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Abstract: Every year in Italy, there are about 20,000 road accidents involving pedestrians, with a
significant number of injuries and deaths. Out of these, about 30% occur at pedestrian crossings,
where pedestrians should be protected the most. Here, we propose a new accident prediction model
to improve pedestrian safety assessments that allows us to accurately identify the sites with the
largest potential safety improvements and define the best treatments to be applied. The accident
prediction model was developed using the ISTAT dataset, including information about the fatal and
injurious crashes that occurred in Italy in a 5-year period. The model allowed us to estimate the
risk level of a road section through a machine-learning approach. Gradient Boosting seems to be
an appropriate tool to fit classification models for its flexibility that allows us to capture non-linear
relationships that would be difficult to detect via a classical approach. The results show the ability of
the model to perform an accurate analysis of the sites included in the dataset. The locations analyzed
have been classified based on the potential risk in the following three classes: High, medium, and
low. The proposed model represents a solid and reliable tool for practitioners to perform accident
analysis with pedestrian involvement.

Keywords: pedestrian crashes; modelling; gradient boosting

1. Introduction

Pedestrian injuries and fatalities represent one of the major road safety problems
worldwide. Due to the vulnerability of these road users, the consequences of accidents
involving pedestrians show higher severity when compared with other kinds of accidents,
and lead to a significant rate of morbidity, disability, and death. Estimates suggest that ap-
proximately 12 million road accidents involving pedestrians occur every year and cause the
deaths of about 270,000 people worldwide (around 23% of all traffic fatalities globally [1]).
This burden, in addition to inflicting pain and suffering on injured pedestrians and their
families, also has a significant economic impact on society, costing approximately 0.5% of
the total world Gross National Product and USD 130 billion globally [2].

In 2018, 4763 pedestrians’ fatalities were reported in Europe, accounting for 20%
of total traffic deaths [3]. Although the absolute number of pedestrian fatalities fell
from 5952 to 4763 fatalities between 2010 and 2018 (−20%), the total number of road fatali-
ties decreased to the same extent (−21%); therefore, the proportion of pedestrians in the
total number of road fatalities is the same. Therefore, the proportion of pedestrians in the
overall number of road fatalities has remained almost constant in recent years [3].

In Italy, the situation is even more serious, with about 20,000 road accidents with
at least one pedestrian occurring every year. According to the Italian data published by
ACI-ISTAT [4], in 2019, 534 pedestrians were killed and more than 21,000 were injured in
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traffic-related crashes. Out of these, about 30% occurred at pedestrian crossings, which is
the location where pedestrians should be the most protected while crossing the street.

The safety of pedestrians, especially in urban areas where there is a higher density of
pedestrians present, should be a priority to improve people’s quality of life and to support
pedestrians’ mobility, and in general, the mobility of vulnerable road users.

The European Commission highlighted the need to define criteria to improve the safety
and mobility of vulnerable road users. This also requires a framework that takes the various
needs of vulnerable road users into account. Concepts such as Sustainably Safe Traffic
and Zero Vision provide the framework for infrastructure planning to drastically reduce
the probability of crashes. However, effective infrastructural countermeasures to make
walking safer and protect pedestrians require an understanding of the risk factors affecting
pedestrians’ safety and the causes of accidents involving pedestrians [5], especially in areas
where roadside and pedestrian activities, traffic volume, and traffic speed variations are
significantly higher than in other road environments [6].

In this context, the roadway safety management process plays an important role in
improving traffic safety. Within this topic, Accident Prediction Models (APMs) represent
one of the best available tools for performing a quantitative safety assessment. APMs are
mathematical equations that allow road engineers and/or National Road Authorities (RAs)
to relate the number of crashes expected on a site to its specific geometric and environmental
characteristics. Nowadays, APMs are widely used by road authorities, designers, and road
safety practitioners to investigate safety issues and estimate the potential safety effects of
these improvements [7,8]. APMs also allow locations that may benefit the most from a
safety treatment to be identified, and therefore, for strategies and priorities to be better
defined [9].

The Highway Safety Manual (HSM) is currently the most widely recognized method
in accident prediction research [10]. It provides a predictive method for estimating the
expected average crash frequency (divided by crash severity and collision types) within
the road network. It also provides the user with analytical tools to identify locations
with a higher risk of accidents and to quantify the potential factors contributing to traffic
accidents and countermeasures to improve safety. However, the HSM, given its simplicity,
represents only a reference point. To achieve more accurate predictions, it is usually
suggested to have models calibrated on local data instead of general models. However,
even with the appropriate calibration, applying the HSM model to Italian roads is not
sufficient to guarantee good results. Indeed, the general level of crash frequencies may
vary substantially from one jurisdiction to another for a variety of reasons, including
environmental factors and crash reporting thresholds or crash reporting system procedures.

Given the importance of the pedestrian safety issue highlighted above, the devel-
opment of APMs that make it possible to understand which factors significantly affect
pedestrians’ safety and support the implementation of countermeasures to reduce the risk
of accidents seem to be of critical importance. However, not many APMs for pedestri-
ans have been developed. Some of these entail modelling methodologies that include
both statistical models and Artificial Intelligence (AI) techniques aimed at identifying the
factors responsible for pedestrian crashes [11]. Specifically, these studies showed that
some variables have a considerable influence on pedestrian safety such as traffic exposures
(e.g., vehicle and pedestrian volume, speed) [12], geometric design (e.g., road width or the
number of lanes) [13,14], and road infrastructures. In particular, the impact of speed [15–18]
is significantly associated with a higher risk of pedestrian–vehicle crashes, as well as greater
injury severity. Recently [6], the use of generalized regression models has allowed the
number of bus stoppings per unit of time, the position of parking slots, pedestrian crossings
and the volume of violations, the traffic speed variation, and the number of intersecting
side roads, in addition to the through and intersecting traffic volume, to be identified as
some of the significant variables linked to the risk of a pedestrian crash.

Models have also been fitted to predict the number of accidents per year. However,
only one study has been published that adopts this approach for the analysis of pedestrian
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accidents. Olszewski et al. [19] developed negative binomial models for un-signalized
pedestrian crossings, each one positioned across two lanes of traffic in the same direction,
using a limited database (52 locations in Warsaw). The results showed that the statistically
significant risk factors affecting pedestrian safety at marked intersections are a higher
proportion of heavy vehicles, location in mixed lane use, and the absence of a traffic signal.
The results also showed that the model can be used with the Empirical Bayes method to
obtain an unbiased identification of high-risk locations.

In sum, the research activity implemented to reduce pedestrian incidents until now
has provided only exploratory results; therefore, further efforts are needed to fill this gap.
To this aim, tree-based machine learning models and other non-parametric methodology
could represent promising alternative approaches in this research field. These have been
used within transportation safety research [20] in order to model crash frequency on a
rural road [21], study the potential factors affecting crashes [22], and classify intersection
crashes [23].

Here, we presented the preliminary activity of the SWALK (Safe crossWALKs in urban
areas: Assessment of countermeasures to improve pedestrian safety) research project. This
project was conducted by the Department of Civil and Environmental Engineering (DICeA)
and the Department of Neurosciences, Psychology, Drug Research, and Child Health
(NEUROFARBA) of the University of Florence (Italy) and aimed to assess the effectiveness
of different safety treatments on reducing pedestrian crashes and severity and improving
the compatibility between users’ behavior and road infrastructures.

The main purpose of this study was to present a methodology to fit a new APM
that could be used to assess the level of risk of a specific road section for road accidents
involving pedestrians. This model could be used to direct the attention to specific road
sections where the safety level needs to be improved. The methodology proposed is based
on an already existing machine learning algorithm: Gradient Boosting, which leverages the
approach of evaluating the relationship between pedestrian crashes and the contributing
factors. The algorithm, compared with the others used in accident analysis, is extremely
powerful in understanding the structure of complex datasets and exploring the potential
relationship between different dependent/independent variables. It is also independent of
statistical assumptions and immediately usable [20].

The methodology proposed was applied to a dataset derived from the ISTAT (Italian
National Institute of Statistics) database. Therefore, the model was calibrated on data
related to the Italian road network, traffic, and driving habits. However, the methodology
could be replicated and extended to other countries with the use of targeted datasets.

2. Data and Methods
2.1. Data
2.1.1. Data Overview

The ISTAT database provides data related to 874,847 road accidents during a 5-year
period (2014–2018) according to the HSM approach [24]. Out of these, 652,367 road acci-
dents happened in an urban area and 101,030 involved at least one pedestrian (on average
more than 20,000 per year), thus representing 11.5% of the total number of serious and fatal
road accidents.

Here, only this category was taken into account. Between the last year of the analysis
(2018) and the first (2014), a 3.80% decrease in road accidents with at least one pedestrian
involved was observed.

The dataset was analyzed in terms of gender, age, and road environment character-
istics. The results showed that male drivers represent about 75% of the drivers involved.
On the other hand, more female pedestrians obtained injured than males. The age class
range with the highest number of pedestrians injured and killed is 65+, probably due to
the pedestrians’ fragility.

The road characteristics were grouped by road type, road section type, signs type,
road pavement type, and surface condition. Urban roads represent the road type with
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the highest number of accidents. Within this category, crashes represent about 88% of
the total accidents. The most common type of road section with a high rate of pedestrian
accidents is the straightaway (about 63% of the total), where vehicles pass by at a high
speed, followed by roads including crossings (14% of the total). Concerning the location
of the road accidents, the presence of both vertical and horizontal signs is prevalent, and
the vast majority of the accidents occurred on paved roads (as urban roads in urban areas
are usually paved in Italy) on conditions of dry or wet surface (82%). These data can
be interpreted as the result of reduced pedestrians’ presence in cases of adverse weather
conditions, and this should be considered in light of the overall mild climate of Italy.

From the ISTAT dataset, it is also possible to retrieve the kind of accident and the
behavior of both the drivers and pedestrians. Figure 1 shows the interaction between driver
and pedestrian behavior. The ten most common behaviors for drivers and pedestrians are
considered and a ten-by-ten grid is displayed. Each tile represents the interaction between
one driver’s and one pedestrian’s behavior. The color of the tile is proportional to the
number of accidents for a specific interaction. The closer the color is to red, the higher the
number of accidents that occurred is.

Figure 1. Number of accidents for each pedestrian–driver interaction.



Appl. Sci. 2021, 11, 11364 5 of 15

The top five driver–pedestrian interactions for several accidents are shown in Table 1.

Table 1. Top five driver–pedestrian interactions.

Vehicle Pedestrian Numbers of
Accidents

No priority to the pedestrian
on the appropriate crossings.

Crossed at a pedestrian crossing not
protected by traffic lights or traffic warden. 13,970

Legitimate behavior. Illicit street crossing. 12,332
No priority to the pedestrian
on the appropriate crossings.

Crossing at a pedestrian
crossing respecting the signs. 6214

Legitimate behavior. Walked in the middle of the road. 3865

Legitimate behavior. Came out from behind
a parked or stopped vehicle. 2974

It is worrying to note that 29.3% of the road accidents with at least one pedestrian
involved occurred when the pedestrians crossed the street at a pedestrian crossing without
the protection of traffic lights or a traffic warden. It is of the utmost importance to outline
this because the type of crossing (the so-called “zebra crossing”) where the accidents
happen is the default crossing type in Italy. Additionally, the pedestrian crossing is the
location where the pedestrian should be protected the most.

Table 2 summarizes the main findings of the data analysis of road accidents with at
least one pedestrian involved.

Table 2. List of most frequently occurring data.

Information Most Frequently Occurring Data

driving environment urban
gender of drivers male

age of drivers 36–55
gender of pedestrian male

age of pedestrian killed >65 years
road section straightaways/crossings
road surface paved

road surface condition dry
traffic condition peak hours

week period working day

Given these findings, it is likely that speeding represents a key factor in causing
accidents, although the relationship between speed and crashes remains one of the most
debated topics in traffic safety [25–31].

2.1.2. Data Manipulation

Starting from the ISTAT dataset [32], the location of the road accidents was extracted
and only the accidents in which at least one pedestrian was involved were considered.

To fit the Gradient Boosting algorithm, time-consuming data preparation was per-
formed because the ISTAT dataset includes the following different types of information
about accident locations:

• Full address (e.g., street name and number of intersections);
• Incomplete address (e.g., street name without street number);
• Proximity to a point of interest (e.g., in front of a shop/church/school/cinema/

supermarket, etc.);
• Proximity to a traffic light or light pole (e.g., distance from a traffic light/light pole #);
• No information about the location.

Using Google API [33], the addresses of the various accidents were localized to add
the corresponding latitude and longitude coordinates to each observation. From the
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original dataset, many of the accidents’ locations could not be geo-localized due to a poor
description made by the officer; therefore, only accidents included in the first three points
of the above bullet point were considered.

For this reason, the count of accidents that occurred in each location may not describe
all the accidents that occurred in the location analyzed.

Among all the addresses available, a sample of 180 locations was selected.
The 180 road sections were classified by visual inspection using the satellite view and

the “Street View” tool of Google Maps.
The information collected concerned the following:

• Section type (intersection or not);
• Presence of a traffic light (yes or no);
• Presence of a road bump (yes or no);
• Presence of a pedestrian crossing (yes or no);
• Presence of parking lots (yes or no);
• If the road is a one-way road (yes or no);
• Total number of lanes;
• Proximity to a bus stop (yes or no).

It is worth noting that the dataset shows some issues, which should be considered
when inspecting the modelling results, including the following:

• The count of accidents per road section might not be the total number of accidents that
occurred in the location analyzed due to the presence of poor address descriptions in
the ISAT database. Consequently, more than 60% of the addresses related to pedestrian
accidents could not be accurately localized;

• The characterization of the road stretches was performed in December 2020 and
cannot consider any previous configuration. For example, bus stops could have been
in different locations in the period of data collection.

2.2. Methodology
2.2.1. The CatBoost Algorithm

Gradient boosting is a decision-tree based algorithm that was developed in 1990
by Robert Schapire [34] to obtain a strong learner as a combination of weak learners in
an iterative way. Gradient boosting belongs to a family of powerful machine-learning
techniques that have shown considerable success in a wide range of practical applications
in terms of a non-parametric regression or classification model from the data [35].

Here, we adopted an open-sourced algorithm named CatBoost, which was developed
by Yandex [36] within the Gradient Boosting algorithm family.

CatBoost’s name comes from the two words Category and Boosting. Specifically,
CatBoost was selected because of its proficiency in working with data containing categorical
variables [37,38], such as those contained in the ISTAT dataset. CatBoost aims to reduce
the prediction shift that occurs during training by dividing training and test instances to
obtain the solution [37,39].

The ith model of the mth iteration is trained on the first instances of the permutation
and it is used to estimate the gradient of the (i + 1)th instance for the (m + 1)th boosting
iteration. In order to be independent, the process starts with the use of s-different random
permutations. The response variable is predicted via a recursive partitioning of the dataset
(root node of the tree). After the first partition of the input space into sub-regions, the
splitting continues. Each time the sub-regions are split, a decision node (or internal node) is
created in the tree. When a sub-region is not further partitioned, it represents a final node
of the tree (commonly called the leaf of the tree). A response variable value or a function
corresponds to each leaf. In this application, only decision trees with constant values at the
final nodes were used. An example of a “binary and symmetrical” decision tree of depth 2
is shown in Figure 2.
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Figure 2. Representation of a general binary decision tree.

A weak learner has a predictive power just slightly better than chance. Decision trees
can be considered weak learners and are widely used in the field of computer science. For
classification tasks, the response variable can be interpreted as the probability of belonging
to a certain class. To overcome this weakness, in gradient boosting, multiple decisions trees
are fitted in series. After the first tree is fitted, the residuals between the target variables
and the predicted values are computed and a new tree is fitted using the residuals as a
target. This procedure continues until the stopping criterion is met. The stopping criterion
used in this research was the number of trees to be fitted (1000). A visual representation of
the process is shown in Figure 3.
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Figure 3. Series of decision trees.

In CatBoost, categorical variables are automatically substituted by a numeric feature
that assigns a “default” value to each category (without any data pre-processing). In order
to avoid over-fitting the training data, these values would ideally need to be computed
using a different dataset. The procedure proposed in the CatBoost model for each permu-
tation is similar to the one followed for building the models. Therefore, for each random
permutation, the information of instances < i is used to compute the value assigned at step i.
Then, after several permutations, the process allows the final average value to be obtained.

Some characteristics of the model were usually adjusted by the modeler, for example,
the number of learning trees, the depth of each tree, and the number of samples in each leaf.
These take the name of hyper-parameters. The tuning of the hyper-parameters strongly
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influences the performance of the model, and it is essential to guarantee an optimal fit. The
tuning of the hyper-parameters can be performed manually by the modeler through a grid
search or using an algorithm that performs a random search. In this research, the manual
tuning of three hyper-parameters was performed on the learning rate, the tree depth, and
the number of trees. The selected learning rate is 0.01, the tree depth is 6, and the number
of trees is 1000. This value of learning rate reduces the overfitting of the training data
while the selected values for the tree depth and the number of trees allow for the high
complexity of the model. A schematic representation of a decision tree with depth 6 is
shown in Figure 4.
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Usually, the model is fitted on a subset of data (training sample) and tested on another
one (test sample). The train–test split is performed randomly, as previously described, and
the test set is about 20% of the total database.

To ensure the reliability of the model, the cross-validation process was used. In five-
fold cross-validation, the dataset was split into 5 subsets and at each iteration, one of the
five folds was used as a test sample and the other four as a training sample.

For each iteration, the metrics recall, precision, and accuracy were computed according
to Equations (1)–(3), respectively.

R =
True positives

True positives + False negatives
(1)

P =
True positives

True positives + False positives
(2)

A =
True positives + True negatives

False positives + False negatives + True positives + True negatives
(3)

Recall or sensitivity is defined as the ratio between true positives and the number of
real positive cases in the data. Precision is the ratio between true positives and the total
number of cases predicted to be positive, while accuracy is the percentage of observations
predicted correctly, corresponding to the ratio between the sum of true positives and
true negatives and the sum of false positives and false negatives. When the metrics were
similar, the model was reliable. A model that works perfectly has precision, sensitivity, and
accuracy equal to 1.

Once a model has been fitted, the importance of each explanatory variable can be
extracted to determine the impact on the prediction.
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2.2.2. Variables Used

The 180 locations identified were grouped into the following three risk classes:

• 60 observations of low risk (fewer than 5 accidents with no more than one fatal accident
with pedestrians involved between 2014 and 2018);

• 95 observations of medium risk (between 5 and 9 accidents with no more than two
fatal accidents with pedestrians involved between 2014 and 2018);

• 25 observations of high risk (more than 10 accidents without limitation for fatal
accidents with pedestrians involved between 2014 and 2018).

The three classes were defined by the authors according to the classification procedure
described in [40] concerning the accident rate.

The three risk classes represent the output of the Gradient Boosting predictive model
(dependent variable).

Each location (or road section) is characterized by thirteen parameters, twelve of
which were used as independent variables during the model fit and the last one was used
as a target variable that is the output of the model (i.e., the level of risk).

The thirteen variables, their role (independent or target variable), and their type
(categorical or numerical) are summarized in Table 3.

Table 3. List of variables used on the model: Role and type.

Variables Role Type

Number of lines Independent variable Numerical—discrete
Morning traffic Independent variable Numerical—continuous

Afternoon traffic Independent variable Numerical—continuous
Evening traffic Independent variable Numerical—continuous

Night traffic Independent variable Numerical—continuous
Section type Independent variable Categorical

Presence of bus stop Independent variable Categorical
Presence of parking lots Independent variable Categorical

One way street Independent variable Categorical
Presence of pedestrian crossing Independent variable Categorical

Presence of road bump Independent variable Categorical
Presence of traffic light Independent variable Categorical

Level of risk Dependent (Output) variable Categorical

None of the 180 sections had a road bump in its proximity and, therefore, in the
dataset, there was no variability for this independent variable. For this reason, the use of
this variable was irrelevant in the model.

However, the variable was kept anyway for propaedeutic purposes because road
bumps represent one of the most effective countermeasures to minimize the risk of collision
in a pedestrian crossing.

3. Results and Discussion

The results obtained on the test set in the five-fold iterations are presented in Table 4
in terms of recall (Equation (1)) and precision (Equation (2)) for the low-, medium-, and
high-risk classes. In the same table, the model accuracy (Equation (3)) is displayed for the
five-fold iterations.
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Table 4. Results of the 5-fold iterations.

Results of the 5-Fold Iterations

Measures Class Value Value Value Value Value

Recall Low risk 1.000 0.733 0.800 0.875 1
Recall Medium risk 0.737 0.938 0.900 0.647 0.550
Recall High-risk 0.556 0.500 0.800 0.800 0.875

Precision Low risk 0.679 0.925 0.815 0.711 0.679
Precision Medium risk 0.581 0.451 0.700 0.590 0.703
Precision High-risk 1.000 1.000 1.000 0.964 0.9193
Accuracy - 0.650 0.676 0.707 0.749 0.703

The average value, the minimum, and the maximum recall and precision (per class),
and the accuracy among the five iterations are shown in Table 5.

Table 5. Average, minimum, and maximum value of recall, precision, and accuracy.

Measures Class Average Minimum Maximum Standard
Deviation

Recall Low risk 0.88 0.73 1.00 0.12
Recall Medium risk 0.75 0.55 0.94 0.16
Recall High-risk 0.71 0.50 0.88 0.17

Precision Low risk 0.76 0.68 0.92 0.11
Precision Medium risk 0.61 0.45 0.70 0.10
Precision High-risk 0.98 0.92 1.00 0.04
Accuracy - 0.70 0.65 0.75 0.04

Figure 5 can help us better interpret the results: The observations are labelled in three
groups of risk (low, medium, and high) and can be predicted in one of these three classes.
When this happens, the observation falls in one of the three green squares representing the
observations of low risk predicted as low risk (OLPL), the observations of medium risk
predicted as medium risk (OMPM), and the ones of high risk predicted as high risk (OHPH).
On average, the model has an accuracy of 0.7, which means that 70% of the observations
are correctly classified and, therefore, fall in the three green squares of Figure 5.
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As shown in Table 5, the low standard deviation (0.04) indicates the good stability of
the model across iterations.

The remaining 30% of observations fall in the other squares of Figure 5, for the
observations of low risk misclassified by an over-estimation of the risk occurred (OLPM
and OLPH), while, for the high-risk observation, an underestimation occurred (OHPL
and OHPM). For the medium risk observation, both underestimation and overestimation
are possible (OMPL, OMPH). The OLPH and the OHPL misclassifications are the most
concerning ones and special attention was dedicated to interpreting the results. Considering
the context of pedestrian safety, the OHPL error could put pedestrians at risk if this model
was used to assess the risk level of a road section.

Checking the recall and precision average values, a very high precision value (0.98) for
the high-risk class can be observed, while the recall value for the same class is lower (0.71).
Considering the definition of recall (Equation (1)) and precision (Equation (2)), this means
that the occurrence of high-risk class predictions is very low for observations of low and
medium risk classes (very low rate of HLPH and HMPH). However, only 71% of the high-
risk class observations are correctly predicted (29% of false negatives) showing a tendency
to underestimate the risk level. Concerning the low-risk class observations, 88% of the
low-risk observations are correctly predicted (12% of false negatives), showing a tendency
to overestimate the risk level. These two tendencies are confirmed by the relatively low
precision value for the medium-risk class: Only 61% of the observations predicted as to be
in the medium-risk class are correctly classified, which also confirms that the observations
misclassified are only rarely severely misclassified (OLPH and OHPL). These results might
be due to the heterogeneous distributions of observations on the dataset (60 observations,
low risk; 95, medium risk; and 25, high-risk class).

From the fit model, it is possible to retrieve information related to the importance
of the independent variables. In Figure 6, the normalized importance (the importance
of all the variables summed up to 100) of the independent variables used in the models
is displayed.
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The variable with the highest importance (importance = 29%) is the total number of
lanes in the section, showing a strong correlation between the complexity of a road section
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and the risk level. This result confirms the finding of the Abojaradeh studies conducted in
Jordan on pedestrian bridges [41], where it is shown that one of the main factors affecting
pedestrian safety was the width of the crossway.

According to the results described in the international literature [42,43], the other most
important variables are those related to the traffic level during the morning, the afternoon,
and the evening and the presence of a traffic light (importance equals 16%, 14%, 11%, and
14%, respectively).

The findings previously mentioned also showed that a 5% decrease in traffic volume
during peak hours, measured in terms of Passenger Car Units (PCUs), will result in an
11% decrease in total pedestrian accidents [43]. In a recent USA study, bus stop presence
has an importance value near 5%, confirming that there is a significant spatio-statistical
correlation between a bus stop location and pedestrian-involved crashes [44].

The main findings of our research showed that the variables mentioned (the number
of lanes, traffic conditions, traffic lights, and bus stops) together already account for 89% of
the total importance. Each of the other variables has an importance value of less than 5%.

As said above, Figure 6 shows that the variable related to the presence of road bumps
has an importance value equal to 0, but this value is due to the fact that all of the locations
in the ISTAT database do not have road bumps to slow down the vehicles’ speed.

From these results, it seems that the complexity of a section and its traffic is the most
important component in determining the accident risk level of a section for pedestrians. To
reduce the risk of road accidents involving pedestrians, particular attention should be paid
to the number of lanes in a road section and the traffic level of the section. Both factors
should be taken into consideration in the design phase of the road section. In the case of an
existing road section, changing the number of lanes or modifying its traffic level requires a
big intervention on the entire traffic network and the effect of the operation on other road
sections should be considered.

The results obtained in the modelling phase can be considered satisfactory given
the relatively small dataset (180 observations) and the limitations previously mentioned.
However, multiple improvements could be implemented to achieve higher precision and
recall scores and to ensure the higher reliability and robustness of the model. First, the
number of data points in the dataset should be increased. This will allow a grid search on
k-folds cross-validation and then a test on a small subset of data to be performed. Moreover,
algorithms as gradient boosts perform better on bigger sample sizes.

To improve the methodology used and the reliability of the model proposed, a higher
number of variables should be explored, such as the pedestrians’ and drivers’ behavior, the
population density of the neighborhood, or the proximity to a point of interest (e.g., school,
church, supermarkets, cinema, etc.). To increase the number of variables within the model,
improvements should be made to the dataset according to the information evaluated in
recent research [45] in which the infrastructural environment correlated with cycling injury
risk in Britain.

Moreover, when counting the number of accidents for each address, a grouping of
addresses close to each other should be created. For example, locations can be grouped
considering a ten-meter segment on straight stretches of road. This operation is more
complex when considering intersections or roundabouts. For this reason, no grouping was
performed in this modelling phase, but such a solution should be taken into consideration
in future research.

It is necessary to outline the quality of the primary data is of the utmost importance
for this application and until some improvements are achieved regarding the location of
accidents, the validity of the model itself cannot be granted.

Moreover, it should also be clear that events such as road constructions or any other
event that temporarily/permanently modifies the configuration or the traffic level of a
stretch of road are hard to include in the model, despite the fact these events are likely to
have a strong impact on the number of accidents.



Appl. Sci. 2021, 11, 11364 13 of 15

4. Conclusions

This study described an accident prediction model developed to provide the Italian
RAs with a tool that allows the potential pedestrian safety level of road sections to be
assessed, the sites with the largest potential safety improvements to be identified, and the
identification of the best countermeasure to be applied to increase pedestrian safety to
be supported.

The model was defined as a first step to reach the goals of the SWALK research
project. The accident prediction model was developed using a dataset (ISTAT dataset)
including information about fatal and injurious crashes that occurred in Italy in a 5-year
period (2014–2018). The model allowed us to estimate and forecast the risk level of a
road section with certain characteristics. Therefore, the tool can be used, coupled with
other more expensive and time-consuming methodologies, to investigate the risk level of
multiple scenarios.

The machine-learning approach using gradient boosting seems to be an appropriate
tool to fit classification models for characterizing the risk level of a road section. Its flexibility
allows non-linear relationships to be captured, which would be much more difficult to
grasp with a classical statistical model. The goodness of the model strongly depends
on the quality of the data used as a training set. Here, the quality of the data used was
sufficient but less than ideal due to the lack of accurate traffic data and the issues previously
presented related to the aggregation.

It is important to highlight that the road bumps are not present in the sections consid-
ered within the ISTAT database despite it being one of the most common measures along
Italian urban roads. More appropriate analysis should be conducted to include road bumps
within the factors affecting the occurrence and severity of pedestrian crashes.

In conclusion, the results show the good potentiality of the model to describe the
used dataset (about 70%). The tool developed could identify potential high-risk level road
sections for the three categories indicated (low, medium, and high-risk sections). The model
proposed thus represents a solid and reliable tool for practitioners to perform accident
analysis with pedestrian involvement.
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