Gold nanoparticles are being increasingly proposed as biotechnological tools for medical diagnosis and therapy purposes. Their safety for human beings and the environment is therefore becoming an emerging issue, which calls for basic research on the interactions between nanostructured gold particles and biological materials, including physicochemical studies of model systems. In this Article, we focus on the “reaction products” of a widely known nanoparticle type, citrate-capped 30 nm gold nanospheres, with a model protein, horse myoglobin. Protein adsorption and partial denaturation were accompanied by the formation of nanoparticle aggregates with strongly distinct optical spectroscopy properties and shapes, as observed by transmission electron microscopy. We singled out the concentration of myoglobin as the determinant of these differences, and verified on this basis that surface-enhanced Raman scattering (SERS) spectra can only be obtained by aggregates with strong interparticle optical coupling, which are obtained at low protein concentration. The results can be useful both in improving the spectroscopy of biomolecules and in understanding the formation of the protein corona in biomedical applications.

Concentration-Controlled Formation of Myoglobin/Gold Nanosphere Aggregates / Paz Sevilla; Santiago Sánchez-Cortés; José V. García-Ramos; Alessandro Feis. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - STAMPA. - 118:(2014), pp. 5082-5092. [10.1021/jp502008a]

Concentration-Controlled Formation of Myoglobin/Gold Nanosphere Aggregates

FEIS, ALESSANDRO
2014

Abstract

Gold nanoparticles are being increasingly proposed as biotechnological tools for medical diagnosis and therapy purposes. Their safety for human beings and the environment is therefore becoming an emerging issue, which calls for basic research on the interactions between nanostructured gold particles and biological materials, including physicochemical studies of model systems. In this Article, we focus on the “reaction products” of a widely known nanoparticle type, citrate-capped 30 nm gold nanospheres, with a model protein, horse myoglobin. Protein adsorption and partial denaturation were accompanied by the formation of nanoparticle aggregates with strongly distinct optical spectroscopy properties and shapes, as observed by transmission electron microscopy. We singled out the concentration of myoglobin as the determinant of these differences, and verified on this basis that surface-enhanced Raman scattering (SERS) spectra can only be obtained by aggregates with strong interparticle optical coupling, which are obtained at low protein concentration. The results can be useful both in improving the spectroscopy of biomolecules and in understanding the formation of the protein corona in biomedical applications.
2014
118
5082
5092
Paz Sevilla; Santiago Sánchez-Cortés; José V. García-Ramos; Alessandro Feis
File in questo prodotto:
File Dimensione Formato  
sevilla14.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 457.54 kB
Formato Adobe PDF
457.54 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/950952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact