
Citation: Landi, E.; Mugnaini, M.;

Vatansever, T.; Fort, A.; Vignoli, V.;

Giurranna, E.; Argento, F.R.; Fini, E.;

Emmi, G.; Fiorillo, C.; et al.

Advancing Thrombosis Research: A

Novel Device for Measuring Clot

Permeability. Sensors 2024, 24, 3764.

https://doi.org/10.3390/s24123764

Academic Editors: Matteo Nardello,

Daniela Lo Presti and Sarah Tonello

Received: 22 April 2024

Revised: 28 May 2024

Accepted: 7 June 2024

Published: 9 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Advancing Thrombosis Research: A Novel Device for Measuring
Clot Permeability
Elia Landi 1,* , Marco Mugnaini 1, Tunahan Vatansever 1, Ada Fort 1 , Valerio Vignoli 1 , Elvira Giurranna 2,
Flavia Rita Argento 2 , Eleonora Fini 2, Giacomo Emmi 3, Claudia Fiorillo 2,† and Matteo Becatti 2,†

1 Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy;
marco.mugnaini@unisi.it (M.M.); t.vatansever@student.unisi.it (T.V.); ada.fort@unisi.it (A.F.);
valerio.vignoli@unisi.it (V.V.)

2 Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze,
50121 Florence, Italy; elvira.giurranna@unifi.it (E.G.); flaviarita.argento@unifi.it (F.R.A.);
eleonora.fini@unifi.it (E.F.); claudia.fiorillo@unifi.it (C.F.); matteo.becatti@unifi.it (M.B.)

3 Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy;
giacomo.emmi@units.it

* Correspondence: elia.landi@unisi.it
† These authors contributed equally to this work.

Abstract: Thromboembolism, a global leading cause of mortality, needs accurate risk assessment
for effective prophylaxis and treatment. Current stratification methods fall short in predicting
thrombotic events, emphasizing the need for a deeper understanding of clot properties. Fibrin clot
permeability, a crucial parameter in hypercoagulable states, impacts clot structure and resistance to
lysis. Current clot permeability measurement limitations propel the need for standardized methods.
Prior findings underscore the importance of clot permeability in various thrombotic conditions
but call for improvements and more precise, repeatable, and standardized methods. Addressing
these challenges, our study presents an upgraded, portable, and cost-effective system for measuring
blood clot permeability, which utilizes a pressure-based approach that adheres to Darcy’s law. By
enhancing precision and sensitivity in discerning clot characteristics, this innovation provides a
valuable tool for assessing thrombotic risk and associated pathological conditions. In this paper, the
authors present a device that is able to automatically perform the permeability measurements on
plasma or fibrinogen in vitro-induced clots on specific holders (filters). The proposed device has
been tailored to distinguish clot permeability, with high precision and sensitivity, between healthy
subjects and high cardiovascular-risk patients. The precise measure of clot permeability represents
an excellent indicator of thrombotic risk, thus allowing the clinician, also on the basis of other
anamnestic and laboratory data, to attribute a risk score to the subject. The proposed instrument was
characterized by performing permeability measurements in plasma and purified fibrinogen clots
derived from 17 Behcet patients and 15 sex- and age-matched controls. As expected, our results
clearly indicate a significant difference in plasma clot permeability in Behcet patients with respect to
controls (0.0533 ± 0.0199 d vs. 0.0976 ± 0.0160 d, p < 0.001). This difference was confirmed in the
patient’s vs. control fibrin clots (0.0487 ± 0.0170 d vs. 0.1167 ± 0.0487 d, p < 0.001). In conclusion,
our study demonstrates the feasibility, efficacy, portability, and cost-effectiveness of a novel device
for measuring clot permeability, allowing healthcare providers to better stratify thrombotic risk and
tailor interventions, thereby improving patient outcomes and reducing healthcare costs, which could
significantly improve the management of thromboembolic diseases.

Keywords: blood clot; permeability measurement; low-cost; portable measurement system

1. Introduction

Thromboembolism, the leading cause of mortality worldwide, is characterized by
the formation of obstructive intravascular clots (thrombi) and their mechanical breakage
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(embolization) [1]. Current risk stratification strategies for thromboembolism have low
predictive value in asymptomatic subjects classified as intermediate cardiovascular risk,
and the inaccurate stratification provided by existing models may potentially result in
individuals being either exposed to excessive or insufficient prophylaxis [2].

Fibrin is a major component of both venous and arterial thrombi. Our previous
studies revealed that individuals with hypercoagulable states exhibited compact fibrin clots
resistant to lysis [3–7]. Fibrin clot permeability, which reflects an average pore size between
fibrin fibers, currently represents the most used parameter, measured by standardized
hydrostatic pressure-driven assay, to estimate fibrin clot structure in different disease
conditions [8]. Reduced fibrin clot permeability has been reported to be associated with the
recurrence of thrombotic events [9–15].

Healthcare providers typically conduct a risk assessment to determine whether a
patient is at high, moderate, or low risk, which typically involves administering question-
naires that collect information about the patient’s age, medical history, medications, and
relevant lifestyle factors [16–21]. Nevertheless, this method seems inadequate. A pilot inter-
national study focusing on standardizing fibrin clot measurement highlighted the potential
advantages of adopting a standardized protocol for risk assessment, indicating that clot
permeability measurement could be useful in clinical settings, particularly if implemented
in automated analyzers [22].

Here, we propose a portable and cost-effective permeability measurement system
based on the findings reported in [23]. This system is designed to identify individual
thrombotic risk and has the potential to contribute greatly to improved patient outcomes
in endothelial dysfunction cardiovascular diseases, blood-brain barrier permeability, and
glaucoma drainage devices [24–26].

The proposed device is designed to measure the permeability of clots formed in vitro,
using cost-effective disposable filters to support the clots. The clot and its support are
aligned with a reservoir where a liquid is maintained at constant pressure using a pneumatic
system. The flow of liquid through the clot over time is then quantified using a cantilever
balance, therefore enabling the estimation of thrombus permeability. The proposed clot
permeability measurement assay represents an excellent indicator of the individual propen-
sity to thrombosis for clinicians, who, in conjunction with other anamnestic and laboratory
data, can assign to patients a risk score. The device and the disposable filters have been
assayed in terms of performance concerning mass measurement and filter permeability,
excluding clot presence. Subsequently, the device’s functionality has been validated using
biological samples, specifically fibrin clots purified from plasma derived from both healthy
individuals and patients with high cardiovascular risk.

2. Materials and Methods

The proposed measurement system, as illustrated in Figure 1, is designed to assess
clot permeability. In fluid mechanics, permeability refers to the ability of a porous material
to allow fluid to flow through its structure. The operational concept of the proposed device
involves positioning a column of consistently pressurized water above the sample whose
permeability is to be determined. Sample permeability is then evaluated by monitoring the
mass of the liquid that percolates through it over time, given that the density of the liquid
is known. In the case of interest, the sample holder consists of a disposable filter with a
LUER connection, where the clot is placed. The mechanical support provided by the filter
is essential to prevent the clot from detaching from it.
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essential to use a liquid with a known density. The liquid phase present in the sample is 
difficult to characterize in terms of density and volume. Therefore, to minimize its impact 
on determining the fluid phase density, the instrument is designed to use ultrapure water 
in a volume significantly greater—by over an order of magnitude—than that of the 
biological sample. This approach reduces the uncertainty of the percolated liquid’s 
density, assuming it to be that of pure water. 
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Figure 1. Block diagram of clot permeability measurement system. Green lines represent the signal
line and the communication between the different subsystems. Light-blue lines represent the airflow
from the pneumatic actuator (a pump in this case). Blue lines represent the water flow from the
water column.

Regarding the diagnostic application of the device, efforts were made to minimize
the amount of biological samples required for permeability measurement. Specifically,
the disposable support filter can hold a maximum of 35 µL of biological sample, which
comprises the clot and other substances in the liquid phase, which are expelled from the
support filter during the permeability measurement.

Since the proposed system relies on measuring the liquid mass to determine the
volume of fluid that percolates through the sample, for accurate measurements, it is
essential to use a liquid with a known density. The liquid phase present in the sample is
difficult to characterize in terms of density and volume. Therefore, to minimize its impact
on determining the fluid phase density, the instrument is designed to use ultrapure water in
a volume significantly greater—by over an order of magnitude—than that of the biological
sample. This approach reduces the uncertainty of the percolated liquid’s density, assuming
it to be that of pure water.

2.1. Mathematical Model

Permeability can be measured by exploiting Darcy’s law reported in Equation (1),
which relates the volume flow of a liquid flowing through a porous medium sample to the
sample geometry, to the pressure applied at the sample interface, and to the liquid characteristics.

Q(t) =
Ks A∆p(t)

µL
(1)

The quantities in Equation (1) are defined in Table 1.
From (1), it is possible to obtain the permeability Ks by measuring the volume flow

Q(t) and pressure ∆p over time. Since the measurement of the volume flow is relatively
complicated, especially considering the small quantities involved in the measurement of
interest, it is convenient to consider the percolated liquid volume, V(t), over time:

dV(t)
dt

=
Ks A∆p(t)

µL
(2)
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Table 1. Parameters of permeability equation.

Symbol Quantity Measurement Unit

A Sample Cross-Sectional Area (m2)
L Clot Length (m)
µ Liquid Dynamic Viscosity (Pa × s)

Q(t) Discharge rate (m3/s)

∆p Pressure Difference (pressure above the
sample-pressure below the sample) (kPa)

Ks Permeability (m2)
V Sample Volume (m3)

By considering a steady state situation where the pressure gradient and the flow are
constant, it is possible to obtain the permeability value as:

Ks =
µL

A∆p
V(t)
t − t0

(3)

where t0 represents the initial time. Knowing the density of the liquid used to carry out the
measurement, it is possible to obtain the permeability of the sample by measuring the mass
of the percolated liquid:

Ks =
µL

A∆pρ

dM
dt

=
µL

A∆pρ

M(t)
t − t0

(4)

where M(t) is the mass of the percolated liquid and ρ is the liquid density. In this way, it is
possible to obtain the permeability of the sample by measuring the mass of the percolated
liquid over time instead of the flow, reducing the complexity of the measurement system.

Notice that, even by keeping the pressure constant, the liquid discharge does not occur
at a constant rate; rather, in drops, i.e., it is intermittent because of surface tension effects or
other fluid properties. Therefore, Equation (1) represents the average flow through the clot.
To accurately measure the non-continuous flow in real conditions, the observation time
needs to be long enough to capture a significant number of drops, ensuring an accurate
representation of the overall (average) discharge behavior.

The comprehensive assessment of the measurement system uncertainty can be eval-
uated under the assumption of non-correlation among individual sources of uncertainty,
referring to Equation (4) by the following relationship:

u(Ks) =

√√√√∑
i

(
∂Ks

∂xi

)2
u2(xi) (5)

where each xi indicates each individual measurand in (4) and therefore we obtain:

u(Ks) =

√√√√√√
(

µL
A∆ptρ

)2
u2(M) +

(
ML

A∆ptρ

)2
u2(µ) +

(
Mµ

A∆ptρ

)2
u2(L) +

(
− MµL

A2∆ptρ

)2
u2(A)+(

− MµL
A∆p2tρ

)2
u2(∆p) +

(
− MµL

A∆pt2ρ

)2
u2(t) +

(
− MµL

A∆ptρ2

)2
u2(ρ)

(6)

The permeability uncertainty obtained by exploiting Equation (6) is reported in
Section 3 for each measurement.

The calculation of the uncertainty of the permeability measurements is necessary to
evaluate the overall measurement quality. Since there is no gold standard for this type
of measurement, it seems mandatory to quantify both the uncertainty of the instrument
measurements and the variability of clot preparation.
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2.2. Study Population

Seventeen patients with Behçet syndrome who attended the Florence Behçet Center
and 15 age-matched healthy control subjects were included in the study. All the patients
were diagnosed as having Behçet disease according to International Study Group crite-
ria [27]. Patients with other autoimmune diseases, active infections, or neoplastic conditions
were excluded. Blood samples were collected from patients without immunosuppressive
therapy, and only prednisone assumption < 10 mg/d was allowed. No colchicine-treated
patients were enrolled. The study protocol was approved by the local Ethical Committee,
and informed consent was obtained from all subjects enrolled. The study was approved
on 31/05/2022 by Comitato Etico Regionale per la Sperimentazione Clinica della Regione
Toscana, Project: “GUt Dysbiosis and cardioVascular Involvement in BEhçet Syndrome”
(GUDVIBES), number: 21395_bio. The sample size was based on paired tests for continuous
outcomes, assuming an increase in fibrin degradation rate of 80% with respect to controls,
with 80% power, based on the fibrin degradation values presented previously [3].

2.3. Blood Sample Collection

Blood samples were collected from patients without immunosuppressive therapy, and
only prednisone assumption < 10 mg/d was allowed.

Blood samples were collected from patients who had experienced a myocardial infarc-
tion at least six months prior to sample collection. Vacutainer tubes containing 0.109 mol/L
buffered trisodium citrate (1:10). After centrifugation (1500× g for 15 min at 4 ◦C), aliquots
of plasma were used for experiments and for fibrinogen purification.

2.4. Fibrinogen Purification

Fibrinogen was purified from patients and controls using the previously described
ethanol precipitation method [3]. Fibrinogen concentration was determined spectrophoto-
metrically at 280 nm (the extinction coefficient 1.51 mg/mL was used).

2.5. Clot Preparation

Clots were generated either by incubating 10 µL of human thrombin (10 U/mL-T6884
SIGMA) with 20 µL of plasma for 1 h at 25 ◦C or by incubating 15 µL of human thrombin
(5 U/mL-T6884 SIGMA) with 15 µL of purified fibrinogen (0.4 mg/mL) in 100 mM Tris/HCl,
5 mM CaCl2, pH 7.4, for 1 h at 25 ◦C.

In both plasma or fibrinogen clots, 30 µL samples were transferred using pipettes into
hydrophobic membrane syringe filters used as supports for performing the measurements.
In particular, syringe filters in hydrophobic Polytetrafluoroethylene (PTFE). With 0.22 µm
and 0.45 µm meshes, a diameter of 13 mm, and LUER connection were chosen.

2.6. Measurement Protocol and Measurement System

To assess permeability, a predetermined amount of pure distilled water was placed
above the filter containing the biological sample. The measurement liquid volume was set
at 400 µL to ensure that the potential presence of any residual fluid in the biological sample
was not significant. This approach was aimed at minimizing the effects due to potential
density discrepancies between the two fluids.

The measurement system is based on a novel in-house designed standalone instrument
comprising a pneumatic circuit, which includes a pump to set the pressure of the liquid
above the biological sample, a pressure sensor to measure the pressure inside the pneumatic
circuit and a precision scale based on a load cell to measure mass of the liquid percolated
through the biological sample. An STM32L432KC microcontroller (STMicroelectronics)
was exploited to manage the instrument, control the pressure with a feedback loop, and
acquire the signals from the sensors. In Figure 2a. the detailed block diagram of the
developed measurement setup with the electronic, pneumatic, and hydraulic circuits
is shown. The representation of the user interface is also shown. A tailored mechanical
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structure supporting the sample, hosting the pneumatic circuit, the scale, and the electronics
was developed (Figure 2).
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The design of the pneumatic system, in terms of maximum pressure, was carried out
considering the dynamics of blood pressure in the human body assumed to be between
60 mmHg–90 mmHg (11.9/7.9 kPa) and 120/80 mmHg (15.9/10.6 kPa).

Following this consideration, the system was sized to provide a maximum pressure of
10 kPa on the surface of the liquid column.

A tube with a section of 3 mm and a length of 10 cm, capable of containing approx-
imately 400 µL of liquid, was used. Hence, the length of the liquid column makes the
influence of hydrostatic pressure at the interface with the biological sample negligible.

A NMP05-KPDC-S (KNF) diaphragm pump, capable of providing a maximum pres-
sure of 40 kPa, driven by a DC motor, was used. The pressure measurement in the pneu-
matic circuit was carried out by means of a differential piezoresistive sensor, MPX5010DP
(Freescale NXP), capable of supporting pressures up to 40 kPa, which guarantees a full scale
of 10 kPa and a maximum error of 0.5 kPa. The pump is controlled in feedback exploiting
the pressure measurement inside the pneumatic circuit; in particular, an ON/OFF controller
was implemented.

Due to the small quantity of liquid percolated from the sample, mass measurement
should be performed at high resolution, ideally around 10 mg. A cantilever load cell was
used, which couples ease of placement and high resolution. In particular, an SMD3277-010
(Strain Measurement Devices, Chedburgh Bury St Edmunds, England) bridge load-cell-
based mass sensor having a full scale of 10 g was adopted. The larger full scale compared
to the quantity of liquid to be measured is mandatory because support is positioned on the
force sensor, which allows the attachment of a disposable micro cup collecting the liquid
percolated from the sample. The adopted mass sensor has a rated output of 1 mV/V and a
nonlinearity error of less than 0.05% with respect to the rated maximum load (i.e., <0.005 g)
in the range for the application.

The load cell bridge is powered with a 5 V voltage reference, and the output signal
of the bridge is subsequently amplified with an instrumentation amplifier with a gain of
500 V/V in order to correctly exploit the dynamics of the analog-digital converter of the
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microcontroller. As far as drift is concerned, the accurate front-end electronic design, based
on precision differential amplifiers, offset compensation circuits, and regulated reference
voltages, ensures a small offset; therefore, the drift spans some µV, which corresponds to a
few mg.

The STM32 L432KC microcontroller is also used for signal acquisition from the sensors
and for serial communication with a PC. Through serial communication, it is possible to
set the pressure inside the pneumatic circuit and read the pressure and mass parameters
in real-time. A LabVIEW interface on the PC allows for data acquisition, saving, and
instrument settings. Moreover, the VI, at the beginning of each measurement, allows for
offset and tare compensation (removed by an offset null procedure).

2.7. System Characterization

To characterize the developed instrument, the first tests concerned ensuring a stable
measurement of the mass, observing the output of the mass sensor for periods lasting about
the duration of a complete measurement. The performance expected from the design was
confirmed; in fact, drifts in the order of a few milligrams are observed over periods of some
tens of minutes.

Then, the resolution of the mass measurement system was assessed: multiple tests
were conducted by introducing known volumes of liquid directly into the disposable
microcup. The mass measurement precision resulted in better than 0.01 g and was evaluated
as an extended A type uncertainty, with a coverage factor 2, i.e., two times the standard
deviation of the obtained measurements in time periods ten minutes long, i.e., repeating
the measurement in identical conditions (approximately on constant masses, at the same
temperature and environmental conditions) about one hundred times. The instrument
resolution was evaluated as three times the estimated precision, i.e., 0.03 g. To confirm the
assessed mass resolution, tests were conducted by introducing small volumes of liquid
with mass 0.03 g directly in the disposable micro cup at fixed time intervals. For instance,
Figure 3 shows the results obtained with an experiment in which droplets of 30 µL of
distilled water were subsequently dispensed into the cup.
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A laboratory class A pipette (VWR International Srl, Milan, Italy) with a full scale of
1 mL was used for the purpose.

Figure 3 shows the mass measurement in a test where six droplets were consequently
added to the disposable micro-cup; the mass increments are distinguishable from the noise
floor, confirming the estimated resolution.

The whole measurement technique uncertainty must be assessed to ensure measure-
ment significance. To this aim, apart from the uncertainty of the electronic instrument,
which is assessed by exploiting Equation (6), the uncertainty related to the reproducibility
of the clot supports (different permeability of individual filters) and of the clot preparation
were evaluated [23]. In the measurement system, in fact, the permeability that is measured
refers to the two media that the test liquid passes through, i.e., the clot and the filter. In
the preliminary characterization of the measurement setup, the influence of the used clot
supports on the permeability measurements, as well as variations in permeability between
different supports with the same construction characteristics, was studied. Different filters
with both meshes were tested to verify their permeability and to analyze the variations in
permeability between filters having the same characteristics in terms of mesh.

The support filters were tested using the measurement protocol above described with
different applied pressures: about 2.5 kPa for the filters with a 0.45 µm mesh and 3 kPa for
those with a 0.22 µm mesh; 10 different samples of each filter type were tested. To obtain
the permeability measurement, a linear fitting of mass data over time was used since, as
previously described, the liquid flow is not constant, as shown in Figure 4, depicting two
typical liquid discharge trends over time using 0.22 µm mesh filters. The linear regression
considers data from the instant in which the first drop fell to the instant in which the last
drop fell.
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Figure 4. Experimental results were obtained with a pristine 0.22 µm filter.

The slope of the linear fitting represents the average dM(t)
dt , hence, it can be used in

Equation (4) to assess the sample permeability.
The average permeabilities of the 0.22 µm and of the 0.45 µm mesh filters were

0.32 d ± SD and 0.46 d ± SD, respectively (a filter thickness of 1 mm was considered). The
permeability values are expressed in Darcy (1 d = 9.869,·10−13 m2). Therefore, for the same
filter type, it is possible to carry out clot permeability measurements without performing a
priori measurement of bare filter permeability. As expected, the denser mesh filter presents
lower permeability values, and the ratio between the two permeability values is consistent
with the two mesh pore sizes.

Finally, to characterize clot reproducibility in a single healthy subject, eight fibrinogen
clots and eight plasma clots were prepared and assayed with 0.22 µm filters. For plasma
clots, the median permeability value resulted in 0.1455 (range 0.0970–0.0670) d, and for the
fibrinogen clots resulted in 0.2145 (range 0.2020–0.2330) d. The results of these experiments
are shown in Figure 5, where the black line represents the median value.
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Figure 5. Data were obtained on fibrinogen and plasma clots prepared from a single blood sample
taken from one subject.

3. Results

The system was tested with fibrin clots obtained from purified fibrinogen and from
plasma, from healthy subjects, and from high cardiovascular-risk patients. Both types of
filters were used; in particular, the 0.45 µm mesh filters for the plasma-derived clots and the
0.22 µm mesh filters for the fibrinogen-derived clots were used on the basis of previously
obtained data [25].

All measurements were performed following the measurement protocol described in
Section 2 and were stopped when at least 85% of the water was discharged.

As reported in Section 2.4, clot permeability measurements were obtained by exploiting
the linear fitting of the mass over time, starting from the first measured drop.

Continuous variables were described as mean values and standard deviation (SD).
Data distribution was checked using the Shapiro-Wilk test. An Independent t-test for
unpaired data was used for data comparison between patients and controls. A p-value of
<0.05 was considered statistically significant. Statistical analyses were performed using the
GraphPad Prism software version 6.01 (GraphPad Software, San Diego, CA, USA).

3.1. Plasma Clots Measurement Results

Plasma clots from 15 healthy subjects and from 17 Behcet patients were tested.
As shown in Table 2, the measurement results obtained with the control clots gave

an average permeability of 0.10 d, with an average deviation with respect to the average
permeability over the different clots of 13.41%., while the SD is about 0.02 d. In the proposed
setup, the uncertainty of the measurements related to the instrument (as per Equation (6))
is, on average, an order of magnitude lower with respect to the measurement dispersion;
this means that the variability comes from sample preparation and sample variability and
that the instrument provides accurate enough measurements for the application of interest.

As reported in Table 3, average patient clot permeability measurements resulted in
0.053 d, which is significantly lower compared to permeability values of control clots
(0.100 d). As expected, in patients, a higher relative dispersion of measurements is observed
(mean deviation magnitude of about 70% and SD of about 0.02 d). These differences can be
attributed to the inherent differences in patient health conditions.
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Table 2. Plasma clot permeability data from healthy subjects (controls).

Clot Dropped Water
(Total)

Overpressure
(Avg) Elapsed Time Permeability

Relative Deviation (with
Respect to Avg

Permeability) %

Permeability Value
Uncertainty

1 0.35 g 2.8 kPa 471 s 0.109 d 10.5% 0.0083 d

2 0.36 g 3.3 kPa 525 s 0.083 d −18.1% 0.0052 d

3 0.28 g 3.3 kPa 293 s 0.101 d 3.6% 0.0071 d

4 0.33 g 4.5 kPa 324 s 0.079 d −23.7% 0.0056 d

5 0.25 g 3.3 kPa 377 s 0.076 d −29.0% 0.0057 d

6 0.41 g 3.5 kPa 545 s 0.086 d −14.0% 0.0051 d

7 0.40 g 3.3 kPa 435 s 0.116 d 15.6% 0.010 d

8 0.40 g 4.0 kPa 344 s 0.091 d −6.9% 0.0092 d

9 0.38 g 3.4 kPa 611 s 0.081 d −20.0% 0.0056 d

10 0.38 g 3.4 kPa 433 s 0.131 d 25.5% 0.011 d

11 0.40 g 4.8 kPa 359 s 0.095 d −2.3% 0.0051 d

12 0.32 g 3.3 kPa 394 s 0.109 d 10.2% 0.0072 d

13 0.44 g 3.4 kPa 605 s 0.095 d −2.5% 0.0070 d

14 0.36 g 3.3 kPa 406 s 0.117 d 16.4% 0.0092 d

15 0.30 g 4.8 kPa 287 s 0.095 d −3.2% 0.0058 d

Average 0.37 g 3.6 kPa 481 s 0.098 d 13.4% 0.0071 d

Table 3. Plasma clot permeability data from high cardiovascular risk patients.

Clot Dropped Water
(Total)

Overpressure
(Avg) Elapsed Time Permeability

Relative Deviation (with
Respect to Avg

Permeability) %

Permeability Value
Uncertainty

1 0.35 g 4.5 kPa 853 s 0.041 d −29.0% 0.0032 d

2 0.32 g 3.2 kPa 660 s 0.072 d 27.0% 0.0053 d

3 0.33 g 4.4 kPa 1062 s 0.035 d −51.4% 0.0027 d

4 0.33 g 4.4 kPa 558 s 0.052 d −0.4% 0.0041 d

5 0.39 g 4.4 kPa 763 s 0.057 d 6.9% 0.0043 d

6 0.34 g 3.2 kPa 633 s 0.075 d 29.3% 0.0054 d

7 0.37 g 4.5 kPa 660 s 0.062 d 14.9% 0.0049 d

8 0.30 g 3.3 kPa 982 s 0.044 d −19.9% 0.0034 d

9 0.41 g 3.4 kPa 615 s 0.070 d 24.8% 0.0039 d

10 0.19 g 3.4 kPa 2437 s 0.006 d −728.1% 0.0024 d

11 0.32 g 3.3 kPa 1043 s 0.038 d −39.5% 0.0026 d

12 0.39 g 3.3 kPa 810 s 0.069 d 24.0% 0.0051 d

13 0.35 g 3.3 kPa 760 s 0.070 d 25.0% 0.0058 d

14 0.34 g 4.9 kPa 1101 s 0.029 d −79.7% 0.0026 d

15 0.33 g 4.3 kPa 455 s 0.069 d 24.0% 0.012 d

16 0.31 g 3.3 kPa 785 s 0.040 d −32.5% 0.0043 d

17 0.35 g 4.8 kPa 395 s 0.077 d 31.3% 0.0051 d

Average 0.33 g 3.9 kPa 810 s 0.053 d 69.8% 0.0045 d

t-test analysis between “Plasma Control clots” and “Plasma Patient clots” permeability
was performed. The results indicate a significantly lower permeability exhibited by patient
plasma clots compared to plasma control clots. Indeed, the calculated average permeability
value for patient plasma clots results in 0.100 d, while the corresponding value for patient
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plasma clots results in 0.053 d, suggesting that the proposed clot permeability measurement
system is able to distinguish controls from patients (Figure 6).
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The system demonstrated consistent and reliable performance in detecting perme-
ability in healthy subjects and patients, showing a significant difference in permeability,
with patient clots exhibiting lower permeability values. This observation aligns with
expectations and underscores the system’s capability to detect subtle differences in clot
permeability among various samples.

3.2. Fibrin Clot Measurement Results

The above-described measurement protocol was replicated using clots obtained from
purified fibrinogen from healthy subjects and Behcet patients. As already mentioned, in this
case, 0.22 µm pore size filters were used. More in detail, nine controls and seven patients
were analyzed.

Table 4 shows the measurement obtained on control fibrin clots. The average perme-
ability is 0.117 d, and as previously described, measurements have been taken considering
different overpressures.

The same procedure was carried out for the patient's fibrin clot. Experiment results
are presented in Table 5.

As indicated, the permeability values of patient fibrin clots ranged from 0.027 d to
0.071 d, with a calculated average permeability value of 0.049 d.

A t-test comparison between control fibrin clots and patient fibrin clots in terms of
permeability was conducted. The calculated average permeability value for patient fibrin
clots was 0.049 d, whereas for control fibrin clots was 0.117 d. Thus, the results indicate
again that it is possible to discriminate between the permeability of clots from controls and
from patients. The box plot of control fibrin clot and patient fibrin clot is represented in
Figure 7.
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Table 4. Permeability results for control fibrin clots.

Clot Dropped Water
(Total)

Overpressure
(Avg) Elapsed Time Permeability

(Avg)

Relative Deviation (with
Respect to Avg

Permeability) %

Permeability Value
Uncertainty

1 0.15 g 3.1 kPa 82 s 0.138 d 18.0% 0.013 d

2 0.35 g 3.1 kPa 422 s 0.096 d 18.0% 0.010 d

3 0.36 g 3.2 kPa 418 s 0.147 d 25.6% 0.012 d

4 0.33 g 3.2 kPa 553 s 0.083 d 29.1% 0.0068 d

5 0.35 g 7.0 kPa 94 s 0.082 d 29.9% 0.0065 d

6 0.36 g 3.3 kPa 366 s 0.111 d 5.1% 0.0068 d

8 0.37 g 3.7 kPa 258 s 0.183 d 56.4% 0.014 d

7 0.28 g 3.3 kPa 311 s 0.118 d 0.9% 0.0086 d

9 0.22 g 3.6 kPa 227 s 0.092 d 21.4% 0.0065 d

Average 0.33 g 4.3 kPa 230 s 0.117 d 22.7% 0.012 d

Table 5. Permeability results for fibrin clots from Behcet patients.

Clot Dropped Water
(Avg)

Overpressure
(Avg) Elapsed Time Permeability

(Avg)
Error (Respect to Avg

Permeability) %
Permeability Value

Uncertainty

1 0.38 g 3.1 kPa 225 s 0.062 d 27.5% 0.0058 d

2 0.14 g 9.9 kPa 41 s 0.046 d 6.1% 0.0043 d

3 0.31 g 3.1 kPa 1874 s 0.027 d 44.9% 0.0021 d

4 0.27 g 3.2 kPa 418 s 0.046 d 6.1% 0.0039 d

5 0.32 g 3.3 kPa 1435 s 0.028 d 42.9% 0.0021 d

6 0.34 g 3.3 kPa 422 s 0.061 d 24.5% 0.0038 d

7 0.36 g 3.7 kPa 533 s 0.071 d 44.9% 0.0047 d

Average 0.31 g 3.4 kPa 683 s 0.049 d 28.0% 0.0038 d
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4. Discussion

Thromboembolism, the leading cause of mortality worldwide, is characterized by the
formation of obstructive intravascular clots (thrombi) and their mechanical breakage (em-
bolization), leading to severe cardiovascular conditions such as myocardial infarction and
stroke [28]. Current risk stratification methods fail to accurately predict thrombotic events,
leading to inappropriate prophylaxis exposing individuals to either excessive bleeding
risks or thromboembolic events [2]. Emerging evidence suggests that the formation of more
compact clots, which are relatively resistant to lysis, may predispose individuals to arterial
and venous thromboembolism [10,11,29]. A prothrombotic clot, generally characterized
by a denser fibrin clot with respect to healthy individuals, shows a smaller pore size and
thicker fibers in fibrin networks, a low permeability coefficient, and a reduced plasma clot
lysis time [10]. In general, fibrin clots with thinner fibers and smaller pores are more com-
pact and less permeable, whereas clots with thicker fibers are more permeable and more
susceptible to fibrinolysis [30]. These changes in fibrin clot features have been observed
not only in patients with thromboembolism but also in various diseases associated with
an increased risk of thromboembolic events, including cancer, diabetes, antiphospholipid
syndrome, and inflammatory diseases [11,30,31].

Fibrin clot porosity is typically estimated by measuring clot permeability under differ-
ent hydrostatic pressures using different reagents and concentrations. Clot permeability
is calculated based on the volume of a buffer flowing through a fibrin gel over a specific
time using the Darcy constant (Ks). Today, various methods and models are used to de-
termine fibrin clot porosity, including those where clotting is initiated by thrombin or
tissue factor in platelet-poor or platelet-rich plasma, utilizing manual or semi-automated
techniques [8,32,33]. Given the importance of measuring fibrin clot permeability, the Factor
XIII and Fibrinogen Subcommittee of the Scientific and Standardization Committee of the
International Society on Thrombosis and Haemostasis published the first recommended
protocol for Ks measurement in 2012 [22]. Indeed, universal standards are essential to
ensure acceptable variability between laboratories.

Our study introduces a novel system for measuring blood clot permeability, utilizing
a pressure-based approach adhering to Darcy’s law. This system aims to enhance the
precision and sensitivity in discerning clot characteristics, which is critical for improving
thrombotic risk assessment. Our device is designed to automatically measure the per-
meability of clots formed in vitro on specific holders and was validated by conducting
measurements on both plasma and fibrinogen clots from patients and healthy individuals.
As expected, our preliminary findings revealed that clots from Behcet patients exhibited
significantly lower permeability compared to those from controls, consistent with previous
reports linking hypercoagulable states to more compact and resistant fibrin clots [31]. The
ability to accurately measure clot permeability and thereby assess individual thrombotic
risk is crucial for developing personalized prophylactic and therapeutic strategies. This is
particularly important given the limitations of existing risk stratification models, which
often fail to account for the complex interplay of genetic, environmental, and clinical factors
influencing thrombus formation and stability [16]. Moreover, the development of more
reliable and accessible diagnostic tools can potentially bridge the gap in clinical practice,
where there is a need for more precise risk stratification to guide treatment decisions.
The precision and repeatability of measurements of our proposed device are enhanced by
the system’s design, which minimizes the influence of external variables. By providing
more accurate and repeatable measurements of clot permeability, the proposed system can
aid healthcare providers in better stratifying thrombotic risk and tailoring interventions,
thereby improving patient outcomes and reducing healthcare costs. Furthermore, the
significant difference in permeability between Behcet patients and control clots highlights
the device’s sensitivity in detecting pathological changes in clot structure. This capability
is particularly relevant for managing conditions associated with increased thrombotic
risk [7,11,12].
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Our device is a portable, cost-effective solution designed for clinical settings, empha-
sizing accessibility and ease of use, with automated, software-based calculations to measure
blood clot permeability using a pressure-based approach. Permeability measurement is
conducted by applying overpressure on the surface of the clot and measuring the mass
of percolated water over time. The measurement duration ranges from approximately
60 s to a maximum of 1800 s in low permeability clots. When comparing these results with
other systems based on the same measurement technique, such as the method described
by Ząbczyk et al. [33], there is an improvement of at least one order of magnitude in
terms of measurement time. This significant reduction in measurement time is achieved
by the use of a clot support that provides structural integrity to the clot, allowing for the
application of greater pressure during testing. The increased pressure capability accel-
erates the measurement process. Furthermore, the proposed device utilizes off-the-shelf
components, which help to reduce the overall cost of the instrument compared to the
system described by Ząbczyk et al. [33]. This cost-efficiency, combined with the enhanced
performance, makes the new device a practical and economical alternative for fibrin clot
permeability assessment.

Our study has several limitations. Firstly, it involved a relatively small sample size,
with 17 patients and 15 controls. This limited number of participants may not fully capture
the variability in clot permeability across different populations. Future studies should
include a larger and more diverse cohort to validate the findings and enhance the general-
izability of the results. Moreover, the process of clot preparation can introduce variability,
especially when different operators are involved. Although efforts were made to standard-
ize the procedure, slight differences in the preparation and handling of samples could
affect the results. Further refinement and automation of the clot preparation process could
help minimize this variability. It should be noted, however, that the clot permeability
measurements were performed on clots formed in vitro. While this method allows for
controlled conditions, it may not entirely replicate the complex environment within the
human body where multiple physiological factors influence clot formation and stability.
Future research should aim to correlate in vitro findings with in vivo data to ensure the
clinical relevance of the measurements.

5. Conclusions

Our study demonstrates the feasibility and efficacy of a novel device for measuring clot
permeability, which could significantly improve the management of thromboembolic diseases.

Given the limitations of existing risk stratification models, which often fail to account
for the complex interplay of genetic, environmental, and clinical factors influencing throm-
bus formation and stability, the ability to accurately measure clot permeability and thereby
assess individual thrombotic risk is crucial for developing personalized prophylactic and
therapeutic strategies. The precision and repeatability of our proposed device’s measure-
ments are enhanced by its design, which minimizes the influence of external variables.

The proposed device, which automates permeability measurements on plasma or
fibrinogen clots in vitro, was thoroughly characterized from a metrological perspective. It
was validated through a measurement campaign involving clots derived from both patients
and healthy controls. The results showed that clots from high cardiovascular-risk patients
had significantly lower permeability than those from healthy individuals, aligning with
previous research that associates hypercoagulable states with more compact, less permeable
fibrin clots.

While this study involved a relatively small sample size, the results are promising
and indicate the device’s potential to significantly impact clinical practice. Future research
should focus on further validating this device in larger, more diverse cohorts and exploring
its integration into routine clinical practice to enhance patient outcomes.
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