Matrix cooling systems are relatively unknown among gas turbines manufacturers of the western world. In comparison to conventional turbulated serpentines or pin–fin geometries, a lattice–matrix structure can potentially provide higher heat transfer enhancement levels with similar overall pressure losses. This experimental investigation provides heat transfer distribution and pressure drop of four different lattice–matrix geometries with crossing angle of 45 deg between ribs. The four geometries are characterized by two different values of rib height, which span from a possible application in the midchord region up to the trailing edge region of a gas turbine airfoil. For each rib height, two different configurations have been studied: one having four entry channels and lower rib thickness (open area 84.5%), one having six entry channels and higher rib thickness (open area 53.5%). Experiments were performed varying the Reynolds number Res, based on the inlet subchannel hydraulic diameter, from 2000 to 12,000. Heat transfer coefficients (HTCs) were measured using steady state tests and applying a regional average method; test models have been divided into 20 stainless steel elements in order to have a Biot number similitude with real conditions. Elements are 10 per side, five in the main flow direction, and two in the tangential one. Metal temperature was measured with embedded thermocouples, and 20 thin-foil heaters were used to provide a constant heat flux during each test. A specific data reduction procedure has been developed so as to take into account the fin effectiveness and the increased heat transfer surface area provided by the ribs. Pressure drops were also evaluated measuring pressure along the test models. Uniform streamwise distributions of Nusselt number Nus have been obtained for each Reynolds number. Measurements show that the heat transfer enhancement level Nus/Nu0 decreases with Reynolds but is always higher than 2. Results have been compared with previous literature data on similar geometries and show a good agreement.

Heat Transfer and Pressure Loss Measurements of Matrix Cooling Geometries for Gas Turbine Airfoils / Carlo Carcasci;Bruno Facchini;Marco Pievaroli;Lorenzo Tarchi;Alberto Ceccherini;Luca Innocenti. - In: JOURNAL OF TURBOMACHINERY. - ISSN 0889-504X. - STAMPA. - 136:(2014), pp. 121005-1-121005-8. [10.1115/1.4028237]

Heat Transfer and Pressure Loss Measurements of Matrix Cooling Geometries for Gas Turbine Airfoils

CARCASCI, CARLO;FACCHINI, BRUNO;PIEVAROLI, MARCO;TARCHI, LORENZO;CECCHERINI, ALBERTO;Luca Innocenti
2014

Abstract

Matrix cooling systems are relatively unknown among gas turbines manufacturers of the western world. In comparison to conventional turbulated serpentines or pin–fin geometries, a lattice–matrix structure can potentially provide higher heat transfer enhancement levels with similar overall pressure losses. This experimental investigation provides heat transfer distribution and pressure drop of four different lattice–matrix geometries with crossing angle of 45 deg between ribs. The four geometries are characterized by two different values of rib height, which span from a possible application in the midchord region up to the trailing edge region of a gas turbine airfoil. For each rib height, two different configurations have been studied: one having four entry channels and lower rib thickness (open area 84.5%), one having six entry channels and higher rib thickness (open area 53.5%). Experiments were performed varying the Reynolds number Res, based on the inlet subchannel hydraulic diameter, from 2000 to 12,000. Heat transfer coefficients (HTCs) were measured using steady state tests and applying a regional average method; test models have been divided into 20 stainless steel elements in order to have a Biot number similitude with real conditions. Elements are 10 per side, five in the main flow direction, and two in the tangential one. Metal temperature was measured with embedded thermocouples, and 20 thin-foil heaters were used to provide a constant heat flux during each test. A specific data reduction procedure has been developed so as to take into account the fin effectiveness and the increased heat transfer surface area provided by the ribs. Pressure drops were also evaluated measuring pressure along the test models. Uniform streamwise distributions of Nusselt number Nus have been obtained for each Reynolds number. Measurements show that the heat transfer enhancement level Nus/Nu0 decreases with Reynolds but is always higher than 2. Results have been compared with previous literature data on similar geometries and show a good agreement.
2014
136
121005-1
121005-8
Carlo Carcasci;Bruno Facchini;Marco Pievaroli;Lorenzo Tarchi;Alberto Ceccherini;Luca Innocenti
File in questo prodotto:
File Dimensione Formato  
63_14_JTurboMach_turbo_136_12_121005_Matrix_Transaction.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/891975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact