeores.2008.05.014]

Developing an Event tree for probabilistic hazard and risk assessment at Vesuvius

CIONI, RAFFAELLO;
2008

Abstract

Disasters from explosive volcanic eruptions are infrequent and experience in emergency planning and mitigation for such events remains limited. The need for urgently developing more robust methods for risk assessment and decision making in volcanic crises has become increasingly apparent as world populations continue to expand in areas of active explosive volcanism. Nowhere is this more challenging than at Vesuvius, Italy, with hundreds of thousands of people living on the flanks of one of the most dangerous volcanoes in the world. We describe how a new paradigm, evidence-based volcanology, has been applied in EXPLORIS to contribute to crisis planning and management for when the volcano enters its next state of unrest, as well as in long-term land-use planning. The analytical approach we adopted enumerates and quantifies all the processes and effects of the eruptive hazards of the volcano known to influence risk, a scientific challenge that combines field data on the vulnerability of the built environment and humans in past volcanic disasters with theoretical research on the state of the volcano, and including evidence from the field on previous eruptions as well as numerical simulation modelling of eruptive processes. Formal probabilistic reasoning under uncertainty and a decision analysis approach have provided the basis for the development of an event tree for a future range of eruption types with probability paths and hypothetical casualty outcomes for risk assessment. The most likely future eruption scenarios for emergency planning were derived from the event tree and elaborated upon from the geological and historical record. Modelling the impacts in these scenarios and quantifying the consequences for the circumvesuvian area provide realistic assessments for disaster planning and for showing the potential risk–benefit of mitigation measures, the main one being timely evacuation, but include for consideration protecting buildings against dilute, low dynamic pressure surges, and temporary roof supports in the most vulnerable buildings, as well as hardening infrastructure and lifelines. This innovative work suggests that risk-based methods could have an important role in crisis management at cities on volcanoes and small volcanic islands.
2008
178
397
415
NERI A;ASPINALL W.P; R CIONI;BERTAGNINI A;BAXTER P.J;ZUCCARO G;ANDRONICO D;COLE P.D;ESPOSTI ONGARO T;HINCKS T.K;MACEDONIO G;PAPALE P;ROSI M;SANTACROCE R;WOO G
File in questo prodotto:
File Dimensione Formato  
Journal_of_Volcanology_and_Geothermal_Research_2008_Neri-2.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 4.29 MB
Formato Adobe PDF
4.29 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/859589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 183
  • ???jsp.display-item.citation.isi??? 147
social impact