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Abstract. The increasingly use of Autonomous Underwater Vehicles (AUVs)
in several context led to a rapid development and enhancement of their tech-
nologies, allowing the automatization of many tasks. One of the most chal-
lenging tasks of AUVs still remains their robust positioning and navigation,
since classical global positioning techniques are generally not available for their
operations. Inertial Navigation System (INS) methods provide the vehicle cur-
rent position and orientation integrating data acquired by the internal
accelerometer and gyroscope. This system has the advantage of not needing to
either send or receive signals from other systems; however, among the errors the
sensors are mainly affected by, the most critical one is related to their drift,
which makes the position error growing over time. The attenuation of the effect
of these problematics is generally achieved combining different positioning
methods, as for example acoustic- or geophysical-based ones. An accurate
estimation of the device orientation is anyway necessary to get satisfying results
in terms of position and autonomous navigation. In this paper, a preliminary
study on the use of smartphone low-cost sensors to perform attitude estimation
is presented. With the final aim of developing a cheaper and more accessible
underwater positioning system, a first analysis is conducted to verify the
accuracy of the attitude angles obtained by the integration of smartphone data
acquired in different operative settings. Different filtering methods will be
employed.

Keywords: Orientation estimation � Low-cost sensors � Filtering methods

1 Introduction

AUVs have demonstrated versatile capabilities to conduct missions in several fields, as
for example oceanographic research, surveillance and defense, demining, underwater
energy development, bathymetric data collection, etc., for which high accuracy of
measured data is required. Vehicles autonomy stands as one of the most important and
at the same time critical point for their development and usage: in the last years,
remarkable results have been reached in the field, and the technological development is
continuously growing to enhance the vehicles performances.
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Being localization and navigation a fundamental part of the autonomy of the AUV,
optimizing the algorithms and techniques underlying these processes is crucial. The
rapid attenuation of radio signal together with the unstructured nature of the undersea
environment makes traditional methods (based on Global Navigation Satellite System,
GNSS) not suitable for the AUV control; hence, the design and implementation of
navigation systems still constitute one of the most challenging tasks [1]. Modern AUV
localization techniques are classified into three main categories: Acoustic Positioning
Systems, Geophysical Navigation (GN) and Inertial Navigation System (INS) methods.
Ultra-Short Base Line (USBL)-aided buoy is a novel approach to underwater acoustic
localization, where the USBL device used to obtain the position of the target is housed
in the buoy itself. In this case, Inertial Measurement Unit (IMU) and Differential-GPS
(DGPS) are exploited to refer the measures to the current buoy position. Results
evidenced that the buoy motion has an effect on the overall accuracy of the localization
and particularly the yaw angular rate affects the azimuth measurement [2].

This confirms that the orientation estimation generally provided by inertial systems
is fundamental for an accurate positioning process; nevertheless, high accuracy results
usually requires high cost instrumentations.

In this paper, the use of low-cost sensors mounted on common smartphones is
evaluated as an alternative approach to more expensive INS, in order to further measure
the orientation of the device. Several filtering techniques have been tested on data
acquired by the gyroscope, accelerometer and magnetometer of an iPhone device.
A preliminary evaluation of the proposed method is conducted on the basis of statistical
parameters calculated by the analysis of the estimated and ground truth values.

2 Underwater Positioning Systems

The practically impossible use of the GNSS together with the unstructured and haz-
ardous characteristics of the marine environment makes the development of AUVs a
very challenging scientific and engineering problems. Different navigation and posi-
tioning methods have been studied by researchers, resulting in three main categories of
underwater techniques: acoustic, geophysical and INS based methods.

In the first case, localization is achieved by measuring ranges from the Time of
Flight (TOF) of acoustic signals (which have a lower absorption rate in the water than
radio frequency signals). Three different approaches can be employed, based on the
length of the baseline between the transducers: in a long baseline (LBL) system the
instruments are more than 100 m spaced over a wide area on the sea floor; in a short
baseline (SBL) system, the transducers are placed at the opposite ends of a ship’s hull,
thus not exceeding 20 m of distance, while for super short or ultra-short baseline
(SSBL and USBL) the length among them is smaller than 10 cm. Usually, the system
has one transponder and at least three transducers and its deployment depends on the
mission: for example, USBL and SBL are more suitable for tracking mission and short-
range navigation. Variability of the water characteristics and accordingly of the sound
speed, environmental noises and multipath can reduce the performance of these sys-
tems, which can also be complex to deploy.

104 F. Di Ciaccio et al.



Conventional dead-reckoning (DR) techniques can provide optimal results, espe-
cially if combined with geophysical navigation. The latter is based on environmental-
observed effects (i.e. terrain topography, gravity anomalies and geomagnetic field
variations, acquired by cameras, ranging sonars or magnetometers) and can provide
accurate position estimates and low localization errors in the long run with relatively
low-cost implementations [3, 4]. One of the implementation of the underwater GN is
the terrain-aided navigation (TAN), based on the matching between a set of range
measurement acquired by the sensors onboard and a previously acquired digital ele-
vation map (DEM) of the terrain to estimate the vehicle’s position. This method is able
to mitigate the accuracy drifts of the inertial systems but heavily depends on the need
for high-quality geophysical maps before the missions, other than being computa-
tionally costly when comparing and matching the map with sensors data.

Simultaneous Localization And Mapping (SLAM) techniques deal with this
problem: they allow the AUV to acquire a map of the environment while simultane-
ously localizing itself basing on the acquisition. The actual methods represent a robust
solution for static and limited-size areas reaching sub-metrical precision, but cannot
accomplish the task for dynamic, unstructured or large-scale environment [5].

As mentioned before, the use of inertial sensors is typically considered as the
central navigation system of AUVs. It contains an inertial measurement unit
(IMU) which allows the measurement of linear acceleration and angular velocity by its
three orthogonal rate-gyroscopes and -accelerometers respectively. These are integrated
to obtain the instantaneous speed and position of the vehicle without the need for
external references. Unfortunately, several problems are associated with these sensors:
gyroscopes measure angular rate of change and not angular position directly and
accelerometers measure more than just linear acceleration (e.g. gravitational acceler-
ation and Coriolis terms); measurements are noisy and biased and body-frame states
need to be transformed to the inertial reference frame (e.g. Euler angles) [6]. Moreover,
as already stated, the IMU errors increases over time due to the drift of the sensors. The
errors accumulation is theoretically linear for heading and velocity and exponential for
position [7]. This means that the navigation information provided by the INS can be
considered reliable and accurate only within short times, while it is still impossible for a
pure inertial navigation system to maintain the high-precision level throughout a
mission. That is why external information and measurement constitute an effective
improvement to navigation accuracy.

Moreover, even when high-end INS provide high accuracy, their high cost and
complexity place constraints on the environments in which they are practical for use,
leading to the development and consequent employment of MEMS (Micro Electro-
Mechanical Systems) AHRS (Attitude Heading Reference System). Characterized by
light weight and small sizes, they integrate a magnetometer to the INS configuration,
thus being able to measure the variation of the Earth’s magnetic field to estimate the
best attitude of the vehicle [8, 9]. Examples of AHRS are smartphones and video game
consoles; it should be noted that mobile devices are able to instantly calculate pose
estimation using their integrated sensors. In this way, these devices have the potential
to be used in several applications beside orientation estimation, like geomatics, aug-
mented reality (AR), etc.
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3 Sensors and Algorithms

Today’s smartphones incorporate numerous sensors, which may include compass,
accelerometer, gyroscope, GPS, camera and sensors of temperature, pressure, prox-
imity, etc. It should be considered that smartphone applications cannot directly access
physical sensors embedded into smartphones: the raw signal they measure is processed
by the operating system and then made available to the applications in a standardized
format (the smartphone sensor). That means that the technical specifications of the
sensors cannot be obtained from the manufacturer’s data sheet [10], but a general and
accurate review of their functioning can be easily found.

3.1 Smartphone Sensor Accuracy

In [10], for example, a sensing application for analyzing accelerometer and gyroscope
bias and noise parameters (as starting point) of some of the most common smartphones
of the recent years is presented. The iPhone model employed in this experiment is not
included in the list, but some general information can be derived from the overall
analysis. In particular, an extract by [10] (Table 1) reports the average and the standard
deviation of the measured smartphone accelerometer and gyroscope biases.

In [11], a static test made through the acquisition of the raw angular velocities and
accelerations was performed made to test the stability of the sensors of an iPhone 4.
A summary of this test is reported in Table 2, confirming good stability for both the
gyroscope and the accelerometer. This result can be projected to the iPhone SE as a really
good basis, being its technology surely more advanced than that of its earlier version.

The low-cost MEMS AHRS sensors of the smartphone are simply strapped to the
unit, so that the coordinate frame of each of them has the same directions. This
configuration provides much sensitivity to the turning rates but less stability. The raw
data acquired by the sensors can have possible errors due to the system design;

Table 1. Statistical parameters of the absolute bias values of smartphone sensors [10].

Accelerometer
[mg0]

Gyroscope
½mrad=s]

X Y Z X Y Z

Average 14.3 14.6 25.3 9.4 8.7 6.1
StDev 14.2 15.2 25.1 13.6 12.1 8.7

Table 2. iPhone 4 sensors stability performance derived from a static test [11]

Accelerometer [g0] Gyroscope ½rad=s]
X Y Z X Y Z

RMSE 2.8 2.4 4.2 4.8 3.2 4.3

106 F. Di Ciaccio et al.



moreover, they are affected by thermal and electronic-related noise, usually modelled
as additive Gaussian noise. This entails deviations and oscillations around the correct
value that can be reduced by prior calibration procedures. However, additional con-
siderations must be made on the sensors [12]. The accelerometer at rest should measure
the gravitational acceleration only but, being the sensor very sensitive to vibration and
mechanical noise, it will measure the result of many additional forces besides gravity,
with consequences on the final estimation. The output of a magnetometer largely
depends on the environment additional magnetic fields, which can affect the accuracy
of the results. Gyroscope measures the angular rate of change around the three axes in
the body frame, which could be integrated to get the angular positions. Unfortunately,
even if less sensitive to perturbations and not influenced by external factors, the
gyroscope is not free from errors [13]. They are generally caused by the non-perfect
symmetricity of the oscillation plane, by the dissipation of the vibration mechanical
energy in thermal energy and by the non-linearity of the restoring forces. As an
intrinsic characteristic of the gyroscope, these errors accumulate over time, becoming
unbounded in magnitude: this is commonly known as gyroscope drift.

The integration of the three sensors can compensate the different errors related to
each of them to obtain a complete orientation measurement [14]. The complementary
filter, for example, combines the accelerometer good performance in static conditions
with those of the gyroscope in dynamic ones. Two filters, a low-pass and a high-pass,
are used on accelerometer and gyroscope data respectively [15]. The Kalman filter, also
known as Linear Quadratic Estimator (LQE), is the optimal state estimator for any
linear stochastic system subject to known normally distributed state and measurement
noise. This filter does not only consider the sensor measurements but also the under-
lying dynamics of the system itself; for these reasons it is widely used to solve many
tracking and data prediction tasks. Other implementations as the extended Kalman filter
(EKF) and the unscented Kalman filter (UKF) extend these techniques to nonlinear
systems [16]. A brief overview on the Kalman filter will be given in the next paragraph
to better understand its functioning, while the experiment setup will be analyzed in
chapter 4.

3.2 Kalman Filter: An Overview

The Kalman filter is a predictive filter which uses a recursive algorithm to estimate the
state of a dynamic system by elaborating sequential measurements. In the discrete time
setting, a time-invariant system can be described by a state Eq. (1) and a measurement
Eq. (2). In (1)~xt is the state vector to be predicted,~xt�1 and ~ut�1 are the state and the
input vectors at the previous time. A and B are the system matrices, which respectively
relate the current states and the inputs to the next states and are assumed stationary over
time. The actual measurements can be modelled as in (2):~yt is the measure and C is the
matrix which relates the system state to the measured one. ~wt�1 and~vt are the additive
process and measurement noise respectively, assumed to be zero-mean Gaussian
processes.
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~xt ¼ A~xt�1 þB~ut�1 þ~wt�1 ð1Þ
~yt ¼ C~xt þ~vt ð2Þ

The Kalman filter equations provide a prediction (3), (4) and an update (5), (6), (7),
(8) phases.

x
0
t ¼ A~xt�1 þB~ut�1 ð3Þ

P
0
t ¼ APt�1A

T þQ ð4Þ
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0
tC
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0
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0
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0
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Pt ¼ I � KtCð ÞP0
t ð8Þ

The a-posteriori state estimate xt is obtained as a linear combination of the a-priori
estimate x

0
t and a weighted difference between the actual measurement and the pre-

diction, Kt yt � Cx
0
t

� �
. The difference in (7) is called measurement innovation or

residual and reflects the discrepancy between the predicted measurement and the actual
measurement. K is known as the Kalman gain and minimizes the a-posteriori error
covariance; P is the error covariance matrix initially set by the user and updated by the
filter. Q and R are the covariance matrices of the process and measurement noise
respectively. Q indicates the uncertainty about the model dynamics, while R depends
mainly on the sensors used in the systems: large values in both the matrices means
greater noise levels. As both Q and R greatly affect the final filter performance, a tuning
procedure of their values is important, as the true noise statistics are unknown.

4 Experiments and Results

4.1 Coordinate Frames and Smartphone Details

The data collection has been made through the Matlab R2019b Mobile App running on
an iPhone SE mobile phone, both in static and dynamic conditions. The orientation is
defined by the three angles of Azimuth, Pitch and Roll: to understand and analyse the
results of the orientation estimation it is important to point out that Matlab provides
measures in a custom body coordinate frame while requiring data in North-East-Down
(NED) frame for its underlying functions (Fig. 1). In fact, underwater applications are
performed in NED coordinate frame: the positive X-axis points to the North, the
positive Y-axis to the East, and the positive Z-axis follows the positive direction of the
gravity force. Smartphone data loaded in Matlab is instead expressed in a different
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body frame, where the positive X-axis extends out of the right side of the phone, positive
Y-axis out of the top side, and the positive Z-axis out of the front face of the phone,
independently of the actual smartphone orientation. Thus, an appropriate coordinate
transformation is needed in order to switch pass from body frame to the NED frame.
With this state, the Euler angles are defined as follows: the Azimuth is the angle between
the magnetic north to the positive Y-axis, measuring the rotation around the Z-axis of
the phone; it will be indicated by h. The Roll is considered as positive when the Z-axis of
the smartphone (laying on a flat surface) begins to tilt towards the positive X-axis and, in
the same way, the positive Pitch is defined when the positive Z-axis begins to tilt
towards the positive Y-axis. The related angles will be indicated by u and w.

4.2 Experiment Setup and Results

Some of the built-in functions of Matlab have been used to combine the sensors
measurements. It follows a brief overview [18].

The “ecompass” function combines the accelerometer and magnetometer data and
returns a quaternion which can rotate the quantities from the NED frame to a child
frame; the orientation angles can be simply obtained applying the “eulerd” function to
the quaternion, specifying the correct axis order. The “imufilter” creates a system object
characterized by nontunable properties (unless otherwise indicated). These are the
sample rate of input sensor data (Hz), the decimation factor, the variance of the gyro
signal noise and offset drift ((rad/s)2), the variance of accelerometer signal and of the
linear acceleration noise ((m/s2)2), the decay factor for the linear acceleration drift and
the covariance matrix for process noise. Applying this object to the gyro and
accelerometer readings, the orientation and angular velocity are computed. This
algorithm assumes that the device is stationary before the first call.

Fig. 1. Coordinates frame required for the use of Matlab built-in functions [17].
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The “AHRSfilter” function creates an object which allows to fuse the data provided
by accelerometer, gyroscope and magnetometer to obtain orientation and angular
velocity. The properties of this filter are the same as the imufilter, with the addition of
the variance of the magnetometer signal noise and of the magnetic disturbance noise
(lT2), the decay factor for magnetic disturbance and the expected estimate of the
magnetic field strength (lT).

The “complementaryFilter” function, as the previously analyzed filters, returns a
System object which is applied to the accelerometer, gyroscope and magnetometer
readings to give the orientation of the device. The parameters of this filter are the
sample rate (Hz), the accelerometer and magnetometer gains and the output orientation
format. The magnetometer input is enabled by default but can be disabled if needed.

The aim of the experiment was to test the smartphone performance in basic con-
figurations, in order to evaluate if the accuracy of the reliability of the results could
match a further use of the same device in more complex settings. For this reason, the
toy-experiment has been conducted in two different phases. In the first one, the
smartphone was placed in a static configuration on a flat surface, avoiding any form of
disturbance which could have altered the acquisition. This was made to verify the
reliability of the measurements in static mode, where no external noise should affect the
acquisition. Stated this, in the second part of, the experiment the smartphone has
undergone several rotations on the same flat surface, each time around one of its three
axes. Again, to better evaluate and particularly see the response of the sensors, a 90°
rotation has been chosen as the most elementary test.

The modalities have been the same for both the phases. Having enabled the sensors,
five minutes acquisition have been performed; the resulting readings were automati-
cally sent to the Matlab Drive to be further processed in the desktop version of the
software. The orientation parameters given by the smartphone itself were acquired too
and then set as the ground truth for the experiment.

The first part of the script allowed the synchronization of the acquisitions, which
were then transformed in the required frame to be correctly processed through a
coordinates transformation. The orientation angles of Azimuth, Pitch and Roll have
then been estimated using each of the Matlab function above mentioned: a first eval-
uation of their accuracy has been made on the basis of the resulting standard deviation.

At this point, an elementary Kalman filter has been implemented. The state and bias
vectors have been initialized as zeroes arrays: the gyro biases will be calculated and
subtracted to the state with the aim to reduce the gyro drift. The transformed angular
rates of change have been used to get roll, pitch and yaw angles as input vector, while
the state update was processed using the results of the magnetometer and accelerometer
integration.

As previously said, the Q and R matrices needed a fine tuning, indispensable to
obtain the least possible oscillation around the reference values (those directly mea-
sured and smoothed by the phone, referred to as ground truth). For this reason, a fuzzy
logic-based method has been followed to minimize the standard deviation [19],
changing the matrices values and evaluating the parameter variation after each
step. This preliminary tuning phase assured a correct estimation of the Euler angles by
the Kalman filter.
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Figure 2 and Fig. 3 show the results of the finetuning for the static experiment.
Although an oscillation in the first part could be tolerated, being due to the normal
initial settling of the filter, continued successive fluctuations evidence a wrong tuning,
particularly if characterized by abnormal amplitudes as those visible in the third section
of Fig. 2, related to the Pitch estimation made by the KF (in red). The enhancement
provided by a correct tuning can be seen in Fig. 3, where no excessive oscillations
characterize the evaluation trend of the Kalman filter. After the tuning (Fig. 3), the KF

Fig. 2. Kalman filter estimation of the Euler angles. (Color figure online)

Fig. 3. Kalman filter estimation of the Euler angles after the tuning process.
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has been used with different inputs, in order to verify the contribution of each sensor in
the estimation. The evaluation has been made analysing the root mean square, the mean
and maximum deviations between the reference Euler angles values and the estimated
ones. Results (Table 3 and Table 4) show that in general the complementary filter gives
the best estimation, with the ecompass filter producing better results in few cases;
nevertheless, the magnitude of the values confirms that both the Matlab filters run with
very good performances, estimating the Euler angles with smaller errors than the
others. This result exactly matches what previously said about the errors compensation
of each sensor made through the combined integration of their measures.

Table 3. Statistical evaluation of the Kalman filter performance applied on the Matlab
“Complementary” filter

Root mean square
[10�3deg�

Mean deviation
[10�3deg�

Maximum deviation
[10�3deg�

Roll (u) 33.4686 16.9271 571.7200
Azimuth (0) 626.1838 86.8802 379.4724
Pitch (w) 22.5467 8.5153 84.9020

Fig. 4. Kalman filter estimation of the Euler angles in dynamic conditions: 90° rotation around
the Z-axis. (Color figure online)
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Figure 4 shows the sensors response to one of the dynamic test made, in which the
smartphone has been subjected to a 90° rotation around the Z-axis. The ecompass and
the complementary filter plotted in the pictures have quite the same response, as
demonstrated by the fact that the black line representing the first function is only rarely
visible under the red line of the latter. Moreover, as can be seen in the enlarged
sections, both the ecompass and the complementary filters tend to underestimate the
true values in the transition phase of the rotation. However, this is compensated by a
damping of the operator-induced oscillations, thus satisfying the necessity to reduce as
much as possible the fluctuation frequency and their effects on the stability of the
measures and of the system in general.

5 Conclusions

In this paper, a preliminary evaluation of different orientation estimation methods based
on the use of low-cost sensors is presented. The test is made on data measured by the
internal sensors of an iPhone SE (i.e. gyroscope, accelerometer and magnetometer),
acquired by the Matlab Mobile application end elaborated with the same software. The
registered measurements have been opportunely synchronized and transformed in the
coordinates frame required by Matlab to use its built-in integration functions. The
experiment has been conducted for two different smartphone settings, aiming at veri-
fying its response during a static acquisition and when subjected to rotations and in
general more noisy settings. The data have been integrated using some of the Matlab
object filters to give a prior evaluation of this immediate solution; then, a basic Kalman
filter algorithm has been structured to integrate the gyroscope measurements with the
previously estimated values, to verify if this could enhance the final result. Obviously,
the KF needed an opportune tuning process of the measurement and process noise
covariance matrix, which in this case has been made following a fuzzy logic-based
approach.

Results evidence good performances in both static and dynamic conditions, espe-
cially if considering the elementary nature of the experiments specifically targeted at
testing easy configurations and solutions.

Further works will be related to a more precise tuning process of the Kalman filter
as well as of the Matlab built-in functions, which surely will improve the results.

Table 4. Statistical evaluation of the Kalman filter performance applied on the Matlab
“ecompass” filter

Root mean square
[10�3deg�

Mean deviation
[10�3deg�

Maximum deviation
[10�3deg�

Roll (u) 31.6038 7.7425 571.7200
Azimuth
(0)

830.8329 101.3869 968.4521

Pitch (w) 26.0136 14.8977 58.3436
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Moreover, the sensors calibration will be analysed, dealing with their drift and the
internal biases of the smartphone, aiming at enhancing the reliability of the estimation.
Having said that, these preliminary results can be considered as a good starting point
for more elaborated analysis. Orientation estimation stands as one of the key points for
an accurate positioning, especially in underwater environments where this not easy task
is generally accomplished by the proper integration of different localization systems.
INS and acoustic methods already provide optimal results, so the final aim of this study
is to lay the foundation for the development of low-cost systems able to provide the
same reliability and accuracy of more expensive technology for the orientation esti-
mation as the basis of the overall navigation and localization system.
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