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Abstract

This dissertation aims to propose a technique for estimating the causal effects of
exposure on survival outcomes using the Rubin Causal Model (RCM), a framework
for defining causal estimands, discussing assumptions, and developing methods for
drawing inferences on causal effects. From a substantive perspective, the research
was motivated by the evaluation of the effect of two different treatments (Inter-
feron versus Azathioprine) on time to the first worsening of Multiple Sclerosis
(MS) disease. The study uses data from an observational study on patients with
MS collected between 1981 and 2019 in Tuscany, Italy. The causal analysis of this
study raises several challenges due to the unknown treatment assignment mech-
anism, and the survival outcome is subject to two different covariate-dependent
censoring mechanisms: administrative censoring and treatment switching. Then,
using Marginal Structural Cox models, we propose a new weighting method to
adjust for observed confounders and correct selection bias due to different types
of censoring.
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Chapter 1

Introduction

In medical research, making inferences about the effects of treatments and inter-
ventions is challenging. Estimating the effects of treatments is known as causal
inference. Observational medical studies are used in many research investigations
to estimate the effects of treatments, exposures, and interventions on health out-
comes.

The potential outcomes approach of causal inference is a framework that allows
the definition of a treatment’s causal effect as a comparison of potential outcomes,
the discussion of assumptions that allow for the identification of such causal effects
from available data, and the development of methods for estimating causal effects
under these assumptions [Rubin, 1975, 1978, Imbens and Rubin, 2015]. We refer
to this framework as the Rubin Causal Model after Holland [1986a] (RCM). The
RCM defines a treatment’s causal effect as a contrast of potential outcomes, one of
which will be observed while the others will be missing and become counterfactual
once the treatment is assigned. In that respect, the assignment mechanism is ex-
plicitly defined as a probability model for how units receive the different treatment
levels. A causal inference problem is thus understood from this perspective as a
problem of missing data, where the assignment mechanism is explicitly modeled
as a process for revealing the observed data. The assumptions on the assignment
mechanism are crucial for identifying and deriving methods to estimate causal ef-
fects. In experimental study, the assignment mechanism is known and controlled
by the researcher. In contrast, in observational studies, treatment conditions and
assignment timing are observed after data collection. Frequently, the data are
collected for purposes other than the study. As a result, the researcher does not
control the treatment assignment mechanism. In addition, the lack of randomiza-
tion makes it challenging to ensure that covariates are balanced between treatment
groups, resulting in systematic differences between the treatment group and the
control group. Practitioners do not traditionally distinguish between the design
and analysis phases when analyzing observational data. To make objective causal
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inference from observational studies, we must address these challenges [Dominici
et al., 2020].

On the other hand, survival analysis is concerned with statistical procedures
in which the outcome variable of interest is time-to-event, such as time to death,
time to recovery, or time to infection. Nevertheless, the precise event times are
unknown in many studies. A most common complexity of observed survival data
is the presence of censoring on the survival time. On that note, some patients
may not experience the event of interest and are censored due to the end of the
follow-up (i.e., administrative censoring). A subject may be lost to follow-up be-
fore the event occurs (censoring due to loss of follow-up), or he or she may switch
treatments due to unwanted side effects that prevent him or her from continuing
to take the treatment (censoring due to switching the treatment). Survival anal-
ysis has been expanded to deal with situations where the precise event times are
unknown. Some statistical methods designed to account for censored observations
imply that patients’ withdrawal from a study is independent of the event of interest
(completely ignorable censoring). However, some covariates might be associated
with lifetime and censoring mechanisms in real-world situations, resulting in ig-
norable censoring conditional on those covariates. Applying the classical survival
techniques assumes independent censoring (i.e., completely ignorable censoring)
may under-or over-estimate the survival time in the case of covariate-dependent
censoring (i.e., ignorable censoring conditional on covariates). Statistical methods
in survival analysis were mainly developed to address the presence of censoring
(under completely ignorable or covariate-dependent censoring assumption) and
the non-symmetric shape of the distribution of survival time.

This research aims to provide an understanding of the methodologies that can
be adopted to estimate causal effects of exposure on survival outcomes in medi-
cal observational studies: the problem of how to adjust for observed confounders
and how to deal with covariate-dependent censoring mechanisms. Notably, we
must deal with the unknown assignment mechanism and simultaneously adjust
for two different covariate-dependent censoring (administrative and switching the
treatment). The objective of this research is to provide both methodological and
empirical contributions. In literature, Robins and colleagues [Robins et al., 2000,
Robins, 2000a, Hernán et al., 2000] have proposed a new class of causal models
called marginal structural models. According to [Hernán et al., 2000], the anal-
ysis based on weighted samples gives an asymptotically unbiased estimate of the
causal parameter of interest. In particular, we propose a novel WEIGHTING
method in the Marginal Structural Model to overcome all challenges simultane-
ously. Furthermore, apply the proposed method to a medical observational study
aimed to assess the relative effectiveness of two treatments Interferon (INF) and
Azathioprine (AZA), for patients with Multiple Sclerosis (MS) on Progression-Free
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Survival (PFS) in Italy. Prespecification of the functional form of covariates for
model building is problematic, thus prompting the use of relatively fast algorithms.

The remainder of this thesis is organized as follows: Chapter 2 introduces our
motivating study. Chapter 3 presents notation for causal inference in observational
studies and a common theoretical background. Furthermore, Chapter 4 discusses
survival analysis, explains the difficulties that arise based on different censoring
mechanisms (i.e., administrative censoring and treatment switching), and discusses
the Cox models’ estimation methods and their diagnostic. The definition of causal
estimands in survival settings is presented in Chapter 5. Moreover, in Chapter 5,
we demonstrate how to overcome all of the concerns raised in the MS data set by
using the WEIGHTING methods in the Marginal Structural Cox Model. It is the
thesis’s novelty. Next, we investigate our proposals in comprehensive simulation
analysis. Notably, simulation studies’ results help analysts choose which methods
are most appropriate for answering research questions using their data. After that,
we apply the proposed method to estimate the causal effects of two treatments on
worsening among patients with a high risk of Multiple Sclerosis (MS) localized
the Careggi hospital data set in Section 6. In Chapter 7, we address additional
concerns related to decisions regarding the cost-effectiveness of two treatments
over a shorter period (such as five years). Finally, we end with a discussion and
suggest some further research in Section 8.
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Chapter 2

Motivating Study

Multiple Sclerosis (MS) involves an immune-mediated process in which an abnor-
mal response of the body’s immune system is directed against the central nervous
system. Symptoms of MS are unpredictable and vary in type and severity from
one person to another and the same person over time. Worldwide, more than 2.3
million people have a diagnosis of MS. In the United States, a recently completed
prevalence study funded by the National MS Society has estimated that nearly 1
million people over 18 live with a diagnosis of MS. There is no cure for multiple
sclerosis. Treatment typically focuses on speeding recovery from attacks, slowing
the progression of the disease, and managing MS symptoms. Several consensus
working groups in MS [Lublin et al., 2014, Scolding et al., 2015, MAGNIMS, 2015]
have highlighted the need for further research to establish optimum treatment and
monitoring strategies in MS.

This thesis is motivated by an observational study aimed to assess the relative
effectiveness of two treatments - Interferon (INF) and Azathioprine (AZA) - on
progression-free survival for MS patients. Henceforth, we refer to his study as the
MS study. The study involves 594 patients enrolled between 1981 and 2019 at
Tuscany region, Italy, and exposed to either Azathioprine or Interferon. Interferon
is the treatment category that slows the disease’s progression. These are a group
of proteins that normally produce cells in response to viral infection and other
incentives. For many years, several studies have shown interferon is effective using
outcome variables defined in terms of relapses, disability, or MRI at various doses
and by different routes of administration [IFNB et al., 1993, Jacobs et al., 1996,
Arbizu et al., 2000, Paolillo et al., 2002, Milanese et al., 2003, Trojano et al., 2007,
Brown et al., 2007, Coles et al., 2008, Melendez-Torres et al., 2018]. For instance,
Shirani et al. [2012] investigated the association between Interferon exposure and
disability progression (based on time to EDSS) in patients with relapsing-remitting
MS. The 10-point Kurtzke Expanded Disability Status Scale (EDSS) is the most
widely accepted clinical disability scale. The EDSS is considered the standard for
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monitoring patients with multiple sclerosis (MS). The paper by Karim et al. [2014]
was the first to use the Marginal structural Cox model to estimate the causal asso-
ciations between INF and time to reach a sustained EDSS score to 6 in the presence
of time-dependent confounding (relapse rates) and selection bias. To remove the
possible confounding effects of both time-varying and baseline confounders, they
used weights [Hernán et al., 2000]. Their analysis found no association between
INF and time to development of a sustained EDSS score of 6 over the follow-up,
which is consistent with findings of other studies [Ebers et al., 2010, Shirani et al.,
2012].

Although there is rich literature about Interferon, the validity of some findings
has been brought to question [Brown et al., 2007, Gout, 2008, Koch et al., 2008]
because of major methodological issues including selection bias [Trojano et al.,
2007, Koch et al., 2008, Dimick and Livingston, 2010], small sample sizes [Paolillo
et al., 2002, Pozzilli et al., 2005, Coppola et al., 2006], and insufficient follow-up
[Arbizu et al., 2000, Milanese et al., 2003, Coppola et al., 2006]. Moreover, in
some patients, Interferon shows no or little efficacy or is not well-tolerated Filip-
pini et al. [2003]. This is because autoimmune pathogenetic mechanisms against
central nervous system white matter underlying the development of MS lesions.
Immunosuppressive medications have also been successfully used in the treatment
of this disease. Azathioprine is the most widely used immunosuppressive treat-
ment for MS. It is also an alternative to Interferon for treating MS because it is
less expensive. Massacesi et al. [2005] evaluated the efficacy of Azathioprine ther-
apy on new brain lesion suppression in MS. Massacesi et al. [2005] indicated for
the first time that Azathioprine was effective in reducing MS new brain inflamma-
tory lesions. A few studies have been undertaken over many years to assess the
effectiveness of Interferon versus/combined to Azathioprine to prevent long-term
disability accumulation. For instance, Havrdova et al. [2009] tried to assess the
efficacy of combining Interferon with classical immunosuppressive agent groups
such as Azathioprine (AZA) or corticosteroids on annualized relapse rate (ARR)
at two years. They showed that combination treatment did not show superior-
ity over Interferon monotherapy. Etemadifar et al. [2007] compared the relative
efficacy of Interferon (INF) and Azathioprine (AZA) in the treatment of relapsing-
remitting multiple sclerosis. Statistical analysis was based on an intention-to-treat
principle. Comparison between groups receiving INF and AZA was made using an
independent t-test and analysis of variance with repeated measures over time. The
results demonstrated that both the INF formulations and AZA treatment groups
decreased EDSS and relapse rate 12 months after the start of treatment [Etemadifar
et al., 2007]. However, in next years, some studies were conducted by Benedetti
et al. [2012], Massacesi et al. [2013], Massacesi et al. [2014] and Massacesi et al.
[2016] to compare Azathioprine efficacy versus Interferon in relapsing-remitting
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Multiple Sclerosis. These studies’ results indicated that Interferon’s efficacy is
not superior to that of Azathioprine for patients with relapsing-remitting multiple
sclerosis. The outcomes of these studies were Annualized Relapse Rate (ARR)
and the number of new brain MRI lesions. All analyses were performed using the
intention-to-treat (ITT) principle and a per-protocol analysis. The efficacy be-
tween the two treatments was judged by Poisson regression for ARR. The number
of new brain MRI lesions was analyzed using the χ2 test with one degree of free-
dom for rate comparison (based on Poisson regression); χ2 test with two degrees
of freedom for the number of relapsed patients; Kaplan-Meier curves, log-rank test
and Cox proportional-hazards model for time to first relapse and Fisher’s exact
test for patients with no confirmed disability progression.

To the best of our knowledge, there is no study to compare Azathioprine ef-
ficacy versus Interferon over long-term follow-up. Consequently, the goal of this
study is to assess the relative effectiveness of these two treatments on PFS,
which is the time from treatment initiation until disease progression or worsening.
A typical complexity of observed survival data is the presence of right censoring
on the survival time. In particular, in our study different individuals will have
different administrative censoring times due to the staggered entry of the study.
This indicates that censoring time for all patients is not fixed (i.e. the follow-up
is not fix-ended) and it is dependent on patient characteristics in our case. For
example, young adults are at higher risk of suffering from MS and need treatment
than older adults. This implies that the event is observed more often in younger
than in old patients. On that note, in our example, some patients do not experi-
ence the event of interest and are censored due to the end of the follow-up (i.e.,
administrative censoring). Moreover, some patients in this study may experience
treatment switches from one disease-modifying treatment to another or treatment
discontinuation primarily due to ethical considerations, lack of efficacy, side effects,
risk of the long-term adverse event, and pregnancy. Treatment switching often has
a crucial impact on estimates of the effectiveness and cost-effectiveness of new
treatments. It may be a clinically relevant question to estimate the efficacy that
would have been observed if no patients had switched, for example, to estimate
“real-life” clinical effectiveness for a health technology assessment. Several com-
monly used statistical methods are available that try to adjust time-to-event data
to account for treatment switching, ranging from naive exclusion and censoring
approaches to more complex inverse probability of censoring weighting and rank-
preserving structural failure time models [Watkins et al., 2013]. We consider treat-
ment switching as an additional censoring. The switching censoring mechanism
may depend on the covariates that have led to this change of treatment. Thus, in
our data set, both censoring mechanisms are assumed to be covariate-dependent
censoring mechanisms, possibly conditional on different sets of covariates. We
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aim to adjust for observed confounders under the assumption that the assignment
mechanism is strongly ignorable [Rosembaum and Rubin, 1983] and for selection
bias due to dependent-censoring. Of note, we consider time-fixed treatment and
first record for all patients, regardless of whether they have switched treatments.

Table 1 shows the number of patients in each group. In general, 85 patients
switched the treatment during follow-up (it shows in Table 1 as 74 + 9 + 2 = 85).
Some covariates are recorded for each unit, and their descriptions are presented
in Table 2. Based on expert-knowledge and a low missing rate (less than 5%),
we consider complete cases in our data set. As a result, there are 562 patients,
211 exposed to AZA and 351 exposed to INF. Two important covariates are
pre-treatment annualized relapse rate (ARR pre) and progression index (PI pre).
ARR pre measures an MS patient’s average number of attacks per year. This
measure is used to help detect and quantify levels of sustained disability. Formally,

ARR pre =
Relaps pre

(Disease durat
12

)
.

PI pre is a measure of the rapidity of the accumulation of disability, defined as
the Baseline.EDSS divided by disease duration in years:

PI pre =
Baseline.EDSS

(Disease durat
12

)
.

Table 1: Number of each groups

Number NAZA NINF

Number of records 696 254 442
Patients 594 215 379

Patients (complete cases) 562 211 351
Single obs 477 154 323

Patients who switch 1 time (with 2 records) 74 47 27
Patients who switch 2 times (with 3 records) 9 8 1
Patients who switch 3 times (with 4 records) 2 2 0
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Table 2: The covariates which are recorded for all units (N = 562)

Baseline Covariates Description

Age Age
ARR pre Annualized Relapse Rate (ARR):

average number of attacks per year
Disease durat Duration of disease (months)
Dummy EDSS 0 if Baseline.EDSS < 4

and 1 otherwise
Baseline.EDSS Expanded Disability Status Scale

Baseline.EDSS ∈ (0, 10)
Gender 0 for Male and 1 for Female
PI pre The progression index

Relaps pre Number of relapse before therapy
Relapse Dummy 1 if Relapse pre is missing

and 0 otherwise
Year The year of treatment started
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Chapter 3

Notation & theoretical
background

In this chapter, causal inference primitives are introduced, along with various
notions and assumptions that are required in observational studies.

1 Causal inference primitives and assignment mech-

anisms

1.1 Potential outcomes and SUTVA

We have information on a sample of n units, indexed by i (i = 1, 2, · · · , n). Each
unit i can be subject or exposed to a specific treatment or to alternative treatments,
which could be different active treatments or no treatment at all. This thesis
considers studies where the treatment variable is binary: z = 1 for the active
treatment and z = 0 for the control. In our motivating study, a unit is a patients
with MS disease who can be potentially exposed to either AZA (z = 1) or INF
(z = 0).

The goal is to assess outcome Y at a certain time after each unit has been
treated. For that purpose, each treatment-unit pair is linked to a potential out-
come. As a result, two potential outcomes are following treatment for each unit i.
They would be the Yi(1) value of the outcome variable Y if the unit were exposed
to the active treatment and the Yi(0) value of Y at the same future point in time if
the unit was exposed to the control treatment. Under the “Stable Unit Treatment
Value Assumption [SUTVA, Rubin, 1980]” these definitions are valid.

Assumption 1 (Stable Unit Treatment Value Assumption). The potential out-
comes for any unit do not vary with the treatments assigned to other units, and, for

10



each unit, there are no different forms or versions of each treatment level, which
lead to different potential outcomes.

The depiction in Table 1 already requires assumptions for it to be adequate. In
particular, it requires SUTVA to hold, which comprises two sub-assumptions. The
SUTVA points out that notation such as Yi(z) effectively presupposes (I) that if
individual i is given treatment z then individual i’s outcome under treatment z does
not depend on which treatment individual i′ ̸= i received and (II) that there do not
exist multiple versions of treatment a which might give rise to different outcomes
depending on which version is administered. The first of these assumptions is
sometimes referred to as “no-interference” which Rubin [1980] attributes to Cox
[1958]; the second assumption is a “no-versions-of-treatment assumption” which
Rubin attributes to Neyman and Iwaszkiewicz [1935].

Let Y (0) and Y (1) be n−dimensional vectors with ith elements equal to Yi(0)
and Yi(1), respectively, and let X be a n × p matrix with ith row equal to Xi =
(Xi1, . . . , Xip) collecting values of p covariates for unit i. Covariates are variables
that are unaffected by the treatment. The n× (p+2) matrix of the covariates and
the potential outcomes, [X,Y (0),Y (1)], is commonly referred to as the Science
in the context of causal inference [Mattei et al., 2022].

Causal effects are defined at the unit level: a comparison of treatment and
control possible outcomes, Yi(1) vs Yi(0), determines the treatment’s unit-level
causal effect. The difference, Yi(1)− Yi(0), log-difference, log{Yi(1)} − log{Yi(0)},
or ratio Yi(1)/Yi(0) between treatment and control potential outcomes are exam-
ples of unit-level causal effects. Individual causal effects are often summarized,
with causal effects defined at the level of collections of units. Summary causal
effects are comparisons between Yi(1) and Yi(0) for a common set of units, that
is, comparisons of the ordered sets {Yi(1), i ∈ G} and {Yi(0), i ∈ G}, where G is a
collection of units. For example, one may be interested in summary causal effects
for all units or sub-groups of units specified by, say, covariate values.

Table 1 summarizes the basic concepts of the potential outcome framework: the
Science (covariates and potential outcomes), the collection of individual unit-level
causal effects, and summary causal effects.

Some summary causal effects are typical unit-level causal effects in that they
summarize unit-level causal effects for a group of units and hence correspond to
characteristics of the joint distribution of potential outcomes. Other summary
causal effects are marginal in the sense that they compare features of the marginal
distributions of Yi(1) and Yi(0) for a set of units. For example, typical unit-level
causal effects are the median and quantiles of a collection of units, while marginal
causal effects are the difference between the medians or quantiles of Yi(1) and
Yi(0) for a collection of units. Average treatment effects, which are both typical
unit-level and marginal causal effects, are commonly defined causal estimands.
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Table 1: The Science and causal estimands

Potential Outcomes
Covariates Treatment Control Unit-level Summary

Units X1 . . . Xp Y (1) Y (0) Causal Effects Causal Effects

1 X11 . . . X1p Y1(1) Y1(0) Y1(1) vs Y1(0) Comparison
of Yi(1) vs
Yi(0) for a
common

set of units

...
...

...
...

...
...

...
i Xi1 . . . Xip Yi(1) Yi(0) Yi(1) vs Yi(0)
...

...
...

...
...

...
...

n Xn . . . Xnp Yn(1) Yn(0) Yn(1) vs Yn(0)

1.2 Defining causal estimands

A causal study can focus on causal estimands either for the finite set of n units
participating in the study (finite-population perspective) or for a large super-
population from which the n units are considered as a random sample (super-
population perspective). From a finite-population perspective, where potential
outcomes are viewed as fixed quantities, the Finite Population Average Treatment
Effect is

τATE
FP =

1

n

n∑
i=1

[Yi(1)− Yi(0)] =
1

n

n∑
i=1

Yi(1)−
1

n

n∑
i=1

Yi(0) = Y (1)− Y (0)

From a super-population perspective, where potential outcomes are viewed as ran-
dom variables because sampling from the super-population induces a distribution
of the two potential outcomes for each unit, the Super-Population Average Treat-
ment Effect is the expectation of the unit-level causal effect under the distribution
induced by sampling from the super-population:

τATE
SP = E [Yi(1)− Yi(0)] .

A different estimand is the population average treatment effect on the treated,
defined by averaging over the subpopulation of treated units

τATT
SP = E [Yi(1)− Yi(0)|Zi = 1] .

In some observational studies τATT
SP is a more interesting estimand than τATE

SP .
Sometimes average treatment effects are defined as averages over subpopula-

tions defined in terms of covariates. Conditional average treatment effects, that
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is, averages of unit-level causal effects over sub-populations described in terms of
covariates, are sometimes of interest:

τSP (x) = E [Yi(1)− Yi(0) | Xi = x] .

1.3 Assignment mechanism

The fundamental problem of causal inference [Rubin, 1978, Holland, 1986b] is that
we cannot observe both potential outcomes Yi(0) and Yi(1) for any unit. In this
sense, the problem of causal inference is, as pointed out in Rubin [1976], Mealli
and Rubin [2015] and Mattei et al. [2022], a missing data problem: given any
treatment assigned to an individual unit, the potential outcome associated with
any alternative treatment is missing. Formally, for each unit i, let Zi denote the
treatment assigned. The observed and missing outcomes are Y obs

i = ZiYi(1) −
(1− Zi)Yi(0) and Y mis

i = ZiYi(0)− (1− Zi)Yi(1), respectively. Drawing inference
on causal effects for any particular unit, which are functions of both the missing
and observed potential outcomes, will generally require predicting or imputing
the missing potential outcome. Then, to learn about the causal effects of interest
it is crucial to posit a treatment assignment mechanism, i.e., the process that
determines which units receive which treatments, which potential outcomes are
realized, and which are missing.

Definition 1 (Assignment Mechanism). The assignment mechanism is a row-
exchangeable function of all covariates and of all potential outcomes, giving the
probability of any vector of treatment assignments given the Science:

Pr (Z | X,Y (0),Y (1))

with
∑

Z∈{0,1}n Pr (Z | X,Y (0),Y (1)) = 1 for all X, Y (0), and Y (1).

Definition 2 (Unconfounded assignment mechanism). An unconfounded assign-
ment mechanism [Rubin, 1990] is free of dependence on either Y (0) or Y (1):

Pr (Z | X,Y (0),Y (1)) = Pr(Z | X)

Definition 3 (Probabilistic). If each unit has a positive probability of receiving
either treatment, the assignment mechanism is probabilistic:

0 < Pr (Zi = 1 | X,Y (0),Y (1)) < 1

Definition 4 (Strongly ignorable). If the assignment mechanism is unconfounded
and probabilistic, it is called strongly ignorable.
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Definition 5 (Confounded assignment mechanism). A confounded assignment
mechanism is one that depends on the potential outcomes:

Pr (Z | X,Y (0),Y (1)) ̸= Pr(Z | X)

Definition 6 (Ignorable assignment mechanisms). The ignorable assignment mech-
anisms [Rubin, 1978] is a special class of possibly confounded assignment mecha-
nisms. Ignorable assignment mechanisms are defined as being free of dependence
on any missing potential outcomes

Pr (Z | X,Y (0),Y (1)) = Pr(Z | X, Y obs)

Randomized experiments versus observational studies
After discussing some possible constraints on the assignment mechanism, let us
now use them to distinguish between randomized and non-randomized experi-
ments. A randomized experiment is a probabilistic assignment mechanism con-
trolled by the researcher and is a known function of its arguments. A specific class
of randomized experiments is the class of classical randomized experiments, where
the assignment mechanism is also (i) individualistic and (ii) unconfounded. An
individualistic assignment mechanism posits constraints on the dependence of the
treatment assignment of a unit on the outcomes and assignments for other units. If
the treatment assignment mechanism is individualistic, the probability that a unit
is assigned to the active treatment does not depend on the covariates or potential
outcomes of the other units.

In contrast, an observational study (known as non-randomized experiments)
is an assignment mechanism if the functional form of the assignment mechanism is
unknown. Cochran [1965] defined an observational study to be an empirical inves-
tigation in which the “objective is to elucidate cause-and-effect relationships [in
settings in which] it is not feasible to use controlled experimentation, in the sense
of being able to impose the procedures or treatments whose effects it is desired to
discover, or to assign subjects at random to different procedures” [Cochran, 1965].
An observational study, by this definition, has the same goal as a randomized
experiment: to estimate causal effects. However, a key difference between them
is in one design issue: the use of randomization to assign units to treatment and
control groups.

The objective of this thesis is observational research, and we must make as-
sumptions to draw inference about causal effects.
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2 Causal Inference in observational Studies

2.1 Designing observational studies: the role of the propen-
sity score

Although the validity of causal results from randomized experiments is generally
understood, inference from observational studies frequently encounters issues that
bring the validity of the derived causal conclusions into question. To deal with
such issues, one should try to create observational studies that as closely as possible
resemble a randomized experiment. According to Rubin [2008], design means “all
contemplation, collection, organization, and analysis of data that occurs before
viewing any outcome data.” It is important to note that the design phase does
not include outcome data. This is a benefit of the approach. The design phase
allows us to avoid any conflict of interest, which may be a relevant problem with
traditional approaches to causal inference involving fitting regression models where
the estimated causal effect is given by the estimated coefficient of an indicator
variable for exposure to an intervention and the estimated answers are constantly
being seen and modified as models are fitted and refitted. Depending on what
the company expects to see, this process may result in a variety of responses from
which the analyst can pick [Rubin and Waterman, 2006].

In practice, under unconfoundedness, it is suggested to determine the degree
of balance in covariate distributions by comparing covariate distributions in the
treated and control subsamples. Scaled differences in average covariate values by
treatment status can be employed; alternatively, the propensity score distribution
can be examined.

The key part of analyzing observational studies under unconfoundedness is
using the propensity score (noted as e(Xi)).

Definition 7 (Propensity Scores). Suppose that the assignment mechanism is un-
confounded. The propensity score is the conditional probability of receiving the
treatment given the pre-treatment variables

e(Xi) = Pr(Zi = 1 | Xi).

Assumption 2 (Overlap (also known as probabilistic or positivity)). Under un-
confounded assumption, we consider Overlap assumption as

0 < Pr (Zi = 1 | X) < 1

Rubin argues that the use of propensity score techniques has a benefit in
that it allows observational research to be constructed similarly to randomized
experiment [Rubin, 2001]. This is because the propensity score is a balancing
score[Rosembaum and Rubin, 1983].
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Definition 8 (Balancing Scores). A balancing score b(·) is a function of the co-
variates such that

Zi ⊥ Xi | b(Xi).

Balancing scores are not unique. By definition, the vector of covariates Xi itself
is a balancing score, and any one-to-one function of a balancing score is also a
balancing score.

Lemma 1 (Balancing Property of the Propensity Score). The propensity score is
a balancing score which means

Zi ⊥ Xi | e(Xi)

so that the covariate distribution is the same in treatment and control units with
the same propensity score.

Proof. We show that Zi ⊥ Xi | e(Xi) or equivalently,

Pr(Zi = 1 | Xi, e(Xi)) = Pr(Zi = 1 | e(Xi))

implying that Zi is independent of Xi given the propensity score. First, consider
the left hand side:

Pr(Zi = 1 | Xi, e(Xi)) = Pr(Zi = 1 | Xi) = e(Xi)

where the first equality follows because the propensity score is a function of Xi

and the second is by the definition of the propensity score. Second, consider the
right hand side. By the definition of probability and iterated expectations,

Pr(Zi = 1|e(Xi)) = E[Zi|e(Xi)] = E[E[Zi|Xi, e(Xi)]|e(Xi)] = E[e(Xi)|e(Xi)] = e(Xi)

Balancing scores have an important property: if assignment to treatment is
unconfounded given the full set of covariates, then assignment is also unconfounded
conditioning only on a balancing score:

Lemma 2 (Unconfoundedness given a Balancing Score). Suppose assignment to
treatment is unconfounded. Then the assignment is unconfounded given any bal-
ancing score:

Zi ⊥ Yi(0), Yi(1) | b(Xi).

Proof. We show that

Pr(Zi = 1 | Yi(0), Yi(1), b(Xi)) = Pr(Zi = 1 | b(Xi))
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which is equivalent to the statement in the lemma. By iterated expectations we
can write

Pr(Zi = 1 | Yi(0), Yi(1), b(Xi)) = E[Zi | Yi(0), Yi(1), b(Xi)]

= E[E[Zi | Yi(0), Yi(1), Xi, b(Xi)] | Yi(0), Yi(1), b(Xi)].

By unconfoundedness, the inner expectation is equal to E[Zi | Xi, b(Xi)] and by
the definition of balancing scores, this is equal to E[Zi | b(Xi)]. Hence the last
expression is equal to

E[E[Zi | b(Xi)] | Yi(0), Yi(1), b(Xi)] = E[Zi | b(Xi)] = Pr(Zi = 1 | b(Xi))

which is equal to the right hand side.

The first implication of Lemma 2 is that given a vector of covariates that ensure
unconfoundedness, adjustment for treatment-control differences in balancing scores
suffices for removing all biases associated with differences in the covariates [Imbens
and Rubin, 2015]. As a result, even if a covariate is associated with the potential
outcomes, differences in covariates between treated and control units do not lead to
bias because they cancel out by averaging over all units with the same value for the
balancing score. The situation is similar to a completely randomized experiment
in which both treatment arms have the same covariates distribution.

Because the propensity score is a balancing score, Lemma 2 implies that condi-
tional on the propensity score, treatment assignment is unconfounded. But within
the class of balancing scores, the propensity score has a special place, formally
described in the following Lemma:

Lemma 3 (Coarseness of Balancing Scores). The propensity score is the coarsest
balancing score. That is, the propensity score is a function of every balancing score.

Proof. Let b(x) be a balancing score. Suppose that we can not write the propensity
score as a function of the balancing score. Then it must be the case that for two
values x and x′ we have b(x) = b(x′), and at the same time e(x) = e(x′). Then,
Pr(Zi = 1|Xi = x) = e(x) = e(x′) = Pr(Zi = 1|Xi = x′), and so Zi and Xi are
not independent given b(Xi) = b(x), which violates the definition of a balancing
score.

Since the propensity score is the coarsest balancing score, it presents an enor-
mous decrease in the number of variables we need to adjust for. However, there
is a challenge in that in observational studies; we do not generally know the true
value of the propensity score for all units; therefore, we cannot directly exploit this
result. However, it can be estimated using the study data.

The propensity score is most often estimated using a logistic regression model
e(X,β) = {1 + e(−X⊤β)}−1. Interaction and higher-order terms may also be
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included. Here, β may be estimated by the maximum likelihood (ML) estimator
β̂ solving

n∑
i=1

Zi − e(Xi,β)

e(Xi,β){(1− e(Xi,β))}
∂/∂β{e(Xi,β)} = 0. (1)

We assume that the analyst is proficient at modelling e(X,β) so that it is correctly
specified. The estimated propensity score is the predicted probability of treatment
derived from the fitted regression model. Although logistic regression appears to
be the most commonly used method for estimating the propensity score, the use of
bagging or boosting [Lee et al., 2011, McCaffrey et al., 2004], recursive partitioning,
or tree-based methods [Lee et al., 2011, Setoguchi et al., 2008], random forests
[Lee et al., 2011], and neural networks [Setoguchi et al., 2008] for estimating the
propensity score have been examined.

The goal is to obtain an estimated propensity score that balances the covariates
between treated and control subpopulations rather than one that estimates the
true propensity score as accurately as possible. Subjects with the same propensity
score have the same distribution of the observed potential confounders, whether
they are treated or not. In the design phase, the estimated propensity score is an
effective tool for obtaining overlap and constructing a comparison group through
matching, stratifying, or weighting observations [Rubin, 2008].

we follow Rubin and colleagues’ recommendation of explicitly distinguishing
“design” and “analysis” phases Rubin [2001, 2008], Stuart and Rubin [2008]. In
particular, what follows is a review of all PS techniques that achieve balance on
measured covariates in the design phase:

2.1.1 Stratification on the Propensity Score

In stratification, based on the value of the propensity score, the sample is split
into subclasses, and the data within the subclasses are evaluated as if they came
from a completely randomized experiment [Rosembaum and Rubin, 1984, Lunce-
ford and Davidian, 2004]. A common approach is to divide subjects into five
equal-size groups using the quintiles of the estimated propensity score. Cochran
[1968] demonstrated that stratifying on the quintiles of a continuous confounding
variable eliminated approximately 90% of the bias due to that variable. Rosem-
baum and Rubin [1984] extended this result to stratification (or subclassification)
on the propensity score, stating that stratifying on the quintiles of the propensity
score eliminates approximately 90% of the bias due to measured confounders when
estimating a linear treatment effect.
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2.1.2 Propensity Score Matching

Forming matched sets of treated and untreated individuals who share a similar
value of the propensity score is known as propensity score matching [Rosembaum
and Rubin, 1983]. The most common implementation of propensity score matching
is one-to-one or pair matching, in which pairs of treated and untreated subjects
are formed such that matched subjects have similar values of the propensity score.
There are three steps to follow in “design” phase as

(i) Defining “closeness”: the distance measure used to determine whether an
individual is a good match for another

(ii) Implementing a matching method, given that measure of closeness,

(iii) Assessing the quality of the resulting matched samples and perhaps iterating
with Steps (i) and (ii) until well-matched samples result.

Abadie and Imbens [2002] used the diagonal matrix obtained using the diagonal
elements of the inverse of the covariance-variance matrix of the covariates:

dAI(x, z) = (x− z)⊤ diag(Σ−1
X )(x− z)

where Σ−1
X is the covariance matrix of the covariates. The most common choice is

the Mahalanobis metric (e.g., Rosenbaum and Rubin [1985]) which uses the inverse
of the covariance matrix of the pre-treatment variables:

dM(x, z) = (x− z)⊤Σ−1
X (x− z)

This metric has the attractive property that it reduces differences in covariates
within matched pairs in all directions. See for more formal discussions Rubin and
Thomas [1992a].

To form matched pairs of treated and untreated subjects when matching on
the propensity score, there are several methods. Focus on the case where only
treated units are matched, then we can conduct

1. Nearest-neighbor matching : One of the most common, and easiest meth-
ods is nearest-neighbor matching[Rubin, 1973a]. Nearest-neighbor matching
chooses the untreated subject whose propensity score is closest to that of
the treated subject for matching to a specific treated subject. One concern
is that, without any restrictions, matching can lead to some poor matches,
if for example, there are no control individuals with propensity scores simi-
lar to a given treated individual. One strategy to avoid poor matches is to
impose a caliper and only select a match if it is within the caliper [Stuart,
2010].
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2. Nearest-neighbor matching within a specified calliper : Nearest neighbour
matching within a specified calliper distance is similar to nearest neigh-
bour matching; however, the absolute difference in the propensity scores of
matched patients must be less than a predetermined threshold (the calliper
distance) [Austin, 2011].

3. Optimal matching : An alternative to simple nearest neighbour matching is
optimal matching, in which matches are formed to minimize the total within-
pair difference of the propensity score [Gu and Rosenbaum, 1993].

4. Matching without replacement : Once an untreated subject has been chosen to
be matched to a specific treated subject using matching without replacement,
that untreated subject is no longer available for consideration as a potential
match for subsequently treated subjects. As a result, each untreated subject
is included in at most one matched set Rosenbaum [2002].

5. Matching with replacement : The same untreated subject can be included in
several matched sets using replacement matching.

2.1.3 Inverse of treatment probability weighting

Weighting is a well-known non-parametric balancing technique in which weights
are applied to the sample of units in each treatment group to balance the covariate
distribution of a target population. In that respect, weighting removes confound-
ing by creating a pseudo-population in which the exposure is independent of the
observed confounders [Robins et al., 2000, Hirano et al., 2003, Hernán and Robins,
2006, Morgan, 2014, Li et al., 2018]. Inverse Probability Weight (IPW) originating
from survey research is a popular approach used to adjust for confounding due to
differences between two groups that arise in observational data [Austin and Stuart,
2015, Jones et al., 2018]. IPW’s purpose is to construct a pseudo-population in
which there is no association between variables X and treatment Z. Assuming
that all important confounders are measured, this approach is appealing for its
simplicity.

As long as all advantages of IPW offer better adjustment and separate the
design phase from the analysis phase, a major limitation of IPW is that it may be
inefficient in the presence of extreme propensity scores. To address these problems,
trimming methods [Crump et al., 2009] and Stabilized IPW [Robins et al., 2000]
have been proposed.

As mentioned earlier, Inverse probability weighting (IPW) is a popular ap-
proach used to adjust for confounding due to differences between comparator
groups that arise in observational data. In this setting, to assess balance, the
standardized differences allow researchers to quantitatively compare balance in
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measured baseline covariates between treated and control subjects in the weighted
sample Austin and Stuart [2015]. Moreover, the Love plot (a graphical diagnostic)
is a summary plot of covariate balance before and after weighting proposed by
Dr Thomas E. Love [Ahmed et al., 2007]. In a visually appealing and clear way,
balance can be presented to demonstrate to readers that balance has been met
within a threshold and that balance has improved after weighting.

2.2 Estimation

The estimated propensity score is used in many existing practices for estimating
and assessing causal effects [Stuart, 2010, Harder et al., 2010]. This referred to as
analysis phase. Methods for applying the PS include matching [Rosenbaum and
Rubin, 1985, Dehejia and Wahba, 1999, 2002, Ho et al., 2007, Stuart, 2010, Stuart
et al., 2011] , stratification (or subclassification) [Rosembaum and Rubin, 1984,
Lunceford and Davidian, 2004], weighting [Robins et al., 2000, Hirano et al., 2003,
Morgan, 2014, Li et al., 2018] and use of the PS for covariate adjustment[Austin,
2008b]. In other words, several literatures tried to find a clear guidance to make
a sensible choice among these various PS methods for any given database[Austin,
2008b, 2009b,c, 2011, Stuart, 2008, 2010, Harder et al., 2010, Elze et al., 2017,
Zhou et al., 2020].

We sketch how different procedures work.

2.2.1 Stratification

We shall focus on the population Average Treatment Effect (ATE):

τ = E[Yi(1)− Yi(0)]

The popular approach using stratification on estimated propensity scores to esti-
mate τ involves the following steps
i. Calculate estimated propensity scores for i (denoted as êi)
ii. Form K strata according to the sample quantiles of the êi, where the j−th
sample quantile q̂j , j = 1, · · · , K, is such that the proportion of unit with êi ≤ q̂j

is roughly
j

K
, q̂0 = 0, and q̂K = 1.

iii. Within each stratum, calculate the difference of sample means of the Yi for
each treatment
iv. Estimate τ by a weighted sum of the differences of sample means across strata,
where weighting is the proportion of observations falling in each stratum.

Defining Q̂j = (q̂j−1, q̂j] and nj =
∑n

i=1 I(êi ∈ Q̂j) as the number of individuals

in stratum j; and n1j =
∑n

i=1 Zi I(êi ∈ Q̂j) is the number of these who are treated,
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the estimator using a weighted sum is

τ̂strat =
K∑
j=1

(
nj

n
)
{∑n

i=1 ZiYi I(êi ∈ Q̂j)

n1j

−
∑n

i=1(1− Zi)Yi I(êi ∈ Q̂j)

nj − n1j

}
(2)

As the weights
nj

n
≈ 1

K
, they may be replaced by

1

K
to yield an average across

strata. Since treatment exposure is essentially random for individuals with the
same propensity value, we expect mean comparisons within this group to be un-
biased. We expected mean comparisons within this group to be unbiased since
treatment exposure is essentially at random for individuals with the same propen-
sity value. In practice, identifying individuals with the same propensity score may
be unfeasible; therefore, stratification aims to create groups in which this holds
approximately. Consequently, τ̂strat may be biased as some residual confounding
within strata may remain. Rosembaum and Rubin [1983, 1984] advocate using
quantiles (K = 5) which require that the propensity model be correctly specified.
Thus, it is recommended [Rosembaum and Rubin, 1984, Perkins et al., 2000] that
the balance within each stratum is examined using standard statistical tests.

D’Agostino [1998] proposed a variation of τ̂ strat. Here, steps (iii) and (iv) are
modified as follows:
iii. within each stratum j = 1, · · · , K, fit a regression model of the formm(j)(Z,X, α(j))
representing the postulated regression relationship E(Y | Z,X) within stratum j
and, based on the resulting estimate α(j), estimate treatment effect in stratum j
by averaging over Xi in j as

τ̂
(j)
strat =

1

nj

n∑
i=1

I(êi ∈ Q̂j)
{
m(j)(Zi = 1, Xi, α̂

(j))−m(j)(Zi = 0, Xi, α̂
(j))
}

(3)

iv. estimate τ by the average or weighted sum of the τ̂
(j)
strat, e.g. using the average

τ̂SR =
1

K

K∑
j=1

τ̂
(j)
strat (4)

Within-stratum regression modelling is intended to eliminate any remaining im-
balances within strata [Lunceford and Davidian, 2004].

A pooled estimate of the variance of the estimated treatment effect can be
obtained by pooling the variances of the stratum-specific treatment effects. For
a greater discussion of variance estimation, the reader is referred to Rosembaum
and Rubin [1984] and Lunceford and Davidian [2004].
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2.2.1.1 Theoretical Properties:
In this section, we summarize the properties of the estimators based on subclas-

sification of the propensity score and highlight the practical insights that can be
deduced from them. As it is common to take a constant number of strata (i.e. K)
regardless of sample size (K = 5 is most common), we consider K to be fixed (and
hence independent of n), and we assume propensity score is correctly specified.
We may rewrite equation (2) in an asymptotically equivalent form by replacing

nj

n

with its limit 1
K

and writing p̂j =
n1j

n
as

τ̂strat =
1

n

n∑
i=1

ZiYi

K

{ K∑
j=1

I(êi ∈ Q̂j)

p̂j

}
− 1

n

n∑
i=1

(1− Zi)Yi

K

{ K∑
j=1

I(êi ∈ Q̂j)
1
K
− p̂j

}
. (5)

Thus, considering the asymptotically equivalent form (5), we may replace êi, Q̂j

and p̂j by their true values and apply the law of large numbers directly to see that
τ̂strat converges in probability to τ ∗strat = µ∗

1 − µ∗
0, where

µ̂∗
1 = K−1

K∑
j=1

E[Y (1)e I(e ∈ Qj)]

E[e I(e ∈ Qj)]

and

µ̂∗
0 = K−1

K∑
j=1

E[Y (0)(1− e) I(e ∈ Qj)]

(K−1 − E[e I(e ∈ Qj)])
.

However, in general, τ ∗strat ̸= τ , so that τ̂strat is not consistent.
Lunceford and Davidian [2004] proved a similar argument for τ̂SR. Now, sub-

stituting
nj

n
≈ K−1 in equation (3), we may rewrite

τ̂SR =
1

n

n∑
i=1

K∑
j=1

I(êi ∈ Q̂j)
{
m(j)(Zi = 1, Xi, α̂

(j))−m(j)(Zi = 0, Xi, α̂
(j))
}

Then, applying the law of large numbers, τ̂SR converges in probability to

τ ∗∗strat =
K∑
j=1

E[I(e ∈ Qj){m(j)(Z = 1,X, α(j)
∗ )−m(j)(Z = 0,X, α(j)

∗ )}]

where α
(j)
∗ depend on the functions m(j) used. Thus, τ ∗∗strat = τ . This demonstrates

that τ̂SR is a consistent estimator for τ as long as the m(j) has the same form as
the true regression relationship.

Theoretical results demonstrate that the frequent version of stratification using
estimated propensity scores based on within-stratum sample mean differences and
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a fixed number of strata can lead to biased inference due to residual confounding,
with the effect of this bias becoming more serious as sample size increases. Al-
though using more strata can increase the sample size at which the trade-off of bias
and variability involved in efficiency takes place, stratifying on quintiles seems to
be the most popular approach in practice, even for large sample sizes. As a result,
because the “trade-off” point for each given case will be unknown, this approach
should be utilized with caution [Lunceford and Davidian, 2004].

2.2.2 Matching

Matching methods have been in use since the first half of the 20th Century (e.g.,
Greenwood [1945] and Chapin [1947]), however a theoretical basis for these meth-
ods was not developed until the 1970s. This development began with papers by
Cochran and Rubin [1973] and Rubin [1973a,b] for situations with one covariate
and an implicit focus on estimating the ATT. In a series of papers in the 1990s,
Rubin and Thomas [1992a,b, 1996] provided a theoretical basis for multivariate
settings with affinely invariant matching methods and ellipsoidally symmetric co-
variate distributions (such as the normal or t-distribution). In “analysis” phase,
one should follow all the following steps as

(i) Defining “closeness”: the distance measure used to determine whether an
individual is a good match for another

(ii) Implementing a matching method, given that measure of closeness,

(iii) Assessing the quality of the resulting matched samples, and perhaps iterating
with Steps (i) and (ii) until well-matched samples result, and

(iv) Analysis of the outcome and estimation of the treatment effect, given the
matching done in Step (iii).

It is worth noting that the first three steps are the same as the “design” phase and
the fourth step represents the “analysis” phase.

The treatment effect can be assessed by directly comparing outcomes between
treated and untreated subjects in the matched sample once a matched sample has
been created. Matching estimators have been widely studied in practice and theory
[Rubin, 1973a, Rosenbaum, 1989, Gu and Rosenbaum, 1993, Heckman et al., 1998,
Dehejia and Wahba, 1999, 2002, Abadie and Imbens, 2002, Ho et al., 2007, Stuart,
2010, Stuart et al., 2011].

If the outcome is continuous, the effect of the treatment can be estimated as the
difference between the mean outcome for treated subjects and the mean outcome
for untreated subjects in the matched sample [Rosembaum and Rubin, 1983]. If
the outcome is dichotomous, the effect of the treatment can be estimated as the
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difference between the proportion of subjects experiencing the event in each of the
two groups (treated vs control) in the matched sample. With binary outcomes, the
effect of the treatment can also be described using the relative risk [Rosembaum
and Rubin, 1983, Austin, 2008a, 2010].

Again, the population average treatment effect is an estimand of interest

τ = E[Yi(1)− Yi(0)].

Formally, given a sample, (Yi, Xi, Zi) (i = 1, · · · , n), let ℓm(i) be the index l that
satisfies Zl ̸= Zi and ∑

j|Zl ̸=Zi

1
{
||Xj −Xi|| ≤ ||Xj −Xi||

}
where 1{·} is the indicator function, equal to one if the expression in brackets
is true and zero otherwise. In other words, ℓm(i) is the index of the unit in the
opposite treatment group that is the m-th closest to unit i in terms of the distance
measure based on the norm || · ||. In particular, ℓ1(i) is the nearest match for
unit i. Let LM(i) denote the set of indices for the first M matches for unit i:
LM(i) = {ℓ1(i), · · · , ℓM(i)}. Define the imputed potential outcomes as:

Ŷi(0) =

Yi if Zi = 0
1

M

∑
j∈LM (i) Yj if Zi = 1

and

Ŷi(1) =


1

M

∑
j∈LM (i) Yj if Zi = 0

Yi if Zi = 1

The simple matching estimator discussed in Abadie and Imbens [2002] is then

τ̂ smM =
1

n

n∑
i=1

(
Ŷi(1)− Ŷi(0)

)
According to Abadie and Imbens [2002], the bias of this estimator is of order

O(n
−1
p ), where p is the dimension of the covariates. Hence, if one studies the

asymptotic distribution of the estimator by normalizing by
√
n (as can be justified

by the fact that the variance of the estimator is of order O( 1
n
)), the bias does not

disappear if the dimension of the covariates is equal to two, and will dominate the
large sample variance if p is at least three. Moreover, Abadie and Imbens [2002]
proved that the simple matching estimator is consistent for the average treatment
effect and that, without the bias term, is

√
n-consistent and asymptotically normal.

We state the formal results of consistency and asymptotic normality based on
Abadie and Imbens [2002] as
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Theorem 1 (Consistency of the Simple Matching Estimator). Suppose the follow-
ing assumptions hold:

assumption (1): Let X be a random vector of continuous covariates dis-
tributed on Rp with compact and convex support X, with the density bounded,
and bounded away from zero on its support.

assumption (2): For almost every x ∈ X, the assignment mechanism is
unconfounded and probabilistic (i.e. strongly ignorable).

assumption (3): (Yi, Xi, Zi), i = 1, · · · , n are independent draws from the
distribution of (Y ,X,Z).

If in addition µ1(x) = E[Y (1) | X = x] and µ0(x) = E[Y (0) | X = x] are
continuous, then

τ̂ sm − τ
P−→ 0

Theorem 2 (Asymptotic Normality for the Simple Matching Estimator). Suppose
assumptions (1) to (3) as well as

assumption (4): if (i) µz(x) and σ2
z(x) are continuous in x for all z, and

(ii) the fourth moments of the conditional distribution of Y given Z = z and
X = x exist and are uniformly bounded.

hold and that µ1(x) and µ0(x) have bounded third derivatives. Then

√
n(τ̂ sm −Bsm − τ)

d−→ N (0, V E + V τ(x))

where Bsm is the bias term, V E is the conditional variance of the simple matching
estimator τ̂ sm and V τ(x) is the variance of conditional average treatment effects as
V τ(x) = E[(τ(x)− τ)2] where τ(x) = E[Y (1)− Y (0) | X = x].

Three points about the Abadie-Imbens result [Abadie and Imbens, 2002] should
be highlighted. First, in this dimension, p, only continuous variables should be
counted. Since matching with discrete variables is exact in large samples, such
covariates do not contribute to the bias order. Second, suppose only the treated
are matched, and the number of possible controls is substantially larger than the
number of treated units. In that case, one can justify ignoring the bias by appealing
to an asymptotic sequence where the number of potential controls increases faster
than the number of treated units. Third, even though the order of the bias may
be high, the actual bias may be minimal if the coefficients in the leading term
are small. This is possible if the biases for different units are at least partially
offset. The leading term in the bias, for example, is dependent on the regression
function being nonlinear and the covariate density having a nonzero slope. The
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resulting bias may be reasonably minimal if one of these two conditions is at least
close to being met. Abadie and Imbens [2002] proposed combining the matching
procedure with a regression adjustment to eliminate bias. Another point made by
Abadie and Imbens [2002] is that matching estimators are generally not efficient.
Even when the bias is of low enough order to be dominated by the variance, the
estimators are not efficient given a fixed number of matches. To reach efficiency,
one would need to increase the number of matches with the sample size [Abadie
and Imbens, 2002, Imbens, 2004, Austin, 2011].

2.2.3 Weighting

Another broad class of estimation methods is weighting. The weighting approach
assigns a sampling weight to each member of the population, and the probability
of being selected is proportional to this weight. Weighting procedures are not new
and have a long history of being used in survey sampling. The inverse-probability
weights (IPW) have dominated the weighting literature, e.g. Robins and Rotnitzky
[1995], Hahn [1998], Robins et al. [2000], Hirano and Imbens [2001]; Hirano et al.
[2003], Imbens [2004] and Crump et al. [2009]. The Horvitz-Thompson (HT)
weight [Horvitz and Thompson, 1952], which is the inverse probability of that unit
being allocated to the observed group, is a special case of IPW.

The Horvitz-Thompson estimator Horvitz and Thompson [1952] exploits the
following two equalities

E
[ZiY

obs
i

e(Xi)

]
= E[Yi(1)], E

[(1− Zi)Y
obs
i

1− e(Xi)

]
= E[Yi(0)] (6)

These inequalities can be derived as follows. Because Y obs
i is Yi(1) when Zi = 1,

it follows that

E
[ZiY

obs
i

e(Xi)

]
= E

[ZiYi(1)

e(Xi)

]
.

By iterated expectations, we can write this as

E
[ZiYi(1)

e(Xi)

]
= E

[
E
[ZiYi(1)

e(Xi)
| Xi

]]
.

Under unconfoundedness assumption, Zi is independent of Yi(1) conditional on
Xi, so that the expectation of the product ZiYi(1) given Xi is the product of the
conditional expectations:

E
[ZiYi(1)

e(Xi)
| Xi

]
=

E[Zi | Xi] E[Yi(1) | Xi]

e(Xi)
=

e(Xi) E[Yi(1) | Xi]

e(Xi)
= E[Yi(1) | Xi]
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and thus

E
[ZiYi(1)

e(Xi)

]
= E

[
E[Yi(1) | Xi]

]
.

The same argument leads to the second equality in (6) for the average control po-
tential outcome. The two equalities in (6) suggest estimating E[Yi(1)] and E[Yi(0)]
as

Ê[Yi(1)] =
1

n

n∑
i=1

ZiY
obs
i

e(Xi)
and Ê[Yi(0)] =

1

n

n∑
i=1

(1− Zi)Y
obs
i

1− e(Xi)

and thus estimating the average treatment effect τ = E[Yi(1)−Yi(0)] as a Horvitz-
Thompson estimator

τ̂ipw1 =
1

n

n∑
i=1

ZiY
obs
i

e(Xi)
− 1

n

n∑
i=1

(1− Zi)Y
obs
i

1− e(Xi)

In observational studies, we don’t know the true propensity score, so we use the
estimated propensity score ê(Xi) as

τ̂ipw1 =
1

n

n∑
i=1

ZiY
obs
i

ê(Xi)
− 1

n

n∑
i=1

(1− Zi)Y
obs
i

1− ê(Xi)
. (7)

Since E[ Z
e(X)

] = E[E[Z|X]
e(X)

] = 1 and E[ (1−Z)
1−e(X)

] = 1, normalizing the weights to
add up to one improve the mean-squared-error properties of the estimator. Thus,

τ̂ipw2 =
( n∑

i=1

Zi

ê(Xi)

)−1( n∑
i=1

ZiY
obs
i

ê(Xi)

)
−
( n∑

i=1

1− Zi

1− ê(Xi)

)−1( n∑
i=1

(1− Zi)Y
obs
i

1− ê(Xi)

)
. (8)

As τ̂ipw1 and τ̂ipw2 involve weighting the observations in each group by the inverse
of the probability of being in that group, “IPW” denotes “inverse probability
weighting” and τ̂ipw1 and τ̂ipw2 are popular approaches based on such weighting.
They are; however, special cases of a larger class of estimators that may be deduced
by viewing the situation as a “missing data” problem, as discussed in a landmark
study by Robins et al. [1994].

Robins et al. [1994] Proposed the estimator within the class having the smallest
(large-sample) variance, the (locally) semiparametric efficient estimator

τ̂DR =
1

n

n∑
i=1

(ZiY
obs
i − (Zi − ê(Xi))m1(Xi, α̂1)

ê(Xi)
−(1− Zi)Y

obs
i + (Zi − ê(Xi))m0(Xi, α̂0)

1− ê(Xi)

)
.

(9)

Heremz(X, αz) = E[Y | Z = z,X] is the regression of the response onX in group
z, z = {0, 1}, depending on parameters αz, and α̂z is an estimator for αz based
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on the data from subjects with Z = z. Each term in τ̂DR has the form of those
in τ̂ipw1 and τ̂ipw2 but ‘augmented’ [Robins, 2000b] by an expression involving the
regression. This augmentation makes τ̂DR to be the efficient estimator in the class,
and in large samples, it has a smaller variance than τ̂ipw1 or τ̂ipw2 [Lunceford and
Davidian, 2004]. Moreover, [Scharfstein et al., 1999, Section 3.2.3] note that τ̂DR

has a so-called “double-robustness” property that the estimator remains consistent
if either the propensity score model or the regression models are correctly specified,
not necessarily both. Double-robust estimators are desirable because they give
analysts two chances to “get it right” and guard against model misspecification.
Moreover, τ̂DR reaches the semiparametric efficiency bound of τ if both models are
correctly specified [Hahn, 1998, Chernozhukov et al., 2018].

2.2.3.1 Theoretical Properties:
Here, we summarize the properties of the weighting estimators and highlight the

practical insights that can be deduced from these. The large-sample properties for
weighted estimators follow the general framework of Robins et al. [1994] and may
also be obtained directly from the standard theory of M-estimation [Stefanski and
Boos, 2002].

Properties of τ̂ipw1, τ̂ipw2 and τ̂DR when propensity score is correctly specified
may be deduced by viewing them as solutions to a set of estimating equations. To
obtain τ̂ipw1 and τ̂ipw2, one need to solve equation (1) and then follow (7) and (8).
Similarly, τ̂DR in equation (9) depends on α0 and α1, which are then estimated by
solving equations. To do so, applying the theory of M-estimation [Stefanski and
Boos, 2002] is essential. In the presence of the true values of parameter β, τ̂ipw1

and τ̂ipw2 are consistent for τ0, the true value of τ (This may be seen equivalently
by substituting the true values of β in (7) and (8) and applying the law of large
numbers directly) [Lunceford and Davidian, 2004]. A similar argument shows that
τ̂DR converges in probability to τ0, even if the models mz(·) are not correctly
specified. The theory presented by Stefanski and Boos [2002], then implies that

each estimator is such that n
1
2 (τ̂ − τ0) converges in distribution to Normal.

First consider the (unlikely) case where β is known. One of the interesting
property of estimating β is that even if its true value is known, β̂ leads to smaller
(large-sample) variance for these estimators than using the true value. Thus,
under these conditions, Lunceford and Davidian [2004] in an empirical study have
shown that the large-sample variances of τ̂ipw1 and τ̂ipw2 (noted as Σipw1 and Σipw2,
respectively) are in general Σipw1 ≥ Σipw2. For τ̂DR, the theory of Robins et al.
[1994] guarantees that ΣDR ≤ Σipw1,Σipw2. In practice, the Σipw1,Σipw2 and ΣDR

may be estimated from the observed data, yielding approximate sampling variances
for τ̂ipw1, τ̂ipw2 and τ̂DR. Alternatively, variance estimates may be obtained via the
empirical sandwich method [Stefanski and Boos, 2002].
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In the presence of extreme values of estimated propensity scores, IPW has some
drawbacks that include large weights for some patients and, therefore, bias in the
estimated treatment effect [Stuart, 2010, Hirano and Imbens, 2001]. It has been
argued that such a method may perform poorly even when the propensity score
model appears to be correctly specified [Kang and Schafer, 2007]. To address these
problems, trimming methods [Crump et al., 2009] and Stabilized IPW [Robins
et al., 2000] have been proposed.

2.2.4 Covariate Adjustment Using the Propensity Score

Under covariate adjustment using the propensity score, the outcome is regressed on
an indicator variable denoting treatment status and the estimated propensity score
[Rosembaum and Rubin, 1983, Vansteelandt and Daniel, 2014]. It was proposed
by Rosembaum and Rubin [1983] in their original article on the propensity score.
The type of regression model to use would be determined by the outcome. For
continuous outcomes, a linear model would be chosen; for dichotomous outcomes,
a logistic regression model may be selected. The effect of treatment is determined
using the estimated regression coefficient from the fitted regression model. For
a linear model, the treatment effect is an adjusted difference in means, whereas
for a logistic model it is an adjusted odds ratio. Even though it performs well in
some cases, it may produce a result very similar (not even superior) to traditional
covariate adjustment [Elze et al., 2017].

Formally, let’s define

νz(e) = E[Y (z) | e(X) = e].

By unconfoundedness this is equal to E[Y | Z = z, e(X) = e]. Given an estimator
ν̂z(e), one can estimate the average treatment effect as

τ̂regprop =
1

n

n∑
i=1

[
ν̂1(e(Xi))− ν̂0(e(Xi))

]
.

Heckman et al. [1998] consider a local linear version of this for estimating the
average treatment effect for the treated. Hahn [1998] considers a series version and
shows that it is not as efficient as the regression estimator based on adjustment
for all covariates.

2.2.5 Comparison of the Different Propensity Score Methods

For each of the four propensity score methods, adequate diagnostics exist to de-
termine if the propensity score model has been appropriately specified. Once the
specification of the propensity score model is satisfied, one might directly estimate
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the effect of treatment on outcomes in the matched, stratified, or weighted sample
using propensity score matching, stratification, and weighting. Another distinc-
tion between the four propensity score methods is that weighting and propensity
score covariate adjustment may be more sensitive to whether the propensity score
model has been correctly specified Rubin [2004]. Some studies have indicated
that propensity score matching eliminates a greater proportion of the systematic
differences in baseline covariates between treated and control groups than does
stratification on the propensity score or covariate adjustment using the propensity
score [Austin and Mamdani, 2006, Austin et al., 2007, Austin, 2009a].

Across all common PS applications: matching, stratification, weighting, and
use of PS as a covariate, we focus on weighting in this thesis. This is because
it is easy to implement to deal with unknown assignment mechanisms even in a
more complex situation like time-vary confounders. It uses the propensity score
directly in estimating the effect of treatment. Furthermore, there is no need to
know the number of the subclasses apriori or use ad hoc methods or exclude
some individuals due to unmatched which leads to information excluded from the
analysis.

2.3 Balancing Weights

The objective of comparative effectiveness studies is to evaluate the causal effect
of a treatment or intervention that is unconfounded by differences in the charac-
teristics of those assigned to the treatment and control conditions under current
practice. Originating in the context of survey sampling and observational stud-
ies Horvitz and Thompson [1952], Lunceford and Davidian [2004], IPW assigns
weights to the sample of units in each treatment group to match the covariate dis-
tribution of a target population, and the comparison is made between the weighted
outcomes. In this section, we point out that IPW is a special case of the general
class of propensity score weights, called the balancing weights [Li et al., 2018],
many members of which could be used for covariate adjustment in observational
studies.

Assume the marginal density of the covariates X, f(x), exists, for a base
measure µ (a product of counting measure with respect to categorical variables
and Lebesgue measure for continuous variables). We then consider the target
population density by f(x)h(x), where h(·) is pre-specified function of x, and
average treatment effect (ATE) conditional on x is

τ(x) = E[Y (1)− Y (0) | X = x].

A general class of estimands by the expectation of the conditional ATE τ(x)
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over the target population is defined as

τh ≡
∫
τ(dx)f(x)h(x)µ(dx)∫

f(x)h(x)µ(dx)

where τh is the weighted average treatment effect (WATE) [Hirano et al., 2003].
Let fz(x) = Pr(X = x | Z = z) be the density of X in the Z = z group, then

f1(x) ∝ f(x)e(x), and f0(x) ∝ f(x)(1− e(x))

For a given h(x), to estimate τh, we can weight fz(x) to the target population
using the following weights (proportional up to a normalizing constant):{

w1(x) ≈ f(x)h(x)
f(x)e(x)

= h(x)
e(x)

for Z = 1

w0(x) ≈ f(x)h(x)
f(x)(1−e(x))

= h(x)
1−e(x)

for Z = 0
(10)

The balancing weights is the name of the class of weights defined in (10) be-
cause they balance the weighted distributions of the covariates between comparison
groups:

f1(x)w1(x) = f0(x)w0(x) = f(x)h(x).

According to different function forms of h, all weights that balance the covariate
distributions between groups can be specified within this class. The selection of h
specifies the target population, estimands, and weights. In general, Table 2 shows
an overview of all balancing weights. When h(x) = 1, the corresponding target
population f(x) is the combined (treated and control) population, the weights
(w1, w0) are the IPW weights and the estimand is the ATE for the combined
population. When h(x) = e(x), the target population is the treated subpopulation,
and the estimand is the average treatment effect for the treated (ATT), τATT =
E[Y (1) − Y (0) | Z = 1]. When h(x) = 1 − e(x), the target population is the
control subpopulation, and the estimand is the average treatment effect for the
control (ATC), τATC = E[Y (1) − Y (0) | Z = 0]. In the presence of extreme
value of propensity scores, Crump et al. [2009] recommended use of 1(α < e(x) <
1− α) with a pre-specified α ∈ (0, 1

2
) that defines a subpopulation with sufficient

overlap of covariates between two groups. Li and Greene [2013] defined a weighting
analogue to pair matching; a similar notion was discussed earlier in Dehejia and
Wahba [1999] as h(x) = min(e(x), 1− e(x)).

2.3.1 Large-sample Properties of Nonparametric Estimators

To establish properties of the sample estimator of WATE, consider

τ̂h =

∑
i w1(xi)ZiYi∑
iw1(xi)Zi

−
∑

i w0(xi)(1− Zi)Yi∑
i w1(xi)(1− Zi)

(11)
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Table 2: An overview of all Balancing Weights

target population estimand h(x) Weight w1(x) Weight w0(x)

combined ATE 1 1
e(x)

1
(1−e(x))

treated ATT e(x) 1 e(x)
(1−e(x))

control ATC 1− e(x) 1−e(x)
e(x) 1

overlap ATO e(x)(1− e(x)) 1− e(x) e(x)

truncated combined 1(α < e(x) < 1− α) 1(α<e(x)<1−α)
e(x)

1(α<e(x)<1−α)
1−e(x)

matching min(e(x), 1− e(x)) min(e(x),1−e(x))
e(x)

min(e(x),1−e(x))
1−e(x)

where the sum is over a sample drawn from density f(x). One of the main property
of τh is presented in the following Theorem.

Theorem 3. τ̂h is a consistent estimator of τh.

Proof. See Appendix SM.1 for the details.

The next result concerns the component of variation due to residual (model)
variation in τ̂h conditional on the sampled covariate design points X, the first term
of the decomposition V[τ̂h] = E

[
V[τ̂h | X]

]
+ V

[
E[τ̂h | X]

]
showing that it can be

characterized after making only limited assumptions about residual variances, as
in the Corollary below.

Theorem 4. As n → ∞, the expectation (over possible samples of covariate
values) of the conditional variance of the estimator τ̂h given the sample X =
(x1, · · · , xn) converges:

n · E[V[τ̂h | X]] →
∫

f(x)h(x)2
[v1(x)
e(x)

+
v0(x)

1− e(x)

]µ(dx)
C2

h

where vz(x) = V[Y (z) | X] and Ch =
∫
h(x)f(x)dµ(x) is a normalizing constant.

Consequently, if the residual variance is assumed to be homoscedastic across
both groups, v1(x) = v0(x) = v, then the asymptotic variance of τ̂h simplifies to

n · E[V[τ̂h | X]] →
v

C2
h

∫
f(x)h(x)2µ(dx)

e(x)(1− e(x))

Corollary 1. The function h(x) ∝ e(x)(1 − e(x)) gives the smallest asymptotic
variance for the weighted estimator τ̂h among all h’s under homoscedasticity, and
as µ → ∞

n ·min
h

{
E[V[τ̂h | X]]

}
→

v

C2
h

∫
f(x)e(x)(1− e(x))µ(dx).
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In practice, the true propensity score is unknown and is replaced by the esti-
mated propensity score. It is shown in Rosenbaum [1987] and Hirano et al. [2003],
a consistent estimate of the propensity score leads to a more efficient estimation
than the true propensity score.

2.3.2 Overlap Weighting

Li et al. [2018] proposed the Overlap Weights (OW), which weight each unit ac-
cording to its probability of being assigned to the opposing group. In the Overlap
Weights, let h(x) = e(x)(1− e(x)), implying balancing weights{

w1(x) ≈ 1− e(x) for Z = 1

w0(x) ≈ e(x) for Z = 0
(12)

Following Corollary 1, the corresponding nonparametric estimator τ̂h has the min-
imum asymptotic variance among all balancing weights. The target population of
OW emphasizes subjects with the most overlap in their observed characteristic,
and its corresponding estimand is the average treatment effect in the overlap pop-
ulation [Li et al., 2018]. The OW has properties that are likely to be beneficial in
the presence of extreme values. By definition, the overlap weights are bounded be-
tween 0 and 1 and thus automatically overcome the large uncertainty issue caused
by extreme propensity scores when using IPW. Overlap weights estimated from a
logistic model also have a useful small-sample property: they yield exact balance
between groups in the means of each covariate included in the model [Li et al.,
2018]. The following Theorem shows this attractive small-sample property.

Theorem 5. When the propensity scores are estimated by maximum likelihood
under a logistic regression model, logit e(Xi) = β0 + Xiβ

⊤, the overlap weights
lead to an exact balance in the means of any included covariate between treatment
and control groups. That is∑

i xikZi(1− êi)∑
i Zi(1− êi)

=

∑
i xik(1− Zi)êi∑

i(1− Zi)êi
, for k = 1, . . . , p

where p is the dimension of the covariates, êi =
{
1 + exp [−(β̂0 +Xiβ̂

⊤)]
}−1

and

β̂ = (β̂1, . . . , β̂p) is the MLE for the regression coefficients.

Proof. See Appendix SM.1 for the details.

While the main effects model guarantees exact equality between groups for the
mean of each included covariate, it is advisable to improve balance by including
interactions and higher-order terms.
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In this thesis, IPW and Overlap weighting are utilized to address observed
confounders. Particularly, Overlap weights emphasize the target population with
the greatest overlap in observed characteristics between treatments by continu-
ously deweighting the units in the tails of the distribution of propensity scores.
However, the target population of IPW is the entire study cohort. IPW cre-
ates a weighted pseudo-population in which both treatment groups resemble the
total sample combined across treatment groups. Assuming that all important con-
founders are measured, IPW is appealing for its simplicity. Although the challenge
of extreme propensities has been identified as a downside of IPW, OW bounded
and smoothly reduced the influence of patients at the tails of the PS distribu-
tion without making any exclusions. Consequently, despite good study design
and thoughtful inclusion/exclusion criteria, OW removes the arbitrary decisions
involved in trimming and improves the characteristics of bias and precision [Li
et al., 2018].
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Chapter 4

Survival Analysis

In this chapter, some details about survival data are addressed. More specifically,
in Section 1, some basic concepts are presented briefly. Furthermore, some con-
ventional statistical methods for survival analysis focusing on the Cox model are
introduced in Section 2. Finally, we discuss the estimation methods of the Cox
models and their diagnostic.

1 Basic concepts in survival analysis

In general terms, survival analysis deals with statistical procedures for which the
outcome variable of interest is time-to-event. This time variable gives the
elapsed time between the starting point (e.g. beginning of the relevant observa-
tion due to diagnosis, treatment start, etc.) until the occurrence of the event of
interest. This time could be measured in years, months, weeks, or days. The event
(also known as a failure if negative) could be death, relapse from remission, recov-
ery, or any designated experience of interest that may happen to an individual.
Sometimes there is an event (typically, death) that prevents the event of inter-
est (e.g., stroke) from happening to define a competing event: an individual who
dies from other causes (say, cancer) cannot ever develop stroke. An alternative to
handling competing events is to create a composite event that includes both the
competing event and the event of interest (e.g., death and stroke) and conduct
a survival analysis for the composite event. This chapter illustrates how survival
analysis is used to estimate the time to a certain event of interest, and the basic
concepts are presented.

A time origin denoted as t0 is defined to measure the time to an event. This
is when one starts counting the time to the event of interest. This could be a
birthday, a diagnosis moment, etc. Let te denote the moment the event of interest
occurs. The survival time is defined as Y = te − t0, i.e. Y is the random variable
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representing the time to the event of interest.

1.1 The Survival Function

All functions of the event time distribution are defined over the interval [0,∞).
The probability density function (p.d.f.) is denoted by f . The distribution of a
random variable is completely and uniquely determined by its probability density
function. Other useful functions exist that can be obtained from the probability
density function. The most important one is the cumulative distribution function
(c.d.f.) of Y as

F (t) = Pr(Y ≤ t) =

∫ t

0

f(s)ds

where Pr(·) denotes the probability that event of interest occurs.
The survival function, S(t), expresses the probability that an individual sur-

vives to time t, and is defined as

S(t) = 1− F (t) = Pr(Y > t) =

∫ ∞

t

f(s)ds.

The survival curve is monotone and non-increasing, the probability of survival is 1
at t0 (i.e. S(t0) = 1) and goes to 0 when time goes to infinity (i.e. limt→∞ S(t) = 0).
A steep (fast decreasing) survival curve means a high probability of an event.

1.2 The Hazard Function

The hazard function is a key concept in survival analysis. This function is also
known as mortality rate, incidence rate, mortality curve, failure rate, or force of
mortality (depending on the field of use). The hazard function, denoted as h(t),
gives the rate at which an individual, who has survived to time t, will experience
the event in the next instant of time. The hazard function is defined as

h(t) = lim
∆t→0

Pr(t ≤ Y ≤ t+∆t|Y ≥ t)

∆t
=

f(t)

1− F (t)
. (1)

The hazard rate curve can take many different shapes. If the curve increases,
the chances of experiencing the particular event are low near the starting point t0
and increase with time. Decreasing hazard rates represent events with a higher
frequency close to the starting point compared to the frequency at later time
points. The hazard rate function is not necessarily monotone.
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1.3 The Cumulative Hazard Function

Closely related to the hazard rate is the cumulative hazard function, H(t), which
is defined as

H(t) =

∫ t

0

h(s)ds (2)

The cumulative hazard function does not represent a probability, but a measure
of the risk of the occurrence of an event. It is easy to derive relations between the
different notions; for example, equations 2 and 1 imply that

H(t) =

∫ t

0

h(s)ds =

∫ t

0

(
f(s)

1− F (s)
)ds = − ln[1− F (t)]

and consequently

S(t) = 1− F (t) = exp [−H(t)] = exp
[
−
∫ t

0

h(s)ds
]
.

This equation is the main exponential formula of survival analysis. It presents a
characterization of the distribution and survival function via the hazard function.
Because of its relevant probabilistic interpretation and simplicity in probability
expressions examined, the hazard function turns out to be more straightforward
to work with than the density, distribution, or survival function.

1.4 Censoring

In most survival studies, some individuals in the study do not experience the pre-
specified event of interest during the observation period. The censoring is the
name of this limitation on the observability of the event. There are different types
of censoring: right, left and interval censoring.

Right Censoring
Figure 1 illustrated typical observed data in a study involving survival outcomes
subject to censoring from time 0 (beginning of the study) to time 5 (end of the
study), and the survival time is known exactly. The solid line represents the risk
period for each patient. The line ending with an asterisk (∗) indicates an occur-
rence of the event of interest. The line ending with an arrow indicates censoring,
such as the end of follow-up or an occurrence of an event other than the event of
interest, e.g. loss to follow-up, death due to causes other than the one under study
or switching treatment. In Figure 1, for patients B, C, the time of occurrence of
the events are known; hence, there is no censoring for these patients. Censoring
may arise in the following ways:
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Figure 1: The different types of right censoring mechanisms

Time spans
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1. a patient has not (yet) experienced the event of interest, such as relapse or
death, within the study time period (e.g. patient A);
2. a patient experiences a different event that makes further follow-up impossible
such as switching the treatment (e.g. patient D).
This type of censoring, named right censoring, is often handled in survival analysis.
This is because, for this example, the complete survival time interval, which we
don’t know, has been cut off (i.e., censored) at the right side of the observed
survival time interval. The most common reasons for right censoring are:
I. Administrative censoring: The study ends before a person experiences the
event.
II. Not Administrative censoring:
– Drop out or lost to follow-up: a person fails to return for a study visit
– Competing event: a competing event is an event (typically, death) that pre-
vents the event of interest (e.g. stroke) from happening.

Left Censoring
Left censoring happens when the individual’s true survival time is less than or
equal to the observed survival time. An example of such a situation would be virus
testing. For instance, if we have been following an individual and have recorded
an event in which the person tests positive for a virus. As shown in Figure 2, we
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Figure 2: Left censoring

Virus Exposure

Virus Test
(+)

t Time0

do not know when the individual was exposed to the disease. We only know that
there was some exposure between 0 and the time they were tested.

Interval Censoring
For interval-censored data, the precise moment of the event is known to be within
a time interval (t1,t2]. Thus, the event took place after time point t1, but before
or at t2. This type of censoring may occur when periodic inspections are done,
for example, if a patient visits a doctor every few months. If, at a specific visit, it
is detected that a patient has experienced the event, e.g. recovery, then it is not
known when the event happened exactly. The patient may have recovered only
a day before the current visit, the day after the last visit, or sometime between.
The exact event time is unknown, but it falls into the time interval between the
last two visits. Using the virus testing example (Figure 3), if we have the situation
whether we have performed testing on the individual at some timepoint t1 and the
test was negative. Then, the individual tested positive at a timepoint further on
t2. In this situation, we know the individual was exposed to the virus sometime
between t1 and t2; however, we do not know the exact timing of the exposure.

Since exact event times are not known for some patients, analyzing survival
data in the presence of censoring is more complicated. Hence, it is necessary to
make assumptions about censoring when common statistical methods are used to
analyze censored data. Some statistical methods designed to account for censored
observations imply that patients’ withdrawal from a study is independent of the
event of interest. In practice, however, some covariates may be associated with
lifetime and censoring mechanisms, resulting in ignorable censoring conditional on
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Figure 3: Interval censoring

Virus Exposure

Virus Test
(+)

𝒕𝟐 Time0

Virus Test
(-)

𝒕𝟏

those covariates. Applying the classical survival techniques assumes independent
censoring may under-or over-estimate the survival time in the case of covariate-
dependent censoring. To do so, alternative methods are designed to account for
dependent censoring.

2 Estimation of the Survival and Cumulative Haz-

ard Functions

In the case of parametric inference, assumptions regarding the distribution of fail-
ure times must be made. This makes sense in some cases, especially when more
information about the nature of the underlying process is known. On the other
hand, nonparametric models are commonly used when we do not consider any
parametric assumptions. It is critical to decide whether to employ a parametric
or nonparametric model. Nonparametric models have the benefit of being flexible,
allowing them to deal with any probability distribution. In contrast, depending
on the model, parametric models often provide closed-form solutions to the haz-
ard and survival function. Furthermore, even with small sample size, they usually
make quality results. If the postulated model is valid, the estimate procedure is
more efficient than nonparametric estimation.
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2.1 Kaplan-Meier (KM)

Kaplan and Meier proposed the Product-Limit Estimator as an estimator for the
survival function (often referred to as the Kaplan-Meier Estimator) [Kaplan and
Meier, 1958]. The KM estimator assumes that at any time patients who are
censored have the same survival probability as those who continue to be followed
up. Furthermore, the KM also assumes that the survival probabilities are the same
for subjects recruited early in the study versus late. It is a non-increasing step
function with steps only at times of at least one failure.

Suppose that time points ti denote the r distinct observation times, i.e. t0 <
t1 < . . . < tr (r ≤ n). The Kaplan–Meier estimator is

Ŝ(t) =
∏

i∈R(t)

(
1− di

#R(ti)

)
. (3)

with di the number of events at time ti. R(t) denotes the set of indices of all
individuals at risk at time t, meaning all individuals alive just before t. In addition,
#R(t) denotes the number of individuals in the risk set at time t. The Product-
Limit estimator can be used to estimate the cumulative hazard function, H(t) =
− lnS(t), so

Ĥ(t) = − ln Ŝ(t)

with Ŝ(t) as defined in (3).
For the variance of the Kaplan–Meier estimate, the Greenwood formula [Green-

wood, 1926] given by the expression

V ar
(
Ŝ(t)

)
= Ŝ2(t)

∑
i∈R(t)

(
di

#R(ti)− di

)

is commonly used. Peterson [1977] shows that the Kaplan–Meier estimator is
consistent, and [Breslow and Crowley, 1974] show its asymptotic normality.

2.2 The Cox proportional hazards model

So far, the models provided have dealt with the most basic situation of inde-
pendent and identically distributed variables. This means that the population is
homogenous. In most real applications, however, the population under study is
not homogenous. Indeed, some variables are of particular interest as the impact of
a treatment in a clinical study or confounders whose effect must be controlled for
in the analysis. In both cases, we will use the notion covariate for these variables.
For right-censored survival data, Cox [1972] proposed the Proportional Hazards
Model to incorporate event time as a dependent variable in the survival model.
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It is the most commonly used model in this area because it makes it simple to
include information about known (observed) covariates in survival data models.

According to our predefined notation, let X = (X1, . . . , Xp) be the vector of p
covariates. Assume that all covariates are time-independent, i.e. the values Xk,
for k = 1, . . . , p, do not change over time.

The Cox proportional hazards model is defined as

h(t|X) = h0(t)c(β,X)

where h0(t) is an arbitrary baseline hazard rate, and no structure is imposed on it,
which gives the model great flexibility. The model assumes that all subjects in the
study population share a baseline hazard (the risk of death or other events). This
assumption can be relaxed, but it simplifies the presentation. The parameters of
primary interest are contained in c(β,X), often

c(β,X) = exp{c(β⊤X)}

yielding
h(t|X) = h0(t) exp(β

⊤X) (4)

with β⊤ = (β1, . . . , βp) is the parameter vector. The covariates in this model work
multiplicatively on the baseline hazard, adding additional risks based on the in-
dividuals’ prognostic information. This provides for a simple and unambiguous
understanding of the model. The essential thought is to separate the time effect
in the baseline hazard function on one side and the influence of covariates in an
exponential term on the other. In summary, this assumption (named as propor-
tionality assumption) says that the hazards of two individuals at time t are related
by a proportionality constant that does not depend on t.

The Cox model is called a semiparametric model because of the parametric
nature of the covariate term and the nonparametric baseline hazard function. The
Cox estimator is almost entirely inferred via asymptotic results [Andersen and Gill,
1982]. This semiparametric model is the most widely used in survival analysis. It
is included in all statistical packages, is simple to use, and creates an output that
is easy to understand. As a result, we will concentrate on this model in this thesis.

Estimating the coefficients

The maximum likelihood estimator may be used to estimate the coefficients in
the Cox model; however, the maximum partial likelihood estimator is a commonly
used alternative. The partial likelihood employs only a part of the full likelihood.
In the Cox model, individual i has a hazard ratio at time t:

h(t|Xi) = h0(t) exp(β
⊤Xi)
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Let ti, i = 1, · · · , n be the observed time points. We define the risk set Ri = {j |
tj ≥ ti}. We are assuming no tied ti’s. We may alternatively state that at time
ti subject j ∈ Ri is still at risk, i.e. individual j has not failed or been censored
by time ti. People that are censored are also part of the risk set, but in that case,
δ = 0. Here, δ is an event indicator and obviously, for censoring patients is 0. As
a result, the probabilities of censoring are not included in the partial likelihood.
Given the risk set Ri, the conditional probability that subject i experience the

event of interest at time point ti is
h(ti|Xi)∑

j∈Ri
h(tj|Xj)

. Then, the partial likelihood

is:

L(β) =
n∏

i=1

(
h(ti|Xi)∑

j∈Ri
h(tj|Xj)

)δi

=
n∏

i=1

(
eβ

⊤Xi∑
j∈Ri

eβ⊤Xj

)δi

which this expression h0(t) drops out. That is why proportionality is such an
attractive assumption to make. The partial log-likelihood is calculated as follows:

ℓ(β) =
n∑

i=1

δi

(
β⊤Xi − log (

∑
j∈Ri

eβ
⊤Xj)

)

The coxph function in the statistical package R computes the maximum of this
function.

3 Diagnostics for the Cox Model

The proportional hazards regression model [Cox, 1972] estimates the effect of co-
variates on failure time. Because of its widespread applicability, before adopting
the results of a fitted Cox model as valid, a few issues should be addressed: is
the proportional hazards assumption satisfied? Are the variable’s functional forms
appropriate? Is there any evidence of outliers or influencing observations? Sev-
eral methods have been proposed to address those issues, many of which rely on
different forms of model residuals. On that note, residuals play a significant role
in regression method diagnostics. Multiple types of residuals are defined for the
Cox model, and they can often serve different purposes in model diagnostics. The
common residuals for the Cox model include:
• Schoenfeld residuals to check the proportional hazards assumption
• Martingale residuals to assess nonlinearity
• Deviance residuals (symmetric transformation of the Martinguale residuals), to
examine nonlinearity and influential observations.
• Delta-beta residuals to test Influential Observations.
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3.1 Schoenfeld residuals

Schoenfeld [1980] proposed a chi-squared goodness-of-fit test for the proportional
hazards regression model, which utilizes a residual of the form Expected - Ob-
served. The formal definition and its properties were later discussed in Schoenfeld
[1982].

Suppose there are n individuals indexed by i = 1, · · · , n and that each has a
p-vector of covariates Xi = (Xi1, · · · , Xip)

⊤. The proportional hazards regression
model specifies that the hazard function (Equation 4) of the ith individual is

h(t|Xi) = h0(t) exp(β
⊤Xi)

where β is a vector of p parameters and h0(t) is an arbitrary function. Let D be
the indices of the individuals who failed and let Ri be the indices of those under
observation when the ith individual fails. Using partial [Cox, 1975] or marginal
[Kalbfleisch and Prentice, 1980] likelihood, one can estimate the parameter. For
i ∈ D, an index m ∈ Ri is selected with probability

exp (β⊤Xm)∑
k∈Ri

exp (β⊤Xk)
.

In this model Xi, is a random variable with

E(Xij | Ri) =

∑
k∈Ri

Xkj exp (β
⊤Xk)∑

k∈Ri
exp (β⊤Xk)

, j = 1, · · · , p

and the maximum likelihood estimate of β is a solution to∑
i∈D

E (Xij − E(XijRi))

We substituted the solution (i.e. β̂) into E(Xij | Ri) and denoted by Ê(Xij | Ri).
Let define the partial residual at ti as the vector τ̂i = (τ̂i1, · · · , τ̂ip)⊤, where

τ̂ik = Xik − Ê(Xik | Ri).

Thus the residual is the difference between the observed value of Xi and its con-
ditional expectation given Ri.

Remark 1 (Examining the proportional hazard assumption). If proportional haz-
ards holds, E(τ̂i) ≈ 0 and a plot of τ̂ik versus ti will be centred about 0.

In principle, the Schoenfeld residuals are independent of time. A plot that
shows a non-random pattern against time is evidence of a violation of the PH
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assumption[Grambsch and Therneau, 1994]. Furthermore, the function cox.zph()
in the survival package in R [Therneau, 2021] gives an easy way to verify the
proportional hazards assumption for each covariate in a Cox regression model fit.
To test for independence between residuals and time, the function cox.zph() corre-
lates the matching set of scaled Schoenfeld residuals with time for each covariate.
Furthermore, it does a global test on the entire model.

According to Keele [2010], while the Therneau and Grambsch test is commonly
used because it is simple to conduct and interpret, its implementation requires
considerable caution due to its sensitivity to various types of misspecification.
Omitted predictors, interactions, and nonlinear covariate functional forms can all
significantly impact the test result. The research also emphasized correcting the
functional form for continuous covariates before testing for non-proportionality
[Keele, 2010].

3.2 Martingale residuals

Martingale residuals are very useful and can be used for many of the usual pur-
poses that we use residuals for in other models (identifying outliers, choosing a
functional form for the covariate, etc). Martingale residual represents the discrep-
ancy between the observed value of a subject’s failure indicator and its expected
value, integrated over the time for which that patient was at risk [Therneau and
Grambsch, 2000]. Moreover, Martingale residuals may present any value in the
range (-∞, +1):
• A value of martingale residuals near 1 represents individuals that “die too soon”,
• Large negative values correspond to individuals that “live too long”.

To describe the martingale residuals, we define the counting process, Ni ≡
{Ni(t), t ≥ 0} (i = 1, · · · , n) indicates the number of observed events experienced
over the passage of time. These processes have the intensity Ui(t)h0(t) exp(β

⊤Xi(t))
where Ui(t) is a left continuous 0 − 1 process indicating whether the ith subject
is in the risk set at time t, and Xi(t) is a p-dimensional vector of left continuous
covariate processes having right hand limits. The differences between the counting
processes and their respective integrated intensity functions

Mi(t) = Ni(t)−
∫ t

0

Ui(v) exp(β
⊤Xi(v))h0(v)dv.

are martingales [Therneau et al., 1990]. The martingale residuals are defined as

M̂i(t) = Ni(t)−
∫ t

0

Ui(v) exp(β̂
⊤Xi(v))dΛ̂0(v). (5)

where

Λ̂0(t) =

∑n
l=1 dNl(v)

S(0)(β̂, v)
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and S(0)(β, v) =
∑n

l=1 Ul(v) exp{β⊤Xl(v)}. Martingale residual M̂i(t) can be in-
terpreted as the difference at time t between the observed and expected numbers
of events for the ith subject.

Martingale residuals play an essential role in functional form diagnostics. Bar-
low and Prentice [1988] provided a more detailed discussion and illustrated that
plots of such residuals might provide insight into the choice of the model form.
Therneau et al. [1990] discussed the usage of martingale residuals in investigating
the functional form of covariates.

Continuous covariates are frequently assumed to have a linear form. This as-
sumption, however, needs to be tested. Plotting the Martingale residuals versus
continuous covariates is a standard method for detecting nonlinearity or deter-
mining the functional form of a covariate. Patterns in the plot for a particular
continuous covariate may indicate that the variable is not correctly fitted. Non-
linearity is not an issue for categorical variables, so we only examine plots of
martingale residuals and partial residuals against a continuous variable. Further-
more, according to Therneau et al. [1990], it is common to plot the martingale and
deviance residuals against time to check for possible outliers.

3.3 Deviance residuals

The primary drawback to the martingale residual (M̂i(t)) is its clear asymmetry (its
upper bound is 1, but it has no lower bound). As a visual aid in certain plots, it may
be helpful to transform the residual to achieve a more normal-shaped distribution.
The Deviance residual is a normalized transformation of the martingale residual.

Inspired by the deviance residuals for GLM in McCullagh and Nelder [1983],
Therneau et al. [1990] introduced the deviance residual for a Cox model as

Di(t) = sign(M̂i(t))

√
−2[M̂i(t) + δi ln (δi − M̂i(t))] (6)

where δi is an event indicator and M̂i(t) computed by 5. In Equation 6, the log
function “expands” residuals close to one, while the square root contracts the large
negative values. Note that the Deviance residual is zero if and only if M̂i(t) = 0

In the plot of Deviance residuals, positive values correspond to individuals
that “died too soon” compared to expected survival times and negative values
correspond to the individual that “lived too long”. Besides, very large values are
outliers, which are poorly predicted by the model. Both the martingale residual
and the deviance residual are useful for assessing the functional form of a con-
tinuous variable in a Cox proportional hazards model and identifying outlying
observations, but the deviance residual is less skewed and, therefore, more useful.
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3.4 Delta-beta residuals

An influential measurement significantly affects model fit and may be measured
in various ways. As methods of quantifying and analyzing influence, a variety
of residuals (score residuals, Schoenfeld residuals, delta-beta residuals) have been
proposed; we will focus on delta-beta residuals. The idea behind Delta-beta resid-
uals is straightforward: let β̂

(i)
j denote the estimate of β̂j obtained if we leave

subject i out of the model. The Delta-beta residual for coefficient j and subject i
is therefore defined as

∆ij = βj − β̂
(i)
j

This may appear a computationally challenging task, but several computational
tricks allow one to refit models reasonably quickly while leaving individual obser-
vations out. In the Delta-beta residuals plot, we determine the estimated changes
in the regression coefficients upon deleting each observation.
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Chapter 5

Causal survival analysis

This chapter goes through some specifics concerning causal survival analysis. More
precisely, in Section 1, all necessary notations and assumptions dealing with the
censoring mechanism, as well as causal estimands, are introduced. Furthermore,
the Marginal Structural Cox Model, which is the core of this thesis, is presented
in Section 2. In the current chapter, we mainly show how to overcome challenges
by applying the new weighted method to the Marginal Structural Cox Model.
It is the novelty of this thesis. Finally, we explore our proposal techniques in a
comprehensive Simulation Study in Section 3.

1 Causal estimands

1.1 Notations

In causal survival analysis, let Yi(z) ≥ 0 and Ci(z) ≥ 0 be the potential survival
time and the potential censoring time for unit i under treatment assignment z ∈
{0, 1}. The follow-up starts and ends at specific calendar times, which determine
a fixed duration of the study, c.

In some studies, patients may enter the study at different times and are sub-
sequently assigned to different treatment arms and monitored until they either
experience the event of interest or end the study. The censoring time is calcu-
lated by entering units, which are staggered over time. Thus, Ci(z) ≤ c represents
the duration of entering the follow-up till the end of the study for unit i given
treatment assignment z. This is so-called “administrative censoring”.

Treatment switching occurs when patients in one group switch from the treat-
ment arm to another in the trial. The situation arose mainly due to concern for
the patient’s health. In the presence of the switching behavior, let Si(z) be the
potential switching time (the duration of entering the follow-up till switching the
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treatment) of unit i under treatment assignment z. The main point is that unit
i can switch the treatment arms only before her/his survival time, implying a
natural constraint Si(z) < Yi(z). Let us define
• the survival time under the actual treatment assignment as

Yi = ZiYi(1) + (1− Zi)Yi(0).

• the administrative censoring time under the actual treatment assignment as

Ci = ZiCi(1) + (1− Zi)Ci(0).

• the switching time under the actual treatment assignment as

Si = ZiSi(1) + (1− Zi)Si(0).

In general, the observed outcome is Ỹ = min (Yi, Ci, Si). It is worth to noting
that in our data set, we have the following cases (see Figure 1).
(a) Patients who experience the event during the follow-up and do not switch
treatment. For these patients min(Yi, Ci, Si) = Yi and Ỹ = Yi (e.g. Patient A)
(b) Patients who switch treatment before experiencing the event. The natural
constraint implies that min(Yi, Ci, Si) = Si and Ỹ = Si (e.g. Patient B).
(c) Patients who neither switch treatment nor experience the event. For these
patients min(Yi, Ci, Si) = Ci and Ỹ = Ci (e.g. Patient C).

Figure 1: The observed outcome
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B
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Study end

Time
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1.2 Censoring Assumption

As in the missing data literature [Rubin, 1976, Tsiatis, 2006], three assumptions
about the censoring mechanism have been proposed: censoring completely at ran-
dom (CCAR), censoring at random (CAR), and censoring not at random (CNAR).
In some cases, censoring due to administrative constraints, e.g., the planned start
and end of the study, is unrelated to the study treatment or the underlying health
condition. As a result, the event times will most likely be CCAR. In the presence
of staggered entry (i.e., with a varying start of follow-up date) and variable end of
follow-up for patients, the administrative censoring is unlikely to be CCAR. In our
case, this is because it is dependent on patient characteristics. For instance, MS
affects young adults rather than older individuals. This indicates that the event
was observed more frequently in younger patients than in older patients. Further-
more, censored event times due to non-administrative reasons such as dropout or
treatment switching are unlikely to be CCAR. For example, adverse events may
cause individuals to drop out of the study or switch treatments. Common survival
analysis methods assume CAR that patients censored at t and patients uncensored
at t with the same history have the same distribution of the entire current and
future variables. Even after accounting for their observed history, this assump-
tion will be violated if sicker subjects are more likely to withdraw from the study,
resulting in CNAR [Rubin, 1976].

Formally, some possible assumptions on the censoring mechanism are as
• No unmeasured confounding [Robins and Finkelstein, 2000, Hernán et al., 2001]:

(Ci(1), Ci(0), Si(1), Si(0)) ⊥ Zi|Xi

It indicates that we have measured all variables that contribute to the censoring
process and determines whether a subject is exposed or not. In that sense, it
implies that exposure and censoring mechanism are conditional independent.
• Completely independent censoring (completely ignorable/ non-informative):

Yi(0) ⊥ Ci(0), Yi(1) ⊥ Ci(1)

and
Yi(0) ⊥ Si(0), Yi(1) ⊥ Si(1)

which implies that time to censoring is independent of the time to event.
• Covariate-dependent censoring:

Yi(0) ⊥ Ci(0)|Xi, Yi(1) ⊥ Ci(1)|Xi

and
Yi(0) ⊥ Si(0)|Xi, Yi(1) ⊥ Si(1)|Xi

which implies that time to censoring is conditional independent of the time to
event given the covariates.
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1.3 Definition of the estimands

The definition of the estimands when the outcome is survival times is challenging.
This is because the survival outcome is non-negative, skewed, and subject to right
censoring. As a result, the average causal effect (ATE), defined as the mean
difference, may not be estimable or have the desired interpretation for many clinical
studies. To compare treatment groups based on survival outcomes, five estimands
in the literature have proper interpretation Royston and Parmar [2011, 2013], Uno
et al. [2014], Andersen et al. [2017], Mao et al. [2018]. They are Average Survival
Causal effect (ASCE), Restricted Average Survival Causal Effect (RACE), Survival
Probability Causal Effect (SPCE), and Survival Quantile Effect (SQE). These
quantities are defined as follows:

According to conterfactual survival function, let us define Pr(Y (1) > t) = S1(t)
and Pr(Y (0) > t) = S0(t) as the survival functions under treatment and control.
1. Average Survival Causal Effect (ASCE) is

∆ASCE =

∫ ∞

0

S1(t)dt−
∫ ∞

0

S0(t)dt

2. Restricted Average Survival Causal Effect (RACE) is

∆RACE =

∫ t∗

0

S1(t)dt−
∫ t∗

0

S0(t)dt

where t∗ is a pre-specified time point.
3. Survival Probability Causal Effect (SPCE) is

∆SPCE = S1(t
∗)− S0(t

∗)

where t∗ is the time point at which the survival probability is evaluated.
4. Survival Quantile Effect (SQE) is

∆SQE = S−1
1 (1− q)− S−1

0 (1− q)

where q is a pre-specified number between 0 and 1. The median survival times are
compared with q = 0.5.

∆ASCE is the mean difference in survival time when the entire population is
placed under treatment and control. ∆RACE is the expected survival time re-
stricted by the upper bound t∗. It measures the between-group restricted averages
and reduces to ∆ASCE when t∗ goes to infinity. ∆SPCE is the difference between
two survival probabilities at time t∗. ∆SQE compares the q-quantile of the survival
distribution between groups. According to Greenland et al. [1999], ∆SQE has been
recommended as an alternative for survival comparison especially when the pro-
portional hazards assumption does not hold[Uno et al., 2014]. All these estimands
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(i.e. ∆ASCE,∆RACE,∆SPCE and ∆SQE) are causal estimands in the sense that they
can be defined on Rubin’s causal model framework. In this thesis, we focus on the
first three causal estimands (i.e. ∆ASCE,∆RACE,∆SPCE).

2 Marginal Structural Cox Model

Robins and his colleagues [Robins, 2000a, Robins et al., 2000, Hernán et al., 2000]
have proposed a new class of causal models called marginal structural models. In
general, the Marginal Structural model is

E(Y (z)) = G(z; β)

where the parameters β of this marginal structural model become the causal pa-
rameters of interest and the target of our estimation. One of the advantages of
this approach is the flexibility and range of MSMs that can be fitted.

Marginal structural cox models (MSM) estimated using inverse probability of
treatment weighting (IPW) for time-to-event outcomes were introduced by Hernán
et al. [2000]. Other methods include estimation of MSMs using the g-formula
(also called g-computation) [Robins, 1986, Daniel et al., 2011, Keil et al., 2014],
structural nested accelerated failure time models [Robins, 1992, Hernán et al.,
2005], structural nested failure time models [Robins et al., 1992, Vansteelandt
and Joffe, 2014], structural nested cumulative failure time models [Picciotto et al.,
2012], and structural nested cumulative survival time models [Seaman et al., 2020].
A recent review [Clare et al., 2019] found that the marginal structural Cox models
are the most commonly used method in practice.

The Marginal structural Cox Model is defined as

h(t|Zi) = h0(t) exp
{
γZi

}
(1)

where h0(t) is an unspecified baseline hazard function, γ encodes the unknown
exposure effect. This model is a marginal structural model because it is a structural
model for the marginal distribution of the counterfactual outcome. The Marginal
Structural Cox model has been widely used in observational studies for the analysis
of the effect of different therapies on the progress of various diseases, such as AIDS
and hemodialysis [Cole et al., 2003, Sterne et al., 2005, Hernán and Robins, 2006].

Marginal structural models attempt to adjust for measured confounders to
enhance group comparability and estimate causal effects in a similar way [Robins
et al., 2000] To accomplish this, the partial likelihood function of the Cox model
was modified such that the contribution of patient i to the risk set at time t
was weighted to remove the possible confounding effects of baseline confounders
[Hernán et al., 2000].

53



Let’s exploit the profile partial score function of interest as

PL(γ) = − 1

n

n∑
i=1

∫ c

0

[
Zi −

En

{
ZR(t) exp

{
γZ
}}

En

{
R(t) exp

{
γZ
}} ]dNi(t)

where En(.) referring to the sample average and Ri(t) is the at risk indicator (which
is the product of the indicators I(Yi ⩾ t), I(Ci ⩾ t) and I(Si ⩾ t)), and dNi(t)
the increment in the counting process with respect to the event time Yi. It is
shown that weights (say, ω̂) removes the possible confounding effects of baseline
confounders [Hernán et al., 2000]. In the marginal structural Cox model, these
weights (ω̂) are inserted in the partial likelihood function as follows:

PL(γ) = − 1

n

n∑
i=1

∫ c

0

ω̂ ×
[
Zi −

En

{
ZR(t)ω̂ exp

{
γZ
}}

En

{
R(t)ω̂ exp

{
γZ
}} ]dNi(t)

Under correct specification of the model, the maximum partial likelihood estimator
γ̂, defined as the solution to the score equation PL(γ̂) = 0, is shown to converge in
distribution to Normal distribution with mean zero and a covariance matrix which
can consistently be estimated by −∂PL(γ)

∂γ
|γ=γ̂ = 0. Moreover, using stabilized

weights also provides consistent estimates of γ [Hernán et al., 2000].
According to [Hernán et al., 2000], the analysis based on weighted samples

gives an asymptotically unbiased estimate of the causal parameter of interest,
which relies on the potential outcome framework. Under the four assumptions
of SUTVA, unconfoundedness, positivity, and no misspecification of the model
used to estimate the weights, weighting creates a pseudo-population in which the
exposure is independent of the measured confounders [Hernán and Robins, 2006].

It is important to note that there is a distinction between structural assump-
tions and inference assumptions. All of the assumptions based on the valid causal
inference are generally referred to as “structure assumptions”, and they are as
SUTVA, unconfoundedness, positivity, and the ignorability assumption related to
censoring mechanisms. On the other hand, assumptions based on the correct func-
tional forms of each equation in the (partial) likelihood (i.e. linearity), accurate
measurements of all of the observed variables (i.e. the reliability of the available
data), guarantees unbiased estimation of the model’s parameters, and assess the
proportionality of cox model in constructing censoring weights are referred to as
“inference assumptions”.

One of the difficulties in dealing with weights is how to construct them. More
specifically, the construction of weights for marginal structural models requires a
thoughtful procedure to determine which functional form of model optimizes bias
reduction and precision. In the next section, we focus on the weighting framework
for causal effect estimation and address how to construct it.
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2.1 The weighting framework for causal effect estimation

Lack of balance is common in observational studies, and one of the initial choices
is using standard parametric adjustment by regression. Nevertheless, it is often
sensitive to model misspecification when groups differ significantly in observed
characteristics [Rubin, 1979]. Weighting is a well-known non-parametric balanc-
ing strategy. In this regard, weights are applied to the sample of units in each
treatment group to match the covariate distribution of a target population. The
formal definition and different balancing weights are presented in Chapter 3, Sec-
tion 2.3.

Regarding some interesting features shown in Table 1, in this thesis, we focus on
IPW and Overlap weighting to deal with observed confounders. When propensity
scores approach 0 or 1, IPW has limitations: large weights for individual patients,
bias, and large variability in the estimated treatment effect [Stuart, 2010, Hirano
and Imbens, 2001]. To address these problems, trimming methods have been
proposed that exclude patients with very high predicted probabilities of being
in the treatment group (or the control group). Despite the potential gains from
trimming, the decision regarding how many patients to exclude is ad-hoc and can
result in a substantial loss of sample size.

Robins et al. [2000] discuss a technique they refer to as stabilization that re-
duces the variability of the IPW weights and gives individuals with extreme weights
less influence. The stabilized IPW is accomplished by multiplying the treatment
and comparison weights (separately) by a constant, equal to the expected value
of being in the treatment or comparison groups, respectively. Thus, the stabilized
IPW weights are Pr(Z=1)

ê(X)
for the treated and Pr(Z=0)

1−ê(X)
for the control group. The

stabilized weighting makes the narrower range of the weights for each individual.
Furthermore, in many settings (e.g., time-varying or continuous treatments), it is
recommended to use stabilized weights [Hernán and Robins, 2006, 2020]. Accord-
ing to Hernán and Robins [2006, 2020], one should always check that the estimated
stabilized weights have mean 1. Deviations from 1 indicate model misspecification
or possible violations, or near violations, of positivity.

2.2 Censor weights

In the presence of covariate-dependent censoring [Zheng and Klein, 1994, Huang
and Wolfe, 2002, Braekers and Veraverbeke, 2005], many methods have been
developed to analyze data. To named but a few, for administrative censoring,
the Inverse Probability of Censoring Weighting (IPCW) [Robins and Rot-
nitzky, 1992, Robins, 1993, Robins and Finkelstein, 2000] is proposed. To dealing
with selection bias due to switching the treatment, standard intention-to-treat

(ITT) for analyzing RCTs[Moher et al., 2001], Exclude switchers [Watkins et al.,

55



Table 1: The overview of all weighting methods

Methods Pros Cons

Inverse
Probability
Weighting
(IPW)

• It is the most famous balancing
weight.
• It can be used to adjust for
measured confounding and selection
bias
• It is easy to implement.

• It is so sensitive to poor overlap
and PS model misspecification. In
practice, violations of the positiv-
ity assumption often manifest by the
presence of limited overlap in the
PS distributions between treatment
groups.

Overlap
Weighting
(OW)

• The overlap weights are bounded
between 0 and 1.
• By definition, the overlap weights
automatically overcome the large
uncertainty issue caused by extreme
propensity scores when using IPW.
• The OW based on the PS esti-
mated from a logistic model leads
to exact balance between treatment
groups for all covariates.
• More robust to misspecification of
the propensity score model and lim-
ited overlap than IPW.

• With the overlap weight, we esti-
mate causal effects for a specific sub-
population.
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2013], Inverse Probability of Censoring Weighting (IPCW) [Hernán et al.,
2001], two-stage adjustment[Morden et al., 2011, Latimer et al., 2017, 2018,
2019] and Rank preserving structural failure time models (RPSFTM) [Robins
and Tsiatis, 1991] have been proposed. Since the most famous method to deal with
both administrative and switching treatment is the Inverse Probability of Censor-
ing Weighted (IPCW), in this thesis, we focus on correcting selection bias due to
covariate-dependent censoring by giving extra weight to subjects who are not cen-
sored at the certain time. In practice, a Cox proportional hazard model is assumed
for the event time, while an inverse probability of censoring weight is applied to the
Cox model score equation. The weight can be considered the inverse probability
of remaining uncensored at the considered time, which can be estimated non- or
semi-parametrically. With these weights, the survival function can be estimated
in the absence of censoring.

The general form of the non-stabilized IPCW is

1

Pr(Ci > t|Xi)

where the denominator represents the probability of an individual remaining un-
censored conditional only on baseline confounders. In the IPCW, the censored
individuals are replaced by copies of uncensored individuals with the same values
of treatment and covariate.

To fit a model for censoring and controlling for all confounders, it is common
to consider
1. logistic regression: This method is based on discrete-time, dividing follow-up
into small intervals and using pooled logistic regression. It is worth noting that
it only uses limited information as to whether an observation is censored or not
[Hernán et al., 2001].
2. Cox proportional hazards model: This method is based on continuous-
time, predicting the time to an event under the proportional hazards assumption.
This method works when the censoring mechanism is independent or when the
censoring mechanism may depend on the set of covariates [Jackson et al., 2014,
Willems et al., 2018].

To assess the influence of covariates Xi on the probability of being censored
for subject i, the Cox model for time to censoring is considered as

hc(t|Xi, Zi) = hc
0(t) exp [β

⊤
c Xi + γZi] for all t > 0 (2)

where hc
0(t) is the baseline hazard of censoring, βc is the vector of model param-

eters. The hazard hc(t|Xi, Zi) indicates the estimated probability for patient i
with covariates Xi being censored in the next instant of time, if this subject was
not censored until time t. A Product-Limit estimator for time to censoring that
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includes covariates for subject i, is derived as

K̂x
i (t) =

∏{
j;tj<t,δj=1

} [1− ĥc
0(tj) exp

[
β̂⊤
c Xi + γ̂Zi

]]

where the tj’s are the observation times, and β̂c is the estimated vector of parame-
ters equation (2). The δj indicates whether for subject j the event was observed or
not, i.e. δj = 0 for censored subjects and δj = 1 if the event is observed. Therefore,
the weights for each subject i are computed as ωc

i =
1

K̂x
i

. This is called “unstabi-

lized weights”. To avoid numerical problems, Robins [1993] proposed a modified

version of the weights (called “stabilized weights”): ωsc
i =

K̂0
i

K̂x
i

where K̂0
i (t) denote

the traditional product-limit estimator for the probability of being uncensored in-
dependent of the covariates Xi. So, the stabilized IPCW (for both administrative
and switching censoring) is computed seperately as

ωsc
i =

Pr(Ci > t)

Pr(Ci > t|Xi)
=

K̂0
i

K̂x
i

(3)

ωss
i =

Pr(Si > t)

Pr(Si > t|Xi)
=

K̂0
i

K̂x
i

(4)

2.2.1 Functional form of censoring weights

Covariate adjustment poses difficulties in the presence of a covariate-dependent
censoring mechanism. One of the difficulties in constructing censoring weights is
predicting which variables will be adjusted for and which functional form (and
how). The adjustment for variables raises additional concerns regarding model
misspecification since any change in the adjustment set affects the censoring as-
sumption and the treatment effect estimator. Regarding that, in this thesis, we
consider all main effects and add some nonlinear terms (e.g., interaction and higher
orders).

In practice, we usually do not know the proper form of the censoring weights.
The typical work is to include all main effects and add interactions and polynomial
terms, which produce a better model. With p covariates, one possible strategy
would be to try all 2p models based on including/excluding each covariate. One
may then pick the optimal model according to a certain criterion, e.g., the model
with the smallest AIC. This strategy is known as best subset selection. However,
best subset selection is computationally very intensive. It requires the evaluation of
2p models, which quickly becomes enormous. This makes it practically impossible
to find the “best” model across all models that can contain up to all predictors.
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Therefore, it is more common to use computationally faster forward, backward, and
hybrid stepwise approaches. The backward stepwise regression works as follows.
Let Mp be the full model which contains all predictors. For k = p, · · · , 1, we then
choose the “best” model among all k models that remove one predictor from the
selected model Mk, and call Mk−1. We then choose the “best” model out of the
selected models.

2.3 Our proposal

To calculate the survival probability Ŝ(t|Zi) specific to each treatment, we esti-
mated the parameters of a marginal structural Cox proportional hazards model of
the form h(t|Zi) in equation (1). This marginal structural model can be estimated
by using weights ωi under the assumptions of SUTVA [Hernán and Taubman,
2008, Cole and Frangakis, 2009], positivity [Hernán and Robins, 2006, Cole and
Hernán, 2008], no unmeasured confounding or selection bias, and correct model
specification as

hωi(t|Zi) = h0(t) exp
{
θZi

}
.

where the superscript ωi indicates that the hazard of MS disease for patient i at
time t and treatment Zi, that is h(t|Zi), is weighted by ωi. Moreover, θ is the log
hazard ratio, and hωi(t|Zi) → h(t|Zi) in distribution and therefore θ → γ if the
above stated assumptions are met.

To assign weights for each unit, we propose

ω̂i = ωipw
i × ωss

i × ωsc
i

and
ω̂i = ωow

i × ωss
i × ωsc

i

where ωsc
i and ωss

i are the stabilized IPCW for administrative (equation 3) and
switching censoring (equation 4), respectively. Furthermore, treatment weights
(i.e. ωipw

i and ωow
i ) are computed by fitting a logistic regression model for the

propensity score. In general, to overcome the problem of dependent censoring due
to treatment switching and administrative censoring and to adjust for observed
confounders simultaneously, we propose to multiply all weights to obtain overall
weights (ω̂i) that made all confounding removed by creating “pseudo-population”.
Moreover, in order to reduce some concerns regarding misspecification assumptions
in both censoring weights, we will consider all main effects as well as some nonlinear
terms.
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2.4 Alternative methods using PS weighting to estimate
survival function

In the literature, when applied to an inverse probability weighted sample, the
marginal structural cox model is a popular method for drawing causal inferences
with survival outcomes in observational studies Cole and Hernán [2004] or the
causal hazard ratio Austin and Schuster [2016]. Furthermore, Binder et al. [2014],
Andersen et al. [2017], Zeng et al. [2021] proposed combining weighting methods
with pseudo-observations to estimate the causal survival function. Each pseudo-
observation is treated as an uncensored contribution to the target parameter, en-
abling the standard approach to continue as if outcomes are observed. Neverthe-
less, pseudo-observations are jackknife statistics requiring intensive computation
for estimating survival functions with large sample sizes [Zeng et al., 2021]. A final
approach is to combine IPW with inverse probability of censoring weight (IPCW),
which is inherently connected to the Kaplan-Meier estimator [Robins and Finkel-
stein, 2000] to estimate counterfactual survival functions while accommodating
covariate-dependent censoring. The challenge presented by extreme propensity
scores in IPW also applies to survival outcomes [Austin and Schuster, 2016], and
it makes sense that OW would help alleviate this challenge. However, investiga-
tion on the empirical performance of OW with survival outcomes has been limited
with two exceptions: It was proved by Mao et al. [2018] that combining OW with
a Cox outcome model results in efficiency gain from IPW for a variety of causal
estimands. Zeng et al. [2021] combined OW with pseudo-observations and showed
that OW leads to optimal efficiency. In the following, we briefly describe these
two methods.

1. Mao’s method:
Mao et al. [2018] proposed a unified analytical framework for propensity score
weighting analysis with survival outcomes that includes a estimation framework
for point and variance estimation. Suppose r = ζ(t)⊤a + λ(t)⊤b be a regression
spline approximation for the log-hazard function for one treatment group of sample
size n. The parameters are a = (a0, · · · , aL)

⊤ and b = (b0, · · · ,bL)
⊤ and for

simplicity, define α = (a⊤,b⊤)⊤. The weighted log likelihood for subject i is

ℓi = Wi

{
δiU(Yi)

⊤α−
∫ Yi

0

exp(U(t)⊤α)dt
}

where Wi is the weight (IPW or OW) for subject i, U(t) = (ζ(t)⊤, λ(t)⊤)⊤ is
the known truncated power basis function of degree L with K knots. ζ(t) =
(1, 2, . . . , tL)⊤ and λ(t) = (λL

1 (t), . . . , λ
L
K(t))

⊤. The penalized spline estimator
of α can be calculated by maximizing the penalized log likelihood with respect
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to α using the Newton-Raphson method. Once the model parameters α̂ are
obtained, the survival function in each treatment Sj(t) for j = 0, 1 is estimated as

Ŝj(t) = exp
{
−
∫ t

0

U(x)⊤α̂jdx
}
.

2. Zeng’s method:
Zeng et al. [2021] used the class of propensity score weighting estimators for sur-
vival outcomes based on the pseudo-observations. Furthermore, Zeng et al. [2021]
defined a new closed-form variance estimator that takes into account the uncer-
tainty due to both pseudo-observations calculation and propensity score estima-
tion. The pseudo-observation is a leave-one-out jackknife approach to address
right-censoring and provides a straightforward unbiased estimator of the function
of uncensored data under the completely independent censoring assumption.

For a given time t, generally define θk(t) = E{νk(Yi; t)} as a population param-
eter. The causal estimands of interest are based on two typical transformations of
the potential survival times: (i) the at-risk function ν1(Yi; t) = 1{Yi ≥ t} and (ii)
the truncation function ν2(Yi; t) = Yi ∧ t where t is a given time point of interest.
The pseudo-observation for each unit is written as

θ̂ki (t) = nθ̂k(t)− (n− 1)θ̂k−i(t)

where θ̂k(t) is the consistent estimator of θk(t), and θ̂k−i(t) is the corresponding
estimator with unit i left out. Regarding that, Zeng et al. [2021] proposed the
following nonparametric Hajek-type estimator for the class of estimands:

τ̂ k,hj,j′ (t) =

∑n
i=1 1{Zi = j}θ̂ki (t)wh

j (Xi)∑n
i=1 1{Zi = j}wh

j (Xi)
−
∑n

i=1 1{Zi = j′}θ̂ki (t)wh
j′(Xi)∑n

i=1 1{Zi = j′}wh
j′(Xi)

, j ̸= j′ (5)

where the wh
j (X) for j = 0, 1 corresponds to the balancing weight (ωipw, ωow).

For transformation νk with k = 1, 2, Zeng et al. [2021] consider the Kaplan-Meier
estimator to construct θk(t). In detail, when the interest estimand lies in the
survival functions (i.e. SPCE with k = 1),

θ̂1i (t) = nŜ(t)− (n− 1)Ŝ−i(t)

and when the interest estimand lies in the restricted mean survival times (i.e.
RACE with k = 2),

θ̂2i (t) = n

∫ t

0

Ŝ(u)du− (n− 1)

∫ t

0

Ŝ−i(u)du

and then compute the estimand.
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Estimator (5) can be extended to accommodate covariate-dependent censoring.
In this case, one can consider inverse probability of censoring weighted pseudo-
observation [Robins and Finkelstein, 2000, Binder et al., 2014]:

θ̂ki (t) =
νk(Ỹi; t) 1{Ci ≥ Ỹi ∧ t}

Ĝ(Ỹi ∧ t | Xi, Zi)

where Ĝ(u | Xi, Zi) is a consistent estimator of the censoring survival function
Ĝ(u | Xi, Zi) = Pr(Ci ≥ u | Xi, Zi), for example, given by the Cox proportional
hazards regression.

In the presence of two different covariate-dependent censoring mechanisms,
let’s define

θ̂ki (t) =
νk(Ỹi; t)1{min(Ci, Si) ⩾ Ỹi ∧ t}

Ĝ(Ỹi ∧ t|Xi, Zi)

where Ĝ(u | Xi, Zi) = Pr(Ci ⩾ u | Xi, Zi) × Pr(Si ⩾ u | Xi, Zi) computed by
two Cox proportional hazards models. This estimator (referred to as the extended
Zeng’s method) generalizes those described in Zeng et al. [2021] to corporate two
covariate-dependent censoring in survival settings.

With the increasing development of more advanced causal inference methods,
it is important to be able to evaluate method performance in different scenarios
and make comparisons between methods to guide their use in practice. The idea
behind the next Section is that the plausibility of the estimated treatment effects
will increase if the inferences are insensitive over a wide range of relevant scenarios.
Simulation studies are a key tool for such investigations and can be used to
assess properties such as bias, efficiency, and coverage of confidence intervals. The
results help analysts to choose which methods are most appropriate for answering
research questions using their data. As a result, in the next section, we assess
the performance of the estimator under the different assumptions and test the
sensitivities of the adjustment methods to changes in key scenario assumptions.

3 Simulation Study

To assess the sensitivity of key assumptions of the censoring mechanism, in this
section, we conducted comprehensive simulation studies under the scenarios de-
scribed in Table 2. Subsections 3.1 and 3.3 illustrate, respectively, the simulations
design and the results. We review briefly methods to estimate survival function in
Subsection 3.2. Especially, according to different censoring assumptions, we apply
the Marginal Structural Cox Model to the different weighted samples.
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Table 2: The overview of different scenarios in Simulation Studies

Scenario 1 Both types of censoring are non-informative/completely ignorable

Scenario 2 Censoring due to treatment switching is ignorable conditional on the
covariates and administrative censoring is completely ignorable

Scenario 3 Both types of censoring are ignorable conditional on covariates

3.1 Simulation’s Design

We generate four pre-treatment covariates: Xi = (X1i, X2i, X3i, X4i)
⊤ where(

X1i

X2i

)
∼ Normal

{(0
0

)
,

(
2 0.5

0.5 2

)}
,

Xi4 ∼ Bernoulli(0.5) and Xi3 ∼ Bernoulli(0.6Xi4 +0.4(1−Xi4)). We consider two
treatment groups, with the true propensity score model given by logit(ei) = X̃⊤

i β
where X̃i = (1, X⊤

i )
⊤. Set β = (−0.1Ψ,−0.9Ψ,−0.3Ψ,−0.1Ψ,−0.2Ψ)⊤ where

Ψ = 1 and Ψ = 5 represent good and poor overlap between groups, respectively.
Distribution of the true propensity scores under each specification is presented in
Figure 2. The model to generate potential survival times is Cox-Weibull model
with hazard rate h(t|Xi) = λνtν−1 exp{Li} where

Li = Ziγ +Xi1α1 +Xi2α2 +Xi3α3 +Xi4α4.

We specify (γ, α1, α2, α3, α4, λ, ν) = (1, 2, 1.5,−1, 1, 0.0001, 3). The potential sur-
vival time Yi is then drawn using

Yi = { − log (U)

λ exp (Li)
}

1
ν

where U ∼ Uniform(0, 1). For each simulation setting, we simulated 500 Monte
Carlo repetitions and averaged the results. While the IPW-based estimators focus
on the combined population, the OW-based estimators focus on the overlap pop-
ulation [Zeng et al., 2021]. When comparing treatments, the true values of target
estimands can be different between OW-based methods and IPW-based methods
(albeit very similar under good overlap) and are computed via Monte Carlo inte-
gration. We vary the study sample size n = (100, 300, 500) and fix the evaluation
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Figure 2: The propensity score distribution under different overlap conditions
across two treatments in the simulation studies
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point t = 10 for estimating SPCE and RACE. We evaluate the performance of the
models in terms of the absolute bias, root mean squared error (RMSE), and The
95% empirical coverage corresponding to each estimator. To obtain the empirical
coverage for Marginal Structural Cox Models (with and without covariate), Boot-
strap CIs are used. For Zeng’s method, we used variance estimators suggested by
Zeng et al. [2021]. For each scenario, we generate different administrative censoring
and switch the treatment based on pre-specified assumptions. Table 3 prepared
to show how to generate a time for censoring based on different scenarios. The
true values of causal estimands were calculated from these simulated potential
outcomes as weighted averages among the simulated subjects.

3.2 Methods to estimate survival function

The marginal structural cox models are powerful tools to control for both observed
confounding and selection bias due to censoring. Thus, in this section, we review all
necessary steps to use Marginal structural models in the simulation study to assess
the performance of the estimator under different assumptions of the censoring
mechanism. As an alternative, we consider Zeng’s method to be able to compare
the performance of different estimators.
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Table 3: Generate time to censoring and time to switching the treatment based
on different scenarios.

Scenario 1 We generate administrative censoring and censoring due to
treatment switching as

{Ci, Si} ∼ Uniform(0, K), K ∈ N

where different values to K make different percentage of censoring;
e.g. K = 60 makes censoring rates as %50 and K = 220 makes
censoring rates as %25

Scenario 2 To generate administrative censoring, we consider
Ci ∼ Uniform(0, K ′), K ′ ∈ N and under covariate-dependent
censoring due to treatment switching, Si generate from a Weibull
survival model with hazard rate

hS(t|Xi) = λSνSt
νS−1 exp

{
X⊤

i αS + Ziγ
}

The parameters are specified so that censoring rate varies.
Specifically, for censoring rate 50%, we set K ′ = 1000,
αS = (1, 0.5,−0.5, 1)⊤, λS = 0.0001 and νS = 3 and for censoring
rate 25%, we set K ′ = 50, αS = (−11.5, 3.5,−15.5,−11.5)⊤,
λS = 0.0001 and νS = 3. Also, we set γ = 1 in both cases.

Scenario 3 Under covariate-dependent censoring due to both censoring
mechanisms, generate administrative censoring (Ci) from a Weibull
survival model with hazard rate

hc(t|Xi) = λcνct
νc−1 exp{X⊤

i αc + Ziγ}

and Si is generated from a Weibull survival model with hazard rate

hs(t|Xi) = λSνSt
νS−1 exp{X⊤

i αS + Ziγ}.

Different values of λc, λs, νc, νs and αs, αc are specified so that the
censoring rate varies. In detail, for censoring rate 50%, we set
αc = (0.5, 0.25,−0.25, 0.75) and αs = (1, 0.5,−0.5, 1). Also,
λc = λs = 0.0001 and νc = νs = 3. For censoring rate 25%: we set
αc = (−10, 0.25,−15,−12) and αs = (−11.5, 3.5,−15.5,−11.5). Also,
λc = λs = 0.0001 and νc = νs = 3. We consider γ = 1 in both cases.
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The Marginal Structural Cox Model without covariates:
• In the present of the observed confounding, it is necessary to compute weights
of treatment. In practice, fit a logistic regression model for the PS to compute
weights (ωipw

i , ωow
i ).

• Assign weights for each unit as

1. Under the completely ignorable/ completely independent assumption of both
censoring mechanisms due to administrative and switching the treatment, in Sce-
nario 1, they are ω̂i = ωipw

i or ω̂i = ωow
i .

2. In Scenario 2, due to covariate-dependent of switching censoring, we compute
ω̂i = ωipw

i × ωss
i or ω̂i = ωow

i × ωss
i

3. In the present of the oberved confounding and dependent censoring due to treat-
ment switching and administrative censoring in Scenario 3, compute
ω̂i = ωipw

i × ωss
i × ωsc

i or ω̂i = ωow
i × ωss

i × ωsc
i

• Fit a Cox proportional hazard model with a hazard rate

h(t|Zi) = h0(t) exp
{
γZi

}
• Calculate the survival probability Ŝ(t|Zi) specific to each treatment.

The Marginal Structural Cox Model with covariates:
To assess the performance of the estimators under different assumptions, in sim-
ulation studies, we also, consider another form of Marginal Structural Cox Model
with a hazard rate h(t|Xi, Zi) as

h(t|Xi, Zi) = h0(t) exp
{
Xiα

⊤ + γZi

}
(6)

We assumed in Scenario 1 that both censoring mechanisms (i.e. adminis-
trative and switching the treatment) are completely ignorable/ completely inde-
pendent. As a result, in order using the Marginal Structural Cox Model with
covariates (COX.MSM.COV.IPW, COX.MSM.COV.OW), one should compute ωipw

i and
ωow
i at first step. Then, for each unit, a weight is assigned, such as

ω̂i = ωipw
i

and
ω̂i = ωow

i .
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Next, the Cox proportional hazard model with the hazard rate h(t|Xi, Zi) (Equa-
tion 6) is fitted and the conditional survival probability function Ŝ(t|Xi, Zi) is
computed to estimate interested estimands.

To adjust for observed confounders and dependent censoring due to treat-
ment switching based on Scenario 2 (COX2.MSM.COV.IPW, COX2.MSM.COV.OW),
we estimate propensity scores by fitting logistic regression to construct weights
(ωipw

i , ωow
i ). Then, due to covariate-dependent of switching censoring, stabilized

IPCW (ωss
i ) is calculated. After that, ω̂i is assigned to each unit as

ω̂i = ωipw
i × ωss

i

and
ω̂i = ωow

i × ωss
i .

Finally, a Cox proportional hazard model with a hazard rate h(t|Xi, Zi) (Equation
6) is fitted to calculate the survival probability Ŝ(t|Xi, Zi).

The Scenario 3 is based on the covariate-dependent assumptions of both
censoring mechanisms due to administrative and switching the treatment. To
accommodate Marginal Structural Cox Model with covariates in this Scenario
(COX3.MSM.COV.IPW, COX3.MSM.COV.OW), first, we fit a logistic regression model
to estimate propensity scores computing weights (ωipw

i , ωow
i ). Then, the stabilized

IPCW weights for both administrative and switching censoring (ωsc
i and ωss

i ) are
calculated. After that, weights ω̂i is assigned to each unit as

ω̂i = ωipw
i × ωss

i × ωsc
i

and
ω̂i = ωow

i × ωss
i × ωsc

i .

Finally, we fit the Cox proportional hazard model with the hazard rate h(t|Xi, Zi)
(Equation 6). Based on the estimated hazard rate, we can calculate the condi-
tional survival probability function Ŝ(t|Xi, Zi) and then compute estimands.

Zeng’s method:
Zeng et al. [2021] proposed the nonparametric Hajek-type estimator (as mentioned
in equation 5) as

τ̂ k,hj,j′ (t) =

∑n
i=1 1{Zi = j}θ̂ki (t)wh

j (Xi)∑n
i=1 1{Zi = j}wh

j (Xi)
−
∑n

i=1 1{Zi = j′}θ̂ki (t)wh
j′(Xi)∑n

i=1 1{Zi = j′}wh
j′(Xi)

, j ̸= j′

where the wh
j (X) for j = 0, 1 corresponds to the balancing weight (ωipw, ωow).

According to the key assumption of Scenario 1 (noted as Zeng.IPW and Zeng.OW),
this approach will be used as an alternative method.
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To accommodate covariate-dependent censoring (based on Scenario 2), es-
timator (τ̂ k,hj,j′ (t)) can be extended by considering inverse probability of censoring
weighted pseudo-observation as [Robins and Finkelstein, 2000, Binder et al., 2014]:

θ̂ki (t) =
νk(Ỹi; t) 1{Ci ≥ Ỹi ∧ t}

Ĝ(Ỹi ∧ t | Xi, Zi)

where Ĝ(u | Xi, Zi) is computed by the Cox proportional hazards regression (ωss
i ).

Zeng2.IPW and Zeng2.OW are the Zeng’s approach referring to the assumptions of
Scenario 2.

In the presence of two different types of covariate-dependent censoring (Scenario
3), the θ̂ki (t) is developed as

θ̂ki (t) =
νk(Ỹi; t)1{min(Ci, Si) ⩾ Ỹi ∧ t}

Ĝ(Ỹi ∧ t|Xi, Zi)

where Ĝ(u | Xi, Zi) = Pr(Ci ⩾ u | Xi, Zi) × Pr(Si ⩾ u | Xi, Zi) computed by two
Cox proportional hazards models (i.e. ωsc

i and ωss
i ). Zeng3.IPW and Zeng3.OW are

the extended Zeng’s approach referring to the assumptions of Scenario 3.

3.3 Simulation Results

3.3.1 Scenario 1:

We analyze a simulated data set using the Marginal Structural Cox Model with-
out covariates, Zeng’s method, and the Marginal Structural Cox Model with co-
variates. On a deeper level, we evaluate how well the estimators under different
assumptions perform on the generated data set. In order to accomplish this, it
is essential to bear in mind the following: under the assumption of both types of
censoring are completely ignorable, we denote the estimators of the Marginal Struc-
tural Cox Model without covariates as (COX.MSM.IPW, COX.MSM.OW), the estima-
tors of the Marginal Structural Cox Model with covariates as (COX.MSM.COV.IPW,
COX.MSM.COV.OW) and Zeng’s methods as (Zeng.IPW, Zeng.OW). Furthermore, the
Marginal Structural Cox Model without covariates (denoted as COX2.MSM.IPW,
COX2.MSM.OW), the Marginal Structural Cox Model with covariates (denoted as
COX2.MSM.COV.IPW, COX2.MSM.COV.OW) and Zeng’s methods (denoted as Zeng2.IPW,
Zeng2.OW) were calculated under assumption that switching censoring is ignorable
conditional on the covariates and administrative censoring is completely ignorable.
Moreover, under assumption of both types of censoring are ignorable conditional
on covariate, the estimators of the Marginal Structural Cox Model without co-
variates (denoted as COX3.MSM.IPW, COX3.MSM.OW), the Marginal Structural Cox
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Model with covariates (denoted as COX3.MSM.COV.IPW, COX3.MSM.COV.OW) and
Zeng’s methods (denoted as Zeng3.IPW, Zeng3.OW) were computed.

The absolute bias, root mean square error, and coverage probability of the 95
percent confidence interval for the OW and IPW estimators are presented in Table
4 based on the assumptions that both types of censoring are completely ignorable.
In general, OW estimators outperform others across SPCE and RACE with a
reduced absolute bias and RMSE, and they get closer to nominal coverage. Under
poor overlap, the IPW estimator leads to larger bias, variance, and low coverage.
The absolute bias and RMSE are reduced as the sample size increases.

The figures 3–6 display the absolute bias, RMSE, and coverage probability of
the 95% confidence interval for the OW-based and IPW-based estimators. Across
all three estimands (SPCE, RACE, and ASCE), estimators computed under the
assumption of completely ignorable both types of censoring outperform other es-
timators with a lower absolute bias and RMSE. In addition, under good overlap,
in the absence of non-informative both types of censoring assumption, estimators
computed by Marginal Structural Cox Model with covariates have a lower 95%
coverage probability, whereas estimators computed by Marginal Structural Cox
Model without covariates and Zeng’s method report more bias, and RMSE. Re-
garding the performance of Zeng’s method when estimating ASCE, Zeng.OW is
closer to nominal coverage. Under poor overlap, the OW is more robust than the
IPW. This is because the IPW estimator is susceptible to the lack of overlap due to
extreme propensity scores. As predicted, COX.MSM.COV.OW outperforms all other
estimators regardless of the degree of overlap and censoring rate.

3.3.2 Scenario 2:

Figures 7-10 illustrates the comparison of different estimators in the generated
data based on varying degrees of overlap between two treatment arms. We run the
Marginal Structural Cox Model without covariates, the Marginal Structural Cox
Model with covariates, and Zeng’s methods under different assumptions. More-
over, Table 5 depicts the performance of the estimators in the presence of key
assumptions of Scenario 2.

Under good overlap, Cox2.MSM.COV.OW-Cox2.MSM.COV.IPW outperforms Zeng’s
methods even though Zeng2.OW and Zeng2.IPW are constructed based on covariate-
dependent switching censoring assumption. This is probably because the data
on hand are generated based on proportionality assumption. Besides, the OW
is more robust under poor overlap than the IPW. When the censoring rate is
small (i.e., 25%), marginal structural models with covariates (Cox2.MSM.COV.OW,
Cox2.MSM.COV.IPW) achieve lower bias and RMSE compared with other estima-
tors in most cases as the outcome model is correctly specified. By increasing the
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Figure 3: Scenario 1: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatments under good
overlap for Scenario 1 and Scenario 2.
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Figure 4: Scenario 1: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatments under good
overlap for Scenario 1 and Scenario 3.
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Figure 5: Scenario 1: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatment under poor
overlap for Scenario 1 and Scenario 2.
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Figure 6: Scenario 1: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatment under poor
overlap for Scenario 1 and Scenario 3.

73



Table 4: Scenario 1: Absolute bias, root mean squared error (RMSE) and cover-
age for comparing two treatments under different degrees of overlap (good, poor),
different sample size (100, 300, 500) and various censoring rate (25%, 50%) when
both types of censoring are completely independent

MSM+COV MSM Zeng

sample Absolute Bias RMSE 95% Coverage Absolute Bias RMSE 95% Coverage Absolute Bias RMSE 95% Coverage
size IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW

Good overlap-25% censoring rate
RACE 100 0.46 0.32 0.50 0.35 100.00 99.60 0.12 0.15 0.40 0.21 96.40 88.20 0.34 0.28 0.75 0.43 89.60 83.00

300 0.44 0.30 0.46 0.31 100.00 99.20 0.22 0.14 0.32 0.17 86.00 54.80 0.39 0.28 0.56 0.33 84.60 67.40
500 0.45 0.31 0.46 0.31 100.00 99.60 0.22 0.14 0.28 0.16 72.20 40.40 0.45 0.30 0.55 0.33 69.00 44.20

Good overlap-50% censoring rate
RACE 100 0.49 0.34 0.56 0.39 100.00 99.40 0.24 0.20 0.56 0.30 95.60 87.80 0.43 0.30 0.87 0.46 90.20 86.37

300 0.46 0.32 0.48 0.33 100.00 99.40 0.28 0.18 0.43 0.22 85.60 73.40 0.44 0.29 0.63 0.36 81.00 68.60
500 0.46 0.32 0.47 0.32 100.00 99.60 0.30 0.20 0.37 0.22 72.00 47.00 0.43 0.30 0.56 0.35 70.40 49.80

Poor overlap-25% censoring rate
RACE 100 0.58 0.05 0.70 0.07 100.00 78.00 1.19 0.01 1.33 0.04 44.20 98.20 0.29 0.04 0.81 0.10 96.00 95.60

300 0.56 0.06 0.62 0.06 100.00 64.20 0.88 0.02 1.03 0.02 32.00 94.40 0.38 0.04 0.65 0.06 96.60 94.20
500 0.55 0.06 0.59 0.06 99.00 45.20 0.70 0.02 0.90 0.02 36.40 85.60 0.37 0.04 0.55 0.05 96.60 90.40

Poor overlap-50% censoring rate
RACE 100 0.58 0.05 0.75 0.08 99.20 76.20 1.33 0.02 1.50 0.06 44.60 98.20 0.33 0.04 0.98 0.11 98.00 95.80

300 0.55 0.06 0.64 0.07 97.60 67.40 0.93 0.02 1.15 0.03 34.80 94.40 0.35 0.08 0.63 0.08 98.60 50.00
500 0.58 0.06 0.65 0.07 93.60 57.20 0.79 0.02 1.02 0.03 36.40 87.40 0.34 0.04 0.53 0.05 97.20 90.80

Good overlap-25% censoring rate
SPCE 100 0.06 0.04 0.07 0.05 100.00 100.00 0.02 0.03 0.06 0.05 96.00 86.60 0.05 0.05 0.11 0.09 88.80 84.20

300 0.06 0.04 0.06 0.04 100.00 100.00 0.03 0.03 0.05 0.04 86.60 59.20 0.06 0.05 0.07 0.07 75.80 68.80
500 0.06 0.04 0.06 0.04 100.00 100.00 0.03 0.03 0.04 0.03 75.60 47.60 0.06 0.05 0.07 0.06 59.00 52.20

Good overlap-50% censoring rate
SPCE 100 0.06 0.05 0.07 0.05 100.00 100.00 0.03 0.04 0.09 0.07 95.20 87.00 0.06 0.06 0.12 0.10 88.20 85.77

300 0.06 0.04 0.06 0.05 100.00 100.00 0.04 0.04 0.06 0.05 85.20 74.00 0.06 0.05 0.08 0.07 79.60 77.20
500 0.06 0.04 0.06 0.04 100.00 100.00 0.05 0.04 0.06 0.05 72.40 49.80 0.06 0.06 0.08 0.07 66.60 60.00

Poor overlap-25% censoring rate
SPCE 100 0.07 0.02 0.09 0.03 99.80 96.60 0.24 0.01 0.26 0.03 36.40 98.40 0.09 0.03 0.22 0.07 96.20 94.80

300 0.07 0.02 0.08 0.02 99.60 97.80 0.18 0.01 0.21 0.02 29.20 92.60 0.11 0.03 0.16 0.04 96.00 92.00
500 0.07 0.02 0.08 0.02 99.40 95.00 0.15 0.01 0.18 0.02 34.00 76.00 0.11 0.03 0.14 0.04 93.40 86.80

Poor overlap-50% censoring rate
SPCE 100 0.07 0.02 0.10 0.03 99.40 94.20 0.26 0.02 0.29 0.04 40.00 98.80 0.09 0.03 0.24 0.08 97.40 95.40

300 0.07 0.02 0.09 0.02 98.80 97.20 0.19 0.02 0.23 0.03 31.20 90.80 0.11 0.05 0.17 0.05 98.40 50.00
500 0.08 0.02 0.09 0.02 97.20 98.00 0.17 0.02 0.21 0.02 34.40 82.20 0.10 0.03 0.14 0.04 95.00 89.20

74



censoring rate, Zeng2.OW performs better for estimating ASCE. The same pattern
appears in Table 5. Consequently, in terms of SPCE and RACE, OW consistently
outperforms IPW with a decreased absolute bias and RMSE, as well as coverage
closer to nominal at all sample size levels.

Under the assumption that censoring due to treatment switching is ignorable
conditional on the covariates and administrative censoring is completely ignorable,
Cox2.MSM.COV.IPW and Cox2.MSM.COV.OW maintains the smallest bias, largest ef-
ficiency, and closest to nominal coverage across all types of estimands compared to
all other estimators. All in all, the MSMs with covariates are more efficient than
other estimators regardless of the degree of overlap or the value of censoring rates
because survival outcomes are correctly specified.

3.3.3 Scenario 3:

Under covariate-dependent censoring due to both administrative and treatment
switching, in this thesis, two censoring weights are considered. The final weight
(i.e., ω̂) is accomplished by multiplying the treatment and two censoring weights.
Using the Marginal Structural Cox Model, one can estimate all estimands (ASCE,
RACE, and SPCE). Furthermore, the non-parametric Zeng’s methods considering
both types of covariate-dependent censoring extended to adjust selection bias due
to the covariate-dependent censoring.

Figures 11–14 depict the absolute bias, RMSE, and coverage probability of
the 95 percent confidence interval for the OW-based and IPW-based estimators,
where both types of censoring are covariate-dependent. Although MSMs that in-
clude only treatment’s weight (i.e. Cox.MSM.COV.IPW and Cox.MSM.COV.OW) and
MSMs that consider treatment and switching weight (i.e. Cox2.MSM.COV.IPW and
Cox2.MSM.COV.OW) have been developed depending on different censoring assump-
tions, we use them to compare the performance of the all estimators.

As expected, Cox3.MSM.COV.OW across all three estimands (SPCE, RACE, and
ASCE), consistently outperforms alternative estimators with less absolute bias
and RMSE, as well as coverage that is closer to the nominal value, regardless of
the degree of overlap. This is because Cox3.MSM.COV.OW computes employing two
censoring weights, and also because all models are correctly specified. While the
empirical coverage of IPW-based approaches declines in the absence of overlap,
the empirical coverage of OW-based methods remains robust. Although extended
Zeng’s method considers two censoring weights, it results in a higher absolute
bias, RMSE for estimating ASCE and RACE when the censoring rate is small.
In contrast, by increasing sample size and censoring rates (from 25 percent to 50
percent), the performance of Zeng3.OW in estimating ASCE improves, whereas it is
not efficient in estimating RACE. Compared to the proposed weighted estimators
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Figure 7: Scenario 2: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatments under good
overlap for Scenario 2 and Scenario 1.
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Figure 8: Scenario 2: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatments under good
overlap for Scenario 2 and Scenario 3.
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Figure 9: Scenario 2: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatment under poor
overlap for Scenario 2 and Scenario 1.
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Figure 10: Scenario 2: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatment under poor
overlap for Scenario 2 and Scenario 3.
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Table 5: Scenario 2: Absolute bias, root mean squared error (RMSE) and cover-
age for comparing two treatments under different degrees of overlap (good, poor),
different sample size (100, 300, 500) and various censoring rate (25%, 50%) when
switching censoring is covariate-dependent and administrative censoring is com-
pletely independent

MSM+COV MSM Zeng

sample Absolute Bias RMSE 95% Coverage Absolute Bias RMSE 95% Coverage Absolute Bias RMSE 95% Coverage
size IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW

Good overlap-25% censoring rate
RACE 100 0.03 0.04 0.13 0.10 100.00 100.00 0.40 0.46 0.75 0.63 96.80 92.40 2.00 1.51 2.57 1.86 74.40 73.00

300 0.03 0.03 0.06 0.05 100.00 100.00 0.43 0.42 0.61 0.50 87.00 69.60 2.13 1.61 2.35 1.74 45.00 34.40
500 0.03 0.04 0.05 0.05 100.00 100.00 0.43 0.41 0.55 0.47 79.20 53.60 2.19 1.64 2.33 1.73 20.40 13.40

Good overlap-50% censoring rate
RACE 100 0.38 0.26 0.56 0.39 100.00 99.80 0.05 0.03 0.36 0.21 96.00 95.40 1.90 1.58 2.74 2.20 77.00 78.20

300 0.40 0.27 0.47 0.32 100.00 99.40 0.07 0.05 0.20 0.12 96.40 95.20 2.00 1.67 2.29 1.86 53.20 47.40
500 0.38 0.26 0.41 0.28 100.00 99.80 0.05 0.03 0.15 0.09 97.00 96.60 2.07 1.67 2.24 1.78 29.60 25.20

Poor overlap-25% censoring rate
RACE 100 0.07 0.00 0.20 0.04 100.00 87.66 0.82 0.24 1.29 0.30 82.37 88.92 1.44 0.18 2.97 0.37 94.46 91.18

300 0.08 0.00 0.13 0.02 100.00 94.40 0.59 0.24 1.02 0.27 72.20 51.20 1.49 0.18 2.20 0.24 90.80 86.80
500 0.07 0.00 0.11 0.01 100.00 96.60 0.41 0.25 0.87 0.26 74.80 24.20 1.39 0.17 1.86 0.21 86.40 78.40

Poor overlap-50% censoring rate
RACE 100 0.36 0.03 0.73 0.09 97.60 83.60 0.20 0.00 0.47 0.07 87.20 94.80 1.79 0.27 4.29 0.61 93.60 88.18

300 0.39 0.04 0.58 0.06 99.00 80.40 0.10 0.00 0.45 0.03 77.00 96.60 1.79 0.24 2.77 0.35 87.60 82.20
500 0.35 0.04 0.51 0.05 98.00 79.80 0.12 0.00 0.34 0.02 72.40 96.80 1.73 0.23 2.44 0.30 79.80 75.80

Good overlap-25% censoring rate
SPCE 100 0.02 0.02 0.02 0.02 100.00 100.00 0.06 0.08 0.10 0.10 94.60 86.00 0.18 0.15 0.24 0.19 78.80 79.20

300 0.01 0.02 0.02 0.02 100.00 100.00 0.07 0.07 0.08 0.08 80.40 52.20 0.19 0.16 0.22 0.18 54.00 49.40
500 0.01 0.02 0.02 0.02 100.00 100.00 0.07 0.07 0.08 0.08 68.00 36.20 0.20 0.16 0.22 0.18 26.80 23.20

Good overlap-50% censoring rate
SPCE 100 0.10 0.08 0.14 0.11 99.60 99.40 0.02 0.02 0.09 0.07 96.40 96.80 0.21 0.20 0.28 0.26 72.40 74.40

300 0.10 0.08 0.12 0.09 100.00 99.80 0.03 0.03 0.06 0.05 92.20 92.40 0.22 0.21 0.24 0.23 42.40 38.00
500 0.10 0.08 0.11 0.08 100.00 99.60 0.03 0.02 0.05 0.04 92.20 90.20 0.22 0.21 0.24 0.22 18.40 16.00

Poor overlap-25% censoring rate
SPCE 100 0.00 0.01 0.02 0.02 100.00 96.98 0.09 0.09 0.15 0.11 83.88 83.63 0.13 0.03 0.30 0.09 94.96 94.21

300 0.00 0.01 0.01 0.01 100.00 97.60 0.06 0.09 0.12 0.10 75.40 35.80 0.13 0.03 0.22 0.06 92.80 94.80
500 0.00 0.01 0.01 0.01 100.00 98.80 0.04 0.09 0.10 0.10 78.60 13.60 0.13 0.03 0.18 0.05 90.00 89.40

Poor overlap-50% censoring rate
SPCE 100 0.07 0.01 0.16 0.05 92.80 93.40 0.07 0.00 0.13 0.05 85.40 96.40 0.24 0.09 0.46 0.18 90.80 85.37

300 0.09 0.02 0.13 0.03 95.60 96.00 0.04 0.00 0.11 0.03 75.80 96.40 0.24 0.08 0.32 0.11 83.00 76.40
500 0.08 0.02 0.12 0.03 95.80 96.00 0.04 0.00 0.09 0.02 71.40 96.00 0.24 0.08 0.30 0.10 70.60 66.20
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of MSMs (i.e. Cox3.MSM.COV.OW, Cox3.MSM.COV.IPW), the rest estimators, as
expected, are frequently less efficient and have less than nominal coverage.

Based on covariate-dependent assumptions of both censoring mechanisms, the
absolute bias, RMSE, and coverage probability of the 95 percent confidence interval
for the OW, and IPW estimators are presented in Table 6. OW performs better
than IPW in terms of SPCE and RACE, with reduced absolute bias and RMSE
and coverage closer to nominal for all sample sizes. Due to extreme propensity
scores, the IPW estimator is susceptible to having a lack of overlap in general.
Consequently, this leads to extremely large bias and variation and low coverage
in most cases. In this regard, OW is superior to IPW in terms of both bias and
variance, demonstrating that it is the more effective method. Compared to the
IPW estimator, the coverage provided by the OW estimator is less sensitive to
the presence or absence of overlap. The same as Figures 11–14, Cox3.MSM.COV.OW
across SPCE and RACE, consistently outperforms alternative methods in Table 6.
Then, the MSMs without covariate perform well in terms of RACE when compared
to extended Zeng’s method. However, extended Zeng’s methods improve SPCE
results when the overlap is poor. In general, extended Zeng’s methods have higher
RMSE despite the degree of overlap and censoring rate.

3.3.4 Misspecification

When conducting a simulation study, it is desirable to generate the data in such a
way that the correct form of any analysis model to be fitted to those data is known
so that we know that the analysis model is correctly specified. This is important
since we wished to use a simulation study to assess the performance of causal
estimands when the models for the censoring weights are misspecified in some way.
It would be essential to know that the MSM itself is correctly specified so that
any bias in the estimates can be attributed to the misspecification of the models
used for the censoring weights. Building upon this investigation, our objective is
to investigate how robust are the estimators in the presence of misspecification
of censoring weights under the assumption of Scenario 3 (i.e., both types of
censoring are covariate-dependent) and various degrees of overlap (good, poor),
censoring rate (25%, 50%) and sample sizes (100,300,500).

The process of generating data with two covariate-dependent censoring mech-
anisms is the same as Scenario 3 explained in Subsection 3.1. We explore a
framework for assessing bias and RMSE of causal estimands with omitted some
covariates and different specifications in IPCW. To do so, we consider
(a) omission (X1, X3) in constructing IPCW.
(b) different specification form of main effects in constructing IPCW:

X1 +X2 +X3 +X4 +X1
2 +X4 ×X2
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Figure 11: Scenario 3: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatment under good
overlap for Scenario 3 and Scenario 1.
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Figure 12: Scenario 3: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatment under good
overlap for Scenario 3 and Scenario 2.
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Figure 13: Scenario 3: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatment under poor
overlap for Scenario 3 and Scenario 1.
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Figure 14: Scenario 3: Absolute bias, root mean squared error (RMSE) and
coverage of the 95% confidence interval for comparing two treatment under poor
overlap for Scenario 3 and Scenario 2.
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Table 6: Scenario 3: Absolute bias, root mean squared error (RMSE) and cover-
age for comparing two treatments under different degrees of overlap (good, poor),
different sample size (100, 300, 500) and various censoring rate (25%, 50%) when
both types of censoring are covariate-dependent.

MSM+COV MSM Zeng

sample Absolute Bias RMSE 95% Coverage Absolute Bias RMSE 95% Coverage Absolute Bias RMSE 95% Coverage
size IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW IPW OW

Good overlap-25% censoring rate
RACE 100 0.51 0.36 0.59 0.42 100.00 99.60 0.75 0.25 1.56 0.78 87.60 93.20 1.59 2.26 7.84 6.36 93.20 94.40

300 0.42 0.30 0.46 0.33 100.00 99.80 0.67 0.24 1.44 0.65 85.20 90.40 2.72 2.96 5.32 4.40 92.40 89.00
500 0.36 0.26 0.40 0.28 100.00 99.80 0.85 0.32 1.48 0.66 78.00 87.20 2.35 2.76 4.25 3.87 91.00 85.60

Good overlap-50% censoring rate
RACE 100 0.59 0.42 0.70 0.51 99.80 99.40 0.57 0.19 1.64 0.86 91.00 94.60 0.62 1.11 7.35 4.96 91.80 96.60

300 0.49 0.35 0.55 0.40 100.00 99.40 0.25 0.11 1.35 0.72 90.20 92.20 0.98 1.54 4.19 3.36 95.20 95.60
500 0.46 0.33 0.51 0.37 100.00 99.00 0.13 0.05 1.25 0.65 88.40 91.00 0.72 1.30 3.02 2.45 96.20 95.80

Poor overlap-25% censoring rate
RACE 100 0.61 0.07 0.80 0.10 99.80 64.60 2.75 0.04 3.05 0.08 37.20 92.60 4.01 0.73 13.57 1.71 97.00 95.80

300 0.57 0.07 0.68 0.09 99.40 42.60 2.90 0.04 3.11 0.06 21.40 71.80 4.58 0.70 9.20 1.04 98.00 95.00
500 0.51 0.07 0.60 0.08 100.00 27.80 2.95 0.04 3.18 0.04 18.20 59.00 4.92 0.68 8.32 0.88 99.00 91.80

Poor overlap-50% censoring rate
RACE 100 0.63 0.04 0.97 0.11 98.80 80.20 2.64 0.07 2.96 0.12 41.20 89.80 3.50 0.56 13.31 1.72 96.79 95.20

300 0.56 0.07 0.80 0.11 99.20 58.20 2.21 0.06 2.51 0.09 40.20 80.00 3.56 0.56 9.77 0.97 96.40 97.80
500 0.60 0.08 0.78 0.11 97.80 46.40 1.93 0.05 2.24 0.07 42.60 77.40 3.54 0.59 7.17 0.87 95.00 91.40

Good overlap-25% censoring rate
SPCE 100 0.07 0.05 0.09 0.07 100.00 100.00 0.12 0.06 0.24 0.17 86.20 91.40 0.05 0.02 0.52 0.48 93.80 96.40

300 0.06 0.04 0.07 0.05 100.00 100.00 0.11 0.06 0.21 0.14 82.20 89.20 0.01 0.06 0.33 0.29 95.80 97.00
500 0.05 0.04 0.06 0.04 100.00 100.00 0.13 0.07 0.20 0.13 75.60 84.80 0.01 0.04 0.25 0.23 95.80 96.60

Good overlap-50% censoring rate
SPCE 100 0.08 0.06 0.10 0.08 100.00 100.00 0.11 0.05 0.30 0.20 88.00 93.40 0.07 0.04 0.51 0.42 89.80 90.80

300 0.07 0.06 0.09 0.07 100.00 100.00 0.05 0.02 0.27 0.20 87.60 89.80 0.04 0.00 0.27 0.25 92.20 93.60
500 0.07 0.06 0.08 0.07 100.00 100.00 0.02 0.00 0.26 0.18 86.20 88.00 0.05 0.01 0.20 0.18 92.80 95.00

Poor overlap-25% censoring rate
SPCE 100 0.08 0.02 0.11 0.04 99.60 94.60 0.47 0.04 0.50 0.06 31.00 95.00 0.06 0.07 0.91 0.32 96.20 97.00

300 0.08 0.02 0.10 0.03 99.80 87.00 0.47 0.04 0.50 0.05 16.00 72.80 0.18 0.09 0.71 0.20 97.20 98.00
500 0.07 0.02 0.09 0.02 99.80 84.80 0.47 0.03 0.49 0.04 14.60 62.40 0.19 0.10 0.51 0.16 97.20 95.20

Poor overlap-50% censoring rate
SPCE 100 0.08 0.01 0.14 0.05 98.00 97.20 0.52 0.05 0.57 0.10 32.80 87.60 0.00 0.04 0.79 0.32 97.19 96.20

300 0.08 0.02 0.12 0.04 98.40 92.40 0.47 0.06 0.53 0.08 33.00 75.20 0.10 0.06 0.77 0.18 95.40 98.00
500 0.09 0.02 0.12 0.04 99.40 91.20 0.43 0.05 0.49 0.07 36.60 74.60 0.10 0.07 0.51 0.15 95.00 97.20
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as a exploratory sensitivity analysis using our simulation structure to assess how
bias and RMSE of causal estimands vary under various forms of IPCW.

Figures 15–20 display the performance of estimators computed by MSMs with
and without covariates and Zeng’s methods in the presence of omission and/or
misspecification of main effects. Furthermore, in Figures 21–24, we present ab-
solute bias and RMSE comparing two treatments with various degrees of overlap
and a censoring rate of 50 percent. The results of the 25 percent censoring rate are
reported in the Supplementary Material (SM.2). Specifically, Z1-Z2 are Zeng3.IPW
and Zeng3.OW under the correct specification of IPCW. Z3-Z4 are Zeng’s methods
(IPW-OW) computed through omission of (X1, X3). Z5-Z6 are Zeng’s methods
(IPW-OW) under a different specification form of IPCW. In addition, MC1-MC2
are displayed as Cox3.MSM.COV.... under IPW and OW with the correct IPCW
specification. In MC3-MC4, we utilized MSMs with covariates under omission,
however in MC5-MC6, we used MSMs with covariates under a different IPCW
specification. Furthermore, M1 and M2 are MSMs without covariates giving the
correct form of IPCW. M3-M4 compute MSMs without covariates under omission,
whereas M5-M6 are MSMs without covariates under a different IPCW form.

As expected, by omitting some main effects and different specification forms of
IPCW, the performance of all methods deteriorated (see Figures 15–20), demon-
strated by the larger bias and RMSE regardless of the degree of overlaps, censoring
rates and same sizes. However, MSMs with covariates are more robust and Zeng’s
methods are so sensitive to misspecification assumptions.

3.3.5 Proportionality

To do a sensitivity analysis in terms of proportionality assumption, we generate
four covariates: Xi = (X1i, X2i, X3i, X4i)

⊤ where(
X1i

X2i

)
∼ Normal

{(0
0

)
,

(
2 0.5

0.5 2

)}
,

Xi4 ∼ Bernoulli(0.5) and Xi3 ∼ Bernoulli(0.6Xi4 +0.4(1−Xi4)). We consider two
treatment groups, with the true propensity score model given by logit(ei) = X̃⊤

i β
where X̃i = (1, X⊤

i )
⊤. Set β = (−0.1Ψ,−0.9Ψ,−0.3Ψ,−0.1Ψ,−0.2Ψ)⊤ where

Ψ = 1 and Ψ = 5 represent good and poor overlap between groups, respectively.
The model to generate potential survival times is an accelerated failure time

model that violates the proportional hazards assumption. Specifically, Yi is drawn
from a log-normal distribution

log{Yi} ∼ N(µ, σ2 = (0.81)2),

where µ = 2.25− γZi −X⊤
i α with γ = 1 and α = (0, 2, 1.5,−1, 1)⊤. We simulated

500 Monte Carlo repetitions for each simulation setting and averaged the results.
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(b) 50% censoring rate

Figure 15: Absolute bias, root mean squared error (RMSE) using MSMs with
covariates under correct form, omission and different specification of covariates in
IPCW for comparing two treatment under good overlap.
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(a) 25% censoring rate
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(b) 50% censoring rate

Figure 16: Absolute bias, root mean squared error (RMSE) using MSMs without
covariates under correct form, omission and different specification of covariates in
IPCW for comparing two treatment under good overlap.
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(a) 25% censoring rate
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(b) 50% censoring rate

Figure 17: Absolute bias, root mean squared error (RMSE) using Zeng’s method
under correct form, omission and different specification of covariates in IPCW for
comparing two treatment under good overlap.
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(a) 25% censoring rate
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(b) 50% censoring rate

Figure 18: Absolute bias, root mean squared error (RMSE) using MSMs with
covariates under correct form, omission and different specification of covariates in
IPCW for comparing two treatment under poor overlap.
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(a) 25% censoring rate
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(b) 50% censoring rate

Figure 19: Absolute bias, root mean squared error (RMSE) using MSMs without
covariates under correct form, omission and different specification of covariates in
IPCW for comparing two treatment under poor overlap.
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(a) 25% censoring rate
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(b) 50% censoring rate

Figure 20: Absolute bias, root mean squared error (RMSE) using Zeng’s method
under correct form, omission and different specification of covariates in IPCW for
comparing two treatment under poor overlap.
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Figure 21: Absolute bias comparing two treatment under good overlap and 50%
censoring rate using Zeng’s method, MSMs with and without covariates under
correct form, omission and different specification of IPCW.
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Figure 22: RMSE comparing two treatment under good overlap and 50% censoring
rate using Zeng’s method, MSMs with and without covariates under correct form,
omission and different specification of IPCW.
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Figure 23: Absolute bias comparing two treatment under poor overlap and 50%
censoring rate using Zeng’s method, MSMs with and without covariates under
correct form, omission and different specification of IPCW.
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Figure 24: RMSE comparing two treatment under poor overlap and 50% censoring
rate using Zeng’s method, MSMs with and without covariates under correct form,
omission and different specification of IPCW.
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The sample size varies n = (100, 300, 500) and we fix the evaluation point t = 10
for estimating SPCE and RACE. Furthermore, we evaluate the performance of the
models in terms of the absolute bias and root mean squared error (RMSE) corre-
sponding to each estimator. In addition, under covariate-dependent censoring, due
to both censoring mechanisms, we generate administrative censoring (Ci) from a
Weibull survival model with a hazard rate

hc(t|Xi) = λcνct
νc−1 exp{X⊤

i αc + Ziγ}

and Si is generated from a Weibull survival model with hazard rate

hs(t|Xi) = λSνSt
νS−1 exp{X⊤

i αS + Ziγ}.

According to the design of Simulation study in Scenario 3 (Subsection 3.1), we
consider same values for λc, λs, νc, νs and αs, αc so that censoring rate is roughly
25% or 50%.

In Figure 25–28, we compare two treatments with good overlap and a censoring
rate of 50 percent under the assumption of non-proportional hazards, illustrating
absolute bias and RMSE. Interestingly, the Cox3.MSM.COV.OW has a lower bias
and RMSE for all three estimands, despite the proportional hazards assumption
no longer being valid. In terms of RMSE, Zeng’s methods for estimating SPCE and
RACE are effective. Nevertheless, these nonparametric estimators are frequently
less accurate in bias, regardless of sample size, censoring rate, or overlap degree.
Across all types of estimands, OW-based estimators maintain the smallest bias
and highest efficiency.

Figures SM–5–SM–12 (in Supplementary Material SM.2) provide general overview
across 500 iteration of MSMs with and without covariates as well as Zeng’s method
in estimating three estimands. Regarding some notations in Figures SM–9–SM–12,
Z1-Z2 are Zeng’s methods (i.e. Zeng3.IPW-Zeng3.OW). Furthermore, MC1-MC2
are shown as Cox3.MSM.COV... under IPW and OW. Moreover, MSMs without
covariates (i.e. Cox3.MSM.IPW-Cox3.MSM.OW) are noted as M1-M2. In general,
MSMs with covariates continue to be robust and efficient across all types of esti-
mands in terms of bias and variance despite the proportional hazards assumption
no longer be valid.

3.4 Discussion:

By running simulation studies in different Scenarios, we assess the sensitivity of all
estimators under the censoring mechanism’s key assumptions. To deal with both
observed confounding and covariate-dependent censoring, Marginal Structural Cox
models work well. Mainly, in the presence of two different covariate-dependent
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Figure 25: Absolute bias and RMSE comparing two treatment under good overlap
and 25% censoring rate using Zeng’s method, MSMs with and without covariates
under non-proportional hazards assumption.
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Figure 26: Absolute bias and RMSE comparing two treatment under poor overlap
and 25% censoring rate using Zeng’s method, MSMs with and without covariates
under non-proportional hazards assumption.

100



100 200 300 400 500

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

SPCE

Sample size

B
IA

S

100 200 300 400 500

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

RACE

Sample size

B
IA

S

100 200 300 400 500

2
4

6
8

ASCE

Sample size

B
IA

S

100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

SPCE

Sample size

R
M

S
E

100 200 300 400 500

0
2

4
6

8

RACE

Sample size

R
M

S
E

100 200 300 400 500

0
5

10
15

20

ASCE

Sample size

R
M

S
E

Cox3.MSM.COV.IPW
Cox3.MSM.COV.OW

Cox3.MSM.IPW
Cox3.MSM.OW

Zeng3.IPW
Zeng3.OW

Figure 27: Absolute bias and RMSE comparing two treatment under good overlap
and 50% censoring rate using Zeng’s method, MSMs with and without covariates
under non-proportional hazards assumption.
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Figure 28: Absolute bias and RMSE comparing two treatment under poor overlap
and 50% censoring rate using Zeng’s method, MSMs with and without covariates
under non-proportional hazards assumption.
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censoring mechanisms, Cox3.MSM.COV.OW is more efficient than the alternative
estimators across all three estimands (SPCE, RACE, and ASCE). Even in the
presence of a non-proportionality assumption and misspecification of censoring
weights, the estimator computed by MSM with all main effects remains more ef-
ficient than alternative approaches, as determined by two exploratory sensitivity
analyses utilizing our simulation study. In general, estimators based on OW per-
form well across all criteria. The results help us to determine which method is
most effective in resolving research questions with the MS data set.

In our data set, there are two types of censoring: administrative censoring and
censoring due to switching treatment. In the presence of staggered entry (i.e.,
with a varying start of follow-up date) and not-fixed end of follow-up, adminis-
trative censoring is unlikely to be CCAR (censoring completely at random). This
is because censoring time for all patients is not fixed, and it depends on patient
characteristics in our case. For instance, young adults are at higher risk of suffering
from MS and need treatment than older adults. This implies that the event is often
observed in younger than in old patients. In addition, censored event times due to
non-administrative reasons such as treatment switching is unlikely to be CCAR.
This is because, in our data set, lack of efficacy, side effects, risk of long-term
adverse events, and pregnancy may cause individuals to switch treatments. Con-
sequently, the two censoring mechanisms may be driven by different covariates or
are more or less likely ignorable. For instance, the higher EDSS, the more disabled
a patient is. Thus, it is likely that the type of treatment is changed according to
the values of EDSS. On the other hand, patients with low EDSS at the beginning
of the study and having stable EDSS during follow-up are likely to neither worsen
the disease nor switch the treatment. Besides, all other main effects (Age,ARR pre,
Disease durat, Dummy EDSS, Gender, PI pre, Relaps pre, Relapse Dummy, Year)
make likely that the two censoring mechanisms are ignorable suggested to consider
different specifications for the weights for the two censoring mechanisms. Thus, it
seems that using the proposed weights in the Marginal Structural Cox model is the
reasonable option to assess the effectiveness of two treatments in real application.
Due to the proper performance of Marginal Structural Cox models with all main
effects, we will consider it in the real application. It is worth noting that using
censoring weights (both administrative and switching) generally makes the cen-
soring assumption more plausible, thereby leading to a higher chance of obtaining
the best fit via MSMs based on the proportionality assumption. Therefore, in the
real application, we must assess this assumption while analyzing the MS data set.
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Chapter 6

Real Application (Part I)

In this chapter, we are interested in assessing the effectiveness of two treatments
(INF and AZA) on time to the first worsening of the MS disease based on the
Marginal Structural Cox Model. We consider all main effects in constructing
censoring weights to prevent overfitting or improve model fit in a meaningful way.
After considering the main effects, functional forms of covariates are examined
by Martingale and Deviance residuals as well as backward stepwise regression to
include in the Cox model constructing censoring weights. Finally, we apply weights
in the Marginal structural cox model to assess the efficiency of Interferon (INF)
and Azathioprine (AZA) on time to the first worsening of the MS disease.

1 Descriptive and preliminary analysis

Multiple Sclerosis (MS) is a potentially disabling disease of the brain and spinal
cord (central nervous system). MS symptoms vary mainly depending on the extent
of nerve damage and which nerves are impacted. Multiple sclerosis has no known
cure. Treatment primarily focuses on accelerating recovery after attacks, reducing
disease progression, and controlling MS symptoms.

The goal of this study is to examine the efficacy of two treatments: Inter-
feron (INF) and Azathioprine (AZA) on time to the first worsening of the disease.
594 patients were enrolled between 1981 and 2019 in an observational study in
Italy. The description of the data set is presented in Chapter 2. As shown in
Chapter 2 and Figure 1, some patients switched from one treatment to another
multiple times due to lack of efficacy, side effects, risk of long-term adverse events,
and pregnancy. Some covariates are recorded for each unit in this study, and their
summary statistics are presented in Table 1. Furthermore, some box plots for
covariate are prepared in Figure 2. Clearly, there are some statistical differences
between the two treatment arms in some covariates. A primary outcome in this
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Figure 1: The schema of data set

Total observation
594

INF AZA
215379

Due to Missing 

Completely at Random 

assumption, we focus on 

Complete Cases 

Total observation = 562

AZA= 211INF= 351

study is the “time to the first worsening of the disease”. In detail, we
focus on Progression-Free Survival (PFS), which is the time from treatment
initiation until disease progression or worsening. Summary statistics for PFS are
illustrated in Table 2.

The staggered entry in our study indicates that the start of follow-up for indi-
viduals is varied, leading the time to the first worsening to be subject to censoring
due to the end of the follow-up (i.e. administrative censoring). Therefore, admin-
istrative censoring is unlikely to be CCAR. This is because censoring time is not
fixed for all patients, and it depends on patient characteristics. Additionally, it
is doubtful that censored event times due to non-administrative reasons, such as
treatment switching, are CCAR. This is due to the fact that, according to our
data set, lack of efficacy, side effects, the risk of a long-term adverse event, and
pregnancy may cause patients to switch treatments. As a result, the two censoring
mechanisms may be influenced by covariates. In the presence of two dependent-
censoring mechanisms in the observational study, in this thesis, we are interested
in assessing the effectiveness of the treatments as initially administered. Therefore
we consider all patients’ first records.

Unadjusted survival curves of the two treatments of Multiple Sclerosis (MS)
disease are shown in Figure 3. The log-rank test is used to test the null hypothesis
that there is no difference between the populations in the probability of an event
(here, a worsening of the disease) at any time. According to the output of Table
3, there is no reason to reject the null hypothesis.

105



Table 1: Summary statistics of covariates for all units (N = 562)

Covariates median mean sd description X̄AZA X̄INF Z.test P.value

Age 34.00 35.5 10.20 Age 36.45 34.92 -1.71 0.08

ARR pre 0.53 1.31 4.59 Annualized Relapse Rate (ARR): 0.83 1.60 2.46 0.01
average number of attacks per year

Disease durat 48.00 73.80 73.2 Disease duration (months) 85.62 66.67 -2.83 0.00

Dummy EDSS 0.00 0.08 0.27 0 if Baseline.EDSS < 4 and 1 otherwise 0.08 0.08 0.00 1

Baseline.EDSS 1.50 1.64 1.34 Expanded Disability Status Scale 1.80 1.54 32479 0.01
(EDSS ∈ (0, 10))

Gender 1.00 0.71 0.46 0 for Male and 1 for Female 0.71 0.70 0.00 0.93

PI pre 0.28 0.99 2.81 The progression index 0.75 1.14 1.81 0.07

Relaps pre 2.00 2.71 2.37 Number of relapse before therapy 2.85 2.63 -1.08 0.27

Relapse Dummy 0.00 0.03 0.17 1 if Relapse pre is missing and 0 otherwise 0.03 0.03 0.06 0.79

Year 2005 2004.30 5.86 The year of treatment started 2002.68 2005.44 5.29 0.00

Table 2: Summary statistics for Progression Free Survival (PFS) in months

25th 75th administrative switching median median
Outcome min max quantile median quantile censoring rate censoring rate INF AZA

PFS 2 196 18.25 41 72 0.64 0.12 37 48

Table 3: Log rank test

Treatment
INF AZA

N 351 211
Observed (O) 83 49
Expected (E) 77.4 54.6
(O − E)2/E 0.412 0.584
(O − E)2/V 1.02 1.02

p-value = 0.3
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Figure 2: Box plots of Covariates
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Figure 3: Survival curves of the two treatments of Multiple Sclerosis (MS) disease (unadjusted)
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2 Construct weights and diagnostics for assess-

ing the modeling assumptions

Introducing novel weights in Marginal Structural Cox models to adjust for both
observed confounding and dependent-censoring is the core of this thesis. The
parameters of a marginal structural model can be consistently estimated using
weighted estimators. To do so, this section describes how to construct weights and
diagnostics for assessing assumptions in the assignment mechanism (Subsection
2.1) and the censoring mechanism (Subsection 2.2).

2.1 The weights for causal effect estimation

In the context of weighting methods, it is common to use logistic regression to
estimate the propensity score that is later used to form the weights. In practice,
we usually do not know the proper form of the propensity score model. The
typical work is to start with logistic regression with the main effects of all the
covariates. To choose which interaction and higher-order should be included, it
is common to use computationally faster forward, backward, and hybrid stepwise
approaches. All available criteria have in common that they prevent overfitting by
penalizing models that contain many predictors unless these improve model fit in
a meaningful way. Where stepwise regression must be used, backward elimination
is generally preferable to forward selection as it has been shown to perform better
(particularly in the presence of collinearity) and forces the researcher to start
with a fully fitted model [Harrell, 2001]. Therefore, the backward selection based
on AIC is performed for choosing the nonlinear terms to include in the models
for the assignment mechanism. The stepwise approach is useful because it is
computationally fast to find the “best” model across all possible models, reducing
the multicollinearity problem, and it is one of the ways to resolve overfitting.

Since the objective is to adjust for all observed confounding variables, it is de-
sirable not to exclude any main effects. However, some selection may be required
to consider higher-order terms and interactions. The results of the backward step-
wise regression based on AIC are shown in Table 4. Accordingly, the “best” PS
model for constructing treatment weight includes the following:
• all main effects: Age, Gender, Baseline.EDSS, Dummy EDSS, Relapse pre,

Relapse Dummy, Disease durat, ARR pre, PI pre, Year

• and some interaction and higher order terms: (Year)2, (Relapse pre)2, (Year)3,
(Baseline.EDSS)3, (Baseline.EDSS)2, (Disease durat)3, (Disease durat)2,
(Relapse pre)3, Dummy EDSS:Baseline.EDSS, Dummy EDSS:ARR pre)

After selecting the specific form of the propensity score model, the balance must
be checked. Utilizing the propensity score is one of the most common methods to
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Table 4: The backward stepwise regression for treatment model

Start: AIC = 715.13
Stop: AIC = 693.55

Df Deviance AIC
< none > 667.55 693.55
− I(Relaps pre3) 1 669.62 693.62
− I(Baseline.EDSS3) 1 669.93 693.93
− I(Disease durat3) 1 670.07 694.07
− I(Relaps pre2) 1 670.21 694.21
−Dummy EDSS:Baseline.EDSS 1 670.74 694.74
− I(Year3) 1 670.88 694.88
− I(Year2) 1 670.89 694.89
−Year 1 670.91 694.91
−Dummy EDSS:ARR pre 1 676.89 700.89

assess the balance of a multivariate distribution. Any imbalance in the population
covariate distributions, whether in expectation, dispersion, or shape, leads to a
difference in the population distributions of correct propensity scores by treatment
status. Thus, we proceed by estimating the propensity score through logistic
regression. After estimating the PS, the overlap (region of common support) of
the distributions of the estimated PS for the treatment and comparison group
should be examined graphically. Figure 5 is provided to check whether there is
sufficient overlap between the two treatment groups or not. It seems there is a
good overlap between the two treatment arms (left side of Figure 5). According to
the Love plot (right side of Figure 5), the standardized differences (mean difference
divided by pooled standard deviation) are reduced substantially after propensity
score weighting adjustment.

To diagnostics for assessing the assumptions of treatment weights, Cole and
Hernán [2008] proposed to check model misspecifications by exploring the distri-
bution of weights. In particular, positivity and no model misspecifications can be
explored by evaluating the sensitivity of inferences to truncating extreme weights,
as illustrated in Tables 6–5 and Figure 4. According to Table 5, the mean sta-
bilized weight was equal to 0.99, while the standard deviation of the stabilized
weights was equal to 0.44. The minimum and maximum weights were 0.38 and
5.95, respectively. There was no evidence of non-positivity or misspecification
of the propensity score model based on an examination of the distribution of the
weights derived from the specification of the propensity score model. Furthermore,
Table 6 illustrates that all mean are close to 1.00, and there are no extreme mini-
mum and maximum values. Moreover, Figure 4 confirms a good overlap between
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Table 5: Summary statistics of estimated PS (ê) for each treatment arms and
diagnostics based on the stabilized IPW.

êAZA êINF Stabilized IPW
mean sd mean sd mean sd min max

0.46 0.19 0.33 0.14 0.99 0.44 0.38 5.95

Table 6: Check assumptions based on the stabilized IPW

Truncation Estimated weights
percentiles mean sd min max

0-100 0.99 0.44 0.38 5.95
1-99 1.00 0.44 0.38 5.97
5-95 1.00 0.42 0.41 5.60
10-90 1.00 0.36 0.44 4.08
25-75 1.00 0.29 0.42 3.08
45-55 1.01 0.90 0.50 7.27

the two treatment arms, and these assumptions are held.
By choosing the propensity score model specification and checking the balance,

one can adjust for observed confounders by weighting estimators for causal effects.
The following section addresses the covariate-dependent censoring assumption.

2.2 Censoring weights

The covariate-dependent assumption outlined in Chapter 5 is one of the most
critical assumptions underlying censoring mechanisms. To accomplish this, a mul-
tivariate Cox proportional hazards model must be applied to administrative and
switching censoring. Nevertheless, prior to doing so, the proportional hazards as-
sumption must be held.

Statistical tests and graphical diagnostics can be used based on the scaled
Schoenfeld residuals to check the proportional hazards assumption. The results
are shown in Table 7 and Figures 6–7. From the output of the test, all covariates are
not statistically significant, and the global test is also not statistically significant.
Therefore, we can assume proportional hazards. Theoretically, the Schoenfeld
residuals [Grambsch and Therneau, 1994] are independent of time. We plot the
Schoenfeld residuals against survival times to graphically assess proportionality. If
the assumption is satisfied, the Schoenfeld residuals should approximately scatter
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Distribution Balance for Propensity Scores
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Figure 4: Distribution of balance for Propensity Scores

around 0 [Grambsch and Therneau, 1994]. From the visual inspection (Figures 6–
7), there is no pattern with time. The assumption of proportional hazards appears
to be supported by the covariates.
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Table 7: Test proportional Hazards assumption

administrative censoring switching censoring
Baseline Covariates chisq df p chisq df p
Age 0.02 1.00 0.88 0.11 1.00 0.74
ARR pre 1.06 1.00 0.30 0.30 1.00 0.58
Disease durat 1.25 1.00 0.26 0.50 1.00 0.48
Dummy EDSS 2.21 1.00 0.14 0.49 1.00 0.48
Baseline.EDSS 1.89 1.00 0.17 1.30 1.00 0.25
Gender 0.54 1.00 0.46 0.60 1.00 0.44
PI pre 0.86 1.00 0.35 2.34 1.00 0.13
Relaps pre 0.29 1.00 0.59 0.04 1.00 0.84
Relapse Dummy 0.84 1.00 0.36 0.06 1.00 0.81
Year 0.00 1.00 1.00 3.23 1.00 0.07
GLOBAL 14.39 10.00 0.16 9.51 10.00 0.48
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Figure 6: The Schoenfeld residuals for administrative censoring.
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Figure 7: The Schoenfeld residuals for switching censoring.

After holding the proportionality hazard assumption, a multivariate Cox model
could be utilized for administrative and switching censoring. According to Ta-
bles 8 and 9, both censoring mechanisms are ignorable to different sets of covari-
ates. In the presence of covariate-dependent censoring, as described in Chapter 2,
the most well-known method to deal with is the Inverse Probability of Censoring
Weighted (IPCW). This thesis focuses mostly on correcting selection bias caused
by covariate-dependent censoring by assigning additional weight to individuals who
are not censored for a considerable time. In practice, a Cox proportional hazard
model is assumed, and an inverse probability of censoring weight is applied to the
Cox model score equation. Consequently, using two separate weights to address
assumptions dependent on covariates seems plausible.
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Table 8: covariate-dependent assumption for administrative censoring

beta HR(95% CI) wald.test p.value

Age -0.00 1.00 (0.98-1.00) -0.55 0.58
Gender1 0.08 1.10 (0.79-1.50) 0.48 0.63
Disease durat 0.00 1.00 (1.00-1.00) 0.29 0.77
Baseline.EDSS 0.24 1.30 (1.10-1.50) 2.90 0.00∗∗

Dummy EDSS1 -0.69 0.50 (0.25-0.99) -2.00 0.05∗

Relapse Dummy1 -0.11 0.90 (0.43-1.90) -0.28 0.77
Relaps pre 0.01 1.00 (0.95-1.10) 0.45 0.66
ARR pre -0.01 0.98 (0.88-1.10) -0.28 0.77
PI pre -0.15 0.86 (0.74-1.00) -1.80 0.06.

Year 0.00 1.00 (0.97-1.00) -0.01 0.99

Table 9: covariate-dependent assumption for switching censoring

beta HR(95% CI) wald.test p.value

Age -0.00 0.99 (0.98-1.00) -1.60 0.10
Gender1 -0.09 0.91 (0.75-1.10) -0.91 0.37
Disease durat 0.00 1.00 (1.00-1.00) 0.98 0.33
Baseline.EDSS 0.22 1.20 (1.10-1.40) 4.10 0.00∗∗

Dummy EDSS1 -0.24 0.79 (0.51-1.20) -1.00 0.29
Relapse Dummy1 -0.52 0.59 (0.34-1.00) -1.80 0.06.

Relaps pre -0.00 1.00 (0.96-1.00) -0.11 0.92
ARR pre 0.00 1.00 (0.98-1.00) 0.32 0.75
PI pre -0.03 0.96 (0.92-1.00) -1.70 0.09
Year 0.10 1.10 (1.10-1.10) 11.00 0.00∗∗

Generally, the cox model is used to calculate IPCW for each censoring mecha-
nism, as described in Chapter 5 (Section 2.2). Diagnostics for the Cox model are
required for this purpose (as mentioned in Chapter 4, Section 3).

Martingale residuals are very useful for diagnostics for the Cox model to identify
outliers, choose a functional form for the covariate, etc. Since non-linearity is not
an issue for categorical variables, we only examine plots of martingale residuals
against a continuous variable. Figures SM–13-SM–14 (in Supplementary Mate-
rial) represent Martingale residuals to choose a functional form for the contin-
uous covariate based on administrative and switching censoring. Moreover, we
plot the martingale and deviance residuals to check for possible outliers as dis-
cussed in Therneau et al. [1990]. The large outlier (See Figure 8) is a woman with
Baseline.EDSS equal to 3 assigned to AZA and never switched the treatment,
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yet survived 196 months. Nevertheless, the primary drawback to the martingale
residual is its clear asymmetry (its upper bound is 1, but it has no lower bound).
Therefore, it is necessary to detect outliers by deviance residuals.

A technique for creating symmetric, normalized residuals widely used in gener-
alized linear modelling is “deviance residual”. According to the deviance residual’s
plots (Figures 9), there are no extreme outliers; the largest residuals are only 3
standard deviations away from zero. Furthermore, Figures SM–15-SM–16 (in Sup-
plementary Material) represent Deviance residuals to choose a functional form for
the continuous covariate based on administrative and switching censoring.

In the plot of delta-beta residuals (Chapter 4, Section 3), the estimated changes
in the regression coefficients upon deleting each observation are determined. Com-
paring the magnitudes of the dfbeta values to the regression coefficients (Figures
SM–17-SM–18 in Supplementary Material), none of the observations is influential
individually, even though some of the dfbeta values are rather large.

Although there is some visual inspection of finding the best functional form
of covariates such as Martingale and Deviance residuals (Figures SM–13-SM–16
in Supplementary Material) in constructing IPCW, criteria for model fit, such as
estimates of the expected prediction error obtained via cross-validation, or informa-
tion criteria like the AIC are more useful to compare the extent to which different
regression models fit the data well [Harrell, 2001]. In this regard, some computa-
tionally efficient forward, backward, and hybrid stepwise algorithms are used to
temper concerns about misspecification. It has been demonstrated that backward
elimination performs better than forward selection (especially in collinearity) and
drives the researcher to start with a fully fitted model [Harrell, 2001]. In this
regard, the first possibility is to consider all of the main effects in addition to
some nonlinear terms computed by backward selection. The backward selection
based on AIC is performed for both censoring models. Tables 10–11 are prepared
to display the selected nonlinear terms for both censoring mechanisms. Although
some main effects are eliminated due to backward regression in Tables 10—11, we
maintain all main effects when creating IPCW. It is worth mentioning that the
IPCW is constructed using the Cox model. As a result, the proportional hazards
assumption of all covariates (main effects and nonlinear terms) must be examined.
Table 12 prepared for this manner. All covariates satisfy the individual propor-
tionality test at the 0.05 level, and the model meets the global proportionality test
according to the test results. Consequently, depending on the best-selected form
of covariates, we create the IPCW for each censoring mechanism.
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Figure 8: The Martingale residuals to detect outlier based on (above) administra-
tive censoring and (below) switching the treatment.
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Figure 9: The deviance residuals to detect outlier based on (above) administrative
censoring and (below) switching the treatment.
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Table 10: The backward stepwise regression for administrative censoring model
based on all covariates.

Start: AIC = 2140.521

Stop: AIC = 2124.37

Selected Model:

surv object ∼ Baseline.EDSS+ PI pre+ Dummy EDSS+
Dummy EDSS:Baseline.EDSS

Df AIC

< none > 2124.4
−Dummy EDSS:Baseline.EDSS 1 2127.6
−PI pre 1 2138.1

Table 11: The backward stepwise regression for switching censoring model based
on all covariates.

Start: AIC = 5147.26

Stop: AIC = 5135.97

Selected Model:

surv object ∼ Relapse Dummy+Baseline.EDSS+ PI pre + Year +

Baseline.EDSS:Year + PI pre:Year

Df AIC

< none > 5136.0
−Baseline.EDSS:Year 1 5136.9
−Relapse Dummy 1 5137.8
−PI pre:Year 1 5140.1
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Table 12: Proportional hazards assumption of all covariates

Baseline Covariates chisq df p

Administrative censoring

Age 0.00 1.00 0.99
Gender 0.64 1.00 0.42
Dummy EDSS 3.18 1.00 0.07
Relapse Dummy 0.82 1.00 0.37
Disease durat 1.68 1.00 0.20
Baseline.EDSS 2.81 1.00 0.09
Relaps pre 0.24 1.00 0.63
ARR pre 0.96 1.00 0.33
PI pre 0.85 1.00 0.36
Year 0.00 1.00 0.99
Dummy EDSS:Baseline.EDSS 3.46 1.00 0.06
GLOBAL 17.51 11.00 0.09

Switching censoring

Age 0.04 1.00 0.83
Gender 0.89 1.00 0.35
Dummy EDSS 1.50 1.00 0.22
Relapse Dummy 0.05 1.00 0.83
Disease durat 0.01 1.00 0.92
Baseline.EDSS 2.69 1.00 0.10
Relaps pre 0.01 1.00 0.91
ARR pre 1.66 1.00 0.20
PI pre 0.04 1.00 0.84
Year 3.67 1.00 0.06
Baseline.EDSS:Year 2.67 1.00 0.10
PI pre:Year 0.04 1.00 0.84
GLOBAL 8.97 12.00 0.71
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3 Application of Marginal Structural Model to

the MS dataset

The marginal structural model is an effective method for providing consistent
causal effect estimators. To calculate the survival probability to assess the relative
effectiveness of two Treatments: Interferon (INF) and Azathioprine (AZA) on
Progression-Free Survival (PFS), consider the following steps:

1. Fit a logistic regression model with

logit(Pr(Z = 1 | X)) = δ0 + δ′1X

with X= (Age, Gender, Baseline.EDSS, Dummy EDSS, Relapse pre,

Relapse Dummy, Disease durat, ARR pre, PI pre, Year, (Year)2,

(Relapse pre)2, (Baseline.EDSS)3, (Baseline.EDSS)2, (Disease durat)2,

(Disease durat)3, (Relapse pre)3, (Year)3, Dummy EDSS:Baseline.EDSS,

Dummy EDSS:ARR pre) to estimate the propensity score and then compute as-
signment weights (ωipw

i , ωow
i ) as

Stabilized IPW weights: ωipw
i =

Zi

e(Xi)
+

1− Zi

1− e(Xi)

Overlap weights: ωow
i = (1− Zi) e(Xi) + Zi (1− e(Xi))

2. Fit a Cox proportional hazard model for administrative censoring time

λC(t | Z,X) = λC
0 (t)e

γ1Z+γ′
2X

We consider all main effects as well as some nonlinear terms according to
Table 10 as X=

(
Age, Gender, Baseline.EDSS, Dummy EDSS, Relapse pre,

Relapse Dummy, Disease durat, ARR pre, PI pre, Year,

Dummy EDSS:Baseline.EDSS
)
to compute ωsc

i =
Pr(Ci > t)

Pr(Ci > t | Xi)
.

3. Fit a Cox proportional hazard model for switching censoring time

λS(t|Z,X) = λS
0 (t)e

ν1Z+ν′2X

We consider all main effects as well as some nonlinear terms according to
Table 11 as X=

(
Age, Gender, Baseline.EDSS, Dummy EDSS, Relapse pre,

Relapse Dummy, Disease durat, ARR pre, PI pre, Year, Baseline.EDSS:Year

PI pre:Year
)
to calculate ωss

i =
Pr(Si > t)

Pr(Si > t | Xi)
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4. Assign weights for each unit, i.e. ω̂i = ωipw
i ×ωss

i ×ωsc
i or ω̂i = ωow

i ×ωss
i ×ωsc

i

5. Fit Marginal Structural Cox model

h(t|Zi) = h0(t) exp
{
Xiα

⊤ + γZi

}
6. Calculate the survival probability Ŝ(t|Zi) specific to each treatment.

7. Finally, for each pre-specified time point (t∗), calculate causal estimands
as

∆RACE =

∫ t∗

0

Ŝ1(t)dt−
∫ t∗

0

Ŝ0(t)dt

∆SPCE = Ŝ1(t
∗)− Ŝ0(t

∗)

4 Results

We illustrate the performance of the proposed weighting estimators by comparing
two treatments for MS observational data set. The median and maximum follow-
up times are 41 and 196 months, respectively.

Figures 10 depict estimated causal survival curves using the Marginal Struc-
tural Cox Model. Importantly, Figure 10(c) is shown based on unadjusted sam-
ples and Figures 10(a)–10(b) illustrate the survival curves for two treatments after
adjustment. According to the results, the AZA shows a slightly more survival
benefit during the follow-up. Nonetheless, the estimated causal survival curves
among the two target populations are generally similar. Furthermore, Figures
11 characterized the SPCE and RACE as a function of time t with the associated
95% confidence intervals in the pseudo-population (corresponding to IPW) and the
overlap population (corresponding to OW). We have chosen 196 grid points equally
spaced by a month for this evaluation. Figures 11(a) provide some evidence of the
possible beneficial effect of AZA over INF in terms of SPCE and RACE before be-
ing adjusted. After adjusting for observed confounding and dependent-censoring
assumption, both SPCE and RACE show some evidence of a possible beneficial
effect of AZA over INF (See Figures 11(b)). However, all adjusted cases confirm
that the difference is never statistically significant. This is because the confidence
intervals of SPCE and RACE from IPW and OW straddle zero across the entire
follow-up period. Therefore, we can not infer much from the sign of the estimated
coefficients since the confidence intervals cover zero. In general, there is no signif-
icant causal survival benefit of AZA over INF at the 0.05 level. This analysis is
essential because it shows no superiority of INF over AZA when properly adjusting
for confounding and censoring.
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In Table 13, we also reported the SPCE and RACE using the (unadjusted /
adjusted) MSMs at t = 24 months, t = 41 months, i.e. the median of follow-up
and t = 72 months, i.e. the 75th quantile of the follow-up time. Before adjusted,
AZA increased the restricted average causal effect of the population at 24, 41
and 72 months by 0.182, 0.523 and 1.608 months, respectively, improving the
survival probability from 24 to 72 months, around 1.8%-4.5%. However, after
adjusting the pseudo-population (corresponding to IPW), AZA also has expanded
the restricted average causal effect on 24, 41 and 72 months by 0.1, 0.282 and
0.829 months, respectively. It seems that the survival probability increased around
0.8%-2.2% in 24 and 72 months of follow-up. Although there is some benefit of
AZA in decreasing the probability of worsening the disease rate at 24, 41 and
72 months than INF, this difference is not statistically significant. Furthermore,
AZA increased the restricted average causal effect on overlap population at 24,
41 and 72 months by 0.073, 0.195 and 0.566 months, respectively, improving the
survival probability from 24 to 72 months, around 0.5%-1.5%. Since all confidence
intervals of SPCE and RACE from IPW and OW straddle zero, this difference is
not statistically significant. Generally speaking, all methods conclude that there is
no statistically significant difference between AZA and INF in terms of time
to the first worsening of the disease.

4.1 Non-inferiority test

In this section, we would like to assess non-inferiority test when adjusting for
confounding and censoring. Let πINF and πAZA denote the probability that a
patient experiences a progression of disability within two years under INF and
AZA respectively. We are interested in assessing whether the AZA treatment is
not unacceptably less efficacious than the INF treatment. We deal with this issue
by testing the following statistical hypotheses:

H0 : πINF − πAZA ≥ M

H1 : πINF − πAZA < M

where M is the non-inferiority margin, the maximum acceptable extent of clinical
noninferiority of the AZA treatment. The margin must be prospectively defined.
To calculate the Margin, we consider the results of Jacobs et al. [1996], which assess
the efficacy of INF versus placebo on time to sustained progression of disability
for 104 weeks. According to Jacobs et al. [1996], the timing of beneficial effects
of INF was explored by determining the probability of sustained progression onset
occurring in year one and year 2 for patients in the study. Therefore, the Margin
is the difference in survival up to that specific time point (i.e. two years) which is
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Figure 10: Estimates of the survival curves for two treatments using Marginal Structural
Cox Model: (first row) after adjusted by (a) IPW and (b) OW; (second row) (c) before
adjustment.
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Figure 11: Point estimates and 95% confidence intervals of SPCE and RACE as a
function of time using MSMs (a) before adjustment (b) after adjustment
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Table 13: Estimates of the treatment effect using two methods: restricted average causal
effect (RACE) and survival probability causal effect (SPCE) at 24 months, 41 months
(the median of the follow-up time) and 72 months (the 75th quantile of the follow-up
time).

Method Estimate Standard error %95 Confidence interval P.value

24 months
Restricted average causal effect

Unadjusted 0.182 0.176 (-0.183,0.536) 0.284
OW 0.073 0.198 (-0.324,0.529) 0.540
IPW 0.100 0.204 (-0.251,0.515) 0.480

Survival probability causal effect
Unadjusted 0.014 0.014 (-0.015,0.042) 0.284

OW 0.005 0.015 (-0.025,0.036) 0.540
IPW 0.008 0.016 (-0.019,0.042) 0.480

41 months
Restricted average causal effect

Unadjusted 0.523 0.537 (-0.646,1.487) 0.334
OW 0.195 0.543 (-0.811,1.356) 0.914
IPW 0.282 0.608 (-0.801,1.660) 0.824

Survival probability causal effect
Unadjusted 0.028 0.029 (-0.032,0.081) 0.334

OW 0.010 0.028 (-0.039,0.067) 0.902
IPW 0.015 0.032 (-0.041,0.089) 0.786

72 months
Restricted average causal effect

Unadjusted 1.608 1.615 (-1.379,4.895) 0.290
OW 0.566 1.555 (-1.962,3.826) 0.804
IPW 0.829 1.676 (-1.780,4.940) 0.748

Survival probability causal effect
Unadjusted 0.045 0.045 (-0.037,0.141) 0.290

OW 0.015 0.042 (-0.055,0.103) 0.828
IPW 0.022 0.044 (-0.044,0.127) 0.726
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computed as

M =
0.349− 0.219

2
=

0.13

2
= 0.065.

Hence,

H0 : πINF − πAZA ≥ 0.065

H1 : πINF − πAZA < 0.065 (1)

If the upper bound of the 95% confidence interval for πINF − πAZA is less than M,
we find evidence that AZA is non inferior to INF at 2.5% level. It can be seen
from Table 13 (24 months) that the upper bound of the 95% confidence interval
of SPCE is less than 0.065 for both weighting methods (IPW, OW). So, we conclude
that there is no inferiority of AZA over INF at 2.5% level.
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Chapter 7

Real Application (Part II)

The socioeconomic costs associated with neurodegenerative disorders are a signif-
icant concern for all patients. Depending on the type of treatment and patient
demographic, follow-up periods might range from a few months to over ten years,
and a screening or preventive study could take more than a decade. Although the
cost per patient per year increases dramatically with increasing disability, another
concern may be that AZA is usually not administered for more than ten years.
Some patients may have exceeded this time limit during the follow-up period.
Specifically, the approval of two more effective MS medicines in 2006 and 2011
during the follow-up period may have prompted an earlier switch from first-line
therapy (such as AZA or INF) to more effective ones, hence determining an earlier
treatment switch in the case of inefficacy. These events motivated us to investi-
gate the impact of two treatments on PFS during shorter follow-up periods. It is
important to note that due to outliers and different patients monitored for longer
periods, the results of the previous chapter based on longer follow-ups cannot be
considered for shorter periods. More specifically, if patients either experience an
event of interest or switch the treatment for a longer period, they are administra-
tively censored due to the end of the new follow-up. As a result, the data must
be reorganized before applying weights in the Marginal structural cox model to
analyze the efficacy of Interferon (INF) and Azathioprine (AZA) on PFS during a
shorter period (for example, 60 months).

1 Descriptive analysis

To prepare data to analyze, it is necessary to re-organize it based on the new follow-
up period. To do so, if patients either experience an event of interest or switch
the treatment after 60 months, they are administratively censored due to the end
of follow-up. Summary statistics for updated PFS are illustrated in Table 1. As
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Table 1: Summary statistics for Progression Free Survival (PFS) in 5 years of
follow-up.

25th 75th administrative switching median median
Outcome min max quantile median quantile censoring rate censoring rate INF AZA

PFS 2 60 18.25 41 60 0.75 0.08 37 48

Table 2: Log rank test

Treatment
INF AZA

N 351 211
Observed (O) 55 32
Expected (E) 52.8 34.2
(O − E)2/E 0.095 0.146
(O − E)2/V 0.243 0.243

p-value = 0.6

shown, data reorganization modifies the proportions of both types of censoring.
The Unadjusted survival curves of the two treatments of Multiple Sclerosis (MS)
disease up to 5 years are shown in Figure 1. According to the output of Table 2,
there is no reason to reject the null hypothesis, which is no difference between the
populations in the probability of an event (here, a worsening of the disease) at any
time.

2 Construct weights and diagnostics for assess-

ing the assumptions

By setting the propensity score model specification and checking the balance,
one can correct for observed confounders by weighting causal effect estimators
[Li et al., 2018]. As the design phase does not include any outcome, it is not
necessary to re-analyze it at this new follow-up. In other words, one can adjust
for observed confounders by computing the weight estimators and checking the
balance as described in Chapter 6 and Section 2.1.

IPCW via the cox proportional hazards model [Jackson et al., 2014, Willems
et al., 2018] is the most well-known method for addressing selection bias caused by
covariate-dependent censoring mechanisms, and the proportional hazards assump-
tion must be satisfied prior to its computation. Statistical tests and graphical
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Figure 1: Unadjusted Survival curves of the two treatments of Multiple Sclerosis
(MS) disease based on 5 years follow-up.
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Table 3: Test proportional Hazards assumption

administrative censoring switching censoring
Baseline Covariates chisq df p chisq df p
Age 0.15 1.00 0.70 0.01 1.00 0.92
ARR pre 0.14 1.00 0.71 0.36 1.00 0.55
Disease durat 0.56 1.00 0.45 0.66 1.00 0.42
Dummy EDSS 0.03 1.00 0.86 0.15 1.00 0.70
Baseline.EDSS 0.59 1.00 0.44 0.95 1.00 0.33
Gender 2.30 1.00 0.13 0.00 1.00 0.97
PI pre 0.09 1.00 0.77 0.01 1.00 0.91
Relaps pre 0.41 1.00 0.52 0.54 1.00 0.46
Relapse Dummy 0.15 1.00 0.70 0.76 1.00 0.38
Year 1.56 1.00 0.21 13.46 1.00 0.00
GLOBAL 12.40 11.00 0.33 20.92 11.00 0.03

diagnostics based on scaled Schoenfeld residuals can be used to assess the pro-
portional hazards assumption. The results are depicted in Table 3 and Figures
2-3. The test output indicates that neither the variables nor the global test are
statistically significant for administrative censoring. Nonetheless, under switching
censoring, the variable Year is statistically significant, hence violating the propor-
tional hazards assumption. The test results are supported by graphical inspection
(Figures 2-3).

It is common to discretize the variable Year based on certain thresholds to
fix the proportionality assumption. In 2006 and 2011, two additional effective
MS treatments were approved, according to expert knowledge. Specifically, Na-
talizumab was approved within the current MS data set’s follow-up. Natalizumab
is normally well tolerated; however, a protocol restricting its distribution was ap-
proved in 2006 due to unpredictable and potentially fatal side effects. The Euro-
pean Medical Agency recommends Natalizumab for people with relapsing variants
of MS who have failed early disease-modifying therapies [Rudick et al., 2013, Tin-
tore et al., 2019]. In 2011, a second effective treatment was authorized. These
events may have prompted a switch from first-line therapies (such as AZA or INF)
to more current foundational therapies [Tintore et al., 2019]. As a result, the
following periods are used to discretize Year for switching censoring:
• From 1981 (start of follow-up) to 2006,
• From 2007 to 2010,
• After 2011 to 2019 (end of follow-up).
and we named the new variable as dis Year. The statistical test (Table 4) and
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Figure 2: The Schoenfeld residuals for administrative censoring.
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Figure 3: The Schoenfeld residuals for switching censoring.
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Figure 4: The Schoenfeld residuals for switching censoring after discretizing.

graphical diagnostics based on scaled Schoenfeld residuals (Figure 4) confirm the
proportional hazards assumption satisfied for switching censoring. Now, we should
assess the covariate-dependent censoring assumption using a multivariate Cox
model. According to Tables 5 and 6, both censoring mechanisms are ignorable
to different sets of covariates. Some diagnostics for the Cox model in both censor-
ing mechanisms are presented in the Supplementary Material. In short, Martingale
residuals and Deviance residuals (Figures SM–19-SM–20 in Supplementary Mate-
rial) confirm that there is no outlier. Besides, the plot of Martingale residuals and
Deviance residuals against covariates (see Figures SM–21–SM–24 in Supplemen-
tary Material) show the relationship between a covariate and unexplained varia-
tion. In the delta-beta residuals plot (Figures SM–25- SM–26 in Supplementary
Material), we figure out that none of the observations is influential individually,
even though some of the dfbeta values are large compared with the others.

As described in Chapter 5 (Section 2.2), following diagnostics for the Cox
model, we calculate IPCW for each censoring mechanism to adjust for selection
bias.

Administrative and switching censoring satisfied the proportionality assump-
tion based on different covariates (Year for administrative and dis Year for switch-
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Table 4: Test proportional Hazards assumption of switching censoring.

Baseline covariates chisq df p

Age 0.04 1.00 0.85
Gender 0.04 1.00 0.84
Dummy EDSS 0.26 1.00 0.61
Relapse Dummy 0.75 1.00 0.39
Disease durat 1.09 1.00 0.30
Baseline.EDSS 1.29 1.00 0.26
Relaps pre 0.76 1.00 0.38
ARR pre 0.37 1.00 0.54
PI pre 0.00 1.00 0.95
dis Year 5.10 2.00 0.08
GLOBAL 11.86 12.00 0.46

Table 5: covariate-dependent assumption for administrative censoring

beta HR(95% CI) wald.test p.value

Age -0.00 1.00 (0.98-1.01) -0.36 0.71
Gender1 0.18 1.20 (0.81-1.77) 0.92 0.36
Disease durat 0.00 1.00 (0.99-1.00) -0.75 0.45
Baseline.EDSS 0.35 1.43 (1.15-1.76) 3.33 0.00∗∗

Dummy EDSS1 -0.64 0.52 (0.23-1.17) -1.57 0.11
Relapse Dummy1 -0.11 0.90 (0.32-2.52) -0.21 0.83
Relaps pre 0.00 1.00 (0.93-1.09) 0.18 0.85
ARR pre 0.04 1.04 (0.95-1.14) 0.92 0.36
PI pre -0.38 0.68 (0.50-0.93) -2.40 0.01∗∗

Year 0.00 1.00 (0.97-1.03) 0.25 0.80
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Table 6: covariate-dependent assumption for switching censoring

beta HR(95% CI) wald.test p.value

Age 0.00 1.00 (0.99-1.01) 0.41 0.68
Gender1 -0.06 0.94 (0.77-1.14) -0.61 0.54
Disease durat 0.00 1.00 (0.99-1.00) 0.30 0.76
Baseline.EDSS 0.12 1.13 (1.02-1.20) 2.46 0.01∗∗

Dummy EDSS1 -0.19 0.83 (0.53-1.28) -0.84 0.40
Relapse Dummy1 -0.22 0.80 (0.46-1.37) -0.81 0.41
Relaps pre 0.00 1.00 (0.96-1.05) 0.20 0.84
ARR pre -0.01 0.99 (0.97-1.01) -0.64 0.52
PI pre -0.01 0.99 (0.95-1.03) -0.31 0.76
dis Year2 0.22 1.24 (0.99-1.54) 1.95 0.05∗

dis Year3 0.75 2.11 (1.64-2.73) 5.79 0.00∗∗

ing). Thus, we consider all main effects (based on the proportionality assumption)
when constructing IPCW, followed by AIC-based backward selection. Tables 7–8
depict the nonlinear terms considered for both censoring mechanisms. Although
some main effects are eliminated due to backward regression in Tables 7–8, we
maintain all main effects when creating IPCW. The proportional hazards assump-
tion must then be tested for all covariates (main effects and nonlinear terms).
Table 9 has been prepared accordingly. At the 0.05 level, all covariates and the
global test satisfy the proportionality assumption. Consequently, we compute the
IPCW for each censoring mechanism.

3 Application of Marginal Structural Model to

the MS dataset

To calculate the survival probability to assess the relative effectiveness of two
Treatments: Interferon (INF) and Azathioprine (AZA) on Progression-Free Sur-
vival (PFS) during 5 years of follow-up, one should consider the following steps:

1. Fit a logistic regression model with

logit(Pr(Z = 1 | X)) = δ0 + δ′1X

with X= (Age, Gender, Baseline.EDSS, Dummy EDSS, Relapse pre,

Relapse Dummy, Disease durat, ARR pre, PI pre, Year, (Year)2,

(Relapse pre)2, (Baseline.EDSS)3, (Baseline.EDSS)2, (Disease durat)3,

(Disease durat)2, (Relapse pre)3, (Year)3, Dummy EDSS:Baseline.EDSS,
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Table 7: The backward stepwise regression for administrative censoring model
based on all covariates in 5 years follow-up.

Start: AIC = 1601.89

Stop: AIC = 1583.07

Selected Model:

surv object ∼ Baseline.EDSS+ PI pre+ Dummy EDSS+
I(PI pre2) + Dummy EDSS:Baseline.EDSS

Df AIC

< none > 1583.1
−Dummy EDSS:Baseline.EDSS 1 1586.7
− I(PI pre2) 1 1597.4

Dummy EDSS:ARR pre) to estimate the propensity score and then compute as-
signment weights (ωipw

i , ωow
i ) as

Stabilized IPW weights: ωipw
i =

Zi

e(Xi)
+

1− Zi

1− e(Xi)

Overlap weights: ωow
i = (1− Zi) e(Xi) + Zi (1− e(Xi))

This step is the same as we have done in Chapter 6 since the design phase
does not include outcome data meaning it is not needed to re-compute it at
this new follow-up.

2. Fit a Cox proportional hazard model for administrative censoring time

λC(t | Z,X) = λC
0 (t)e

γ1Z+γ′
2X

X=
(
Age, Gender, Baseline.EDSS, Dummy EDSS, Relapse pre, Relapse Dummy,

Disease durat, ARR pre, PI pre, Year, (PI pre)2+ Dummy EDSS:Baseline.EDSS
)

to compute ωsc
i =

Pr(Ci > t)

Pr(Ci > t | Xi)
.

3. Fit a Cox proportional hazard model for switching censoring time

λS(t|Z,X) = λS
0 (t)e

ν1Z+ν′2X
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Table 8: The backward stepwise regression for switching censoring model based
on all covariates in 5 years of follow-up.

Start: AIC = 5406.09

Stop: AIC = 5393.73

Selected Model:

surv object ∼ dis Year+ I(Baseline.EDSS2) + I(Age2)
I(PI pre2) + I(Baseline.EDSS3) + I(Age3) + I(PI pre3)

Df AIC

< none > 5393.7
− I(PI pre3) 1 5394.1
− I(PI pre2) 1 5394.4
− I(Age3) 1 5395.6
− I(Age2) 1 5395.6
− I(Baseline.EDSS3) 1 5398.4
− I(Baseline.EDSS2) 1 5400.8
−dis Year 2 5430.9
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Table 9: Proportional hazards assumption of all covariates based on 5 years follow-
up

Baseline Covariates chisq df p

Administrative censoring

Age 0.24 1.00 0.62
Gender 1.98 1.00 0.16
Dummy EDSS 0.01 1.00 0.94
Relapse Dummy 0.20 1.00 0.66
Disease durat 0.61 1.00 0.44
Baseline.EDSS 0.45 1.00 0.50
Relaps pre 0.46 1.00 0.50
ARR pre 0.53 1.00 0.47
PI pre 0.16 1.00 0.68
Year 1.70 1.00 0.19
I(PI pre2) 0.02 1.00 0.90
Dummy EDSS:Baseline.EDSS 0.00 1.00 0.96
GLOBAL 9.39 12.00 0.67

Switching censoring

Age 0.13 1.00 0.72
Gender 0.04 1.00 0.83
Dummy EDSS 0.20 1.00 0.65
Relapse Dummy 0.64 1.00 0.42
Disease durat 0.55 1.00 0.46
Baseline.EDSS 1.09 1.00 0.30
Relaps pre 0.60 1.00 0.44
ARR pre 0.30 1.00 0.58
PI pre 0.09 1.00 0.77
dis Year 5.10 2.00 0.08
I(Age2) 0.31 1.00 0.58
I(EDSS2) 1.11 1.00 0.29
I(PI pre2) 0.15 1.00 0.70
I(Age3) 0.52 1.00 0.47
I(Baseline.EDSS3) 0.74 1.00 0.39
I(PI pre3) 0.29 1.00 0.59
GLOBAL 17.09 17.00 0.45
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X=
(
Age, Gender, Baseline.EDSS, Dummy EDSS, Relapse pre, Relapse Dummy,

Disease durat, ARR pre, PI pre, dis Year, (Age)2, (Baseline.EDSS)2,
(PI pre)2, (Age)3, (Baseline.EDSS)3, (PI pre)3

)
to calculate

ωss
i =

Pr(Si > t)

Pr(Si > t | Xi)
.

4. Assign weights for each unit, i.e.

ω̂i = ωipw
i × ωss

i × ωsc
i

or
ω̂i = ωow

i × ωss
i × ωsc

i

5. Fit Marginal Structural Cox model

h(t|Zi) = h0(t) exp
{
Xiα

⊤ + γZi

}
6. Calculate the survival probability Ŝ(t|Zi) specific to each treatment.

7. Finally, for each pre-specified time point (t∗), calculate causal estimands
as

∆RACE =

∫ t∗

0

Ŝ1(t)dt−
∫ t∗

0

Ŝ0(t)dt

∆SPCE = Ŝ1(t
∗)− Ŝ0(t

∗)

4 Results

Figures 5 present the estimated causal survival curves for each treatment using the
Marginal Structural Cox Model. Figures 5(a)–(b) illustrate the survival curves for
two treatments after adjustment, and Figures 5(c) show the survival curves before
adjustment. Besides, Figures 6 illustrate the SPCE and RACE as a function of
time t with the associated 95% confidence intervals in the IPW population and
the overlap population. Although the AZA shows a slightly larger survival benefit
during the five years follow-up, the difference is never statistically significant in
any of the adjusted situations. This is because the confidence intervals for SPCE
and RACE from IPW and OW cover zero throughout the five years of the follow-
up period. Regarding the SPCE and RACE, there is no significant causal survival
benefit of AZA over INF at the 0.05 level. In Table 10, we also report the SPCE
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and RACE using the (adjusted) MSMs at t = 12, 24 and 36 months which are
one-year, two-year and three-year of follow-up, respectively. Table 10 also con-
firms the results of Figures 5 and Figures 6. As a result, this analysis indicates
that when confounding and censoring are correctly adjusted, INF is not superior
to AZA even in the shorter period of follow-up (5 years). This result follows the
result of the previous chapter for a longer period, which shows there is no sta-
tistically significant difference between AZA and INF in terms of time to the
first worsening of the disease.
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Figure 5: Estimates of the survival curves for two treatments using Marginal Structural
Cox Model: (first row) after adjusted by (a) IPW and (b) OW ; (second row) (c) before
adjustment
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Figure 6: Point estimates and 95% confidence intervals of SPCE and RACE as a
function of time using MSMs (a) before adjustment (b) after adjustment
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Table 10: Estimates of the treatment effect using two methods: restricted average
causal effect (RACE) and survival probability causal effect (SPCE) at 12, 24 and
36 months of 5 years of follow-up.

Method Estimate Standard error %95 Confidence interval P.value

12 months
Restricted average causal effect

OW 0.119 0.068 (-0.021,0.247) 0.122
IPW 0.110 0.063 (-0.009,0.232) 0.086

Survival probability causal effect
OW 0.020 0.011 (-0.003,0.039) 0.086
IPW 0.020 0.011 (-0.002,0.039) 0.122

24 months
Restricted average causal effect

OW 0.446 0.265 (-0.107,0.899) 0.126
IPW 0.465 0.254 (-0.080,0.892) 0.100

Survival probability causal effect
OW 0.033 0.020 (-0.007,0.070) 0.100
IPW 0.037 0.020 (-0.006,0.070) 0.126

36 months
Restricted average causal effect

OW 0.941 0.570 (-0.150,2.029) 0.126
IPW 1.032 0.550 (-0.196,1.970) 0.086

Survival probability causal effect
OW 0.049 0.031 (-0.008,0.112) 0.086
IPW 0.059 0.033 (-0.010,0.122) 0.126

145



Chapter 8

Conclusion and Further research

This thesis aimed to propose a method for estimating causal effects in observa-
tional MS data sets subject to two different censoring mechanisms (administrative
censoring and switching censoring). The thesis discussed some theoretical back-
ground, in which we addressed an unknown assignment mechanism and two dif-
ferent covariate-dependent censoring mechanisms. Then, utilizing Marginal Struc-
tural Cox models to estimate three estimands focusing on the survival outcome, we
proposed a new weighting method to adjust for both observed confounders and se-
lection bias due to censoring. Finally, we tested the sensitivities of the adjustment
methods to changes in key assumptions in simulation studies before implementing
them in the Multiple Sclerosis (MS) data set in Italy. In terms of time to the
first worsening of the disease, our results demonstrated no statistically significant
difference between the two treatments. This is because the confidence intervals
of SPCE and RACE from IPW and OW straddle zero across the entire follow-up
period. Consequently, when confounding and censoring are adequately adjusted,
INF is not superior to AZA. To assess the non-inferiority of INF over AZA, we
accomplished a test and concluded that there is no inferiority of AZA over INF
at 2.5% level. The shorter-term follow-up result confirms the longer-term result,
which concluded no statistically significant difference between AZA and INF in
terms of time to the first worsening of the disease.

For further research, one of the interesting areas is whether the proposed
method can be applied to more complicated cases with time-varying confounders
influenced by prior treatment. Because of the clinical decisions, the treatment will
likely be switched based on the current (and previous) EDSS values. A high EDSS
indicating poor control would likely lead to switching to a different treatment.
However, high EDSS is also thought to lead to an increased risk of worsening the
disease, making EDSS at a particular time a confounder of the relationship between
treatment and the outcome. Thus, considering EDSS as a time-vary confounder
is a topic for further research.
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This thesis uses the inverse probability of censoring weighting (IPCW) to cor-
rect the selection bias resulting from dependent censoring. IPCW requires a cor-
rectly specified censoring model. Robins et al. [1994], Scharfstein et al. [1999] intro-
duced augmented inverse probability of censoring weighting (AIPCW) estimators
specifically to improve the efficiency of IPCW estimators. However, this approach
is not straightforward to apply to the cox model due to the non-collapsibility of
the Cox model [Tchetgen Tchetgen and Robins, 2012, Martinussen and Vanstee-
landt, 2013]. Recently, [Luo and Xu, 2022] proposed an AIPCW estimator based
on data-adaptive machine learning methods for the cox model. Combining this
with our proposed weighting methods will be considered for further research.

In this thesis, the analysis of the observational study relies on the “no unmea-
sured confounders” assumption to identify the estimand. Sensitivity analysis plays
a key role in assessing the validity of statistical inference results. Doing a sensitiv-
ity analysis to investigate how the results could vary if the unverifiable assumption
is broken to a certain degree is an excellent topic for further research.
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Chapter 9

Supplementary Material

The Supplementary Material contains some theoretical background and some out-
puts of the methods presented in the thesis for assessing effectiveness of AZA and
INF on the PFS.

SM.1 Appendix for Chapter 3

Balancing Weights

Proof of Theorem 3: Under the regularity conditions on vz and E[Y (z) | X],
the WATE for the population with density proportional to f(x)h(x) with respect
to base measure µ is defined as

τh =

∫
τ(x)f(x)h(x)µ(dx)

/∫
f(x)h(x)µ(dx)

=

∫
EY ,Z|X [

{
Y (1)Z[h(x)/e(x)]− Y (0)(1−Z)[h(x)/(1− e(x))]

}
]f(x)µ(dx)∫

f(x)h(x)µ(dx)

=

∫
EY ,Z|XY (1)Z[h(x)/e(x)]f(x)µ(dx)∫

EZ|XZ[h(x)/e(x)]f(x)µ(dx)
−
∫
EY ,Z|XY (0)(1−Z)[h(x)/e(x)]f(x)µ(dx)∫

EZ|X(1−Z)[h(x)/e(x)]f(x)µ(dx)

(SM–1)

where τ(x) = E[Y (1)− Y (0) | X = x], and using the unconfoundedness assump-
tion that Y (1),Y (0) ⊥ Z,X. The terms of SM–1 can be read as expectations of
weighted means of Y (z) in samples drawn from the population with density f(x),
respectively for the strata with z = 0 or z = 1. Replacing expectations by sam-
ple means, and substituting weight expressions from 10, we obtain the following
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estimator for the sample WATE:

τ̂h =

∑
i Yi(1)Ziw1(xi)∑

i Ziw1(xi)
−
∑

i Yi(0)(1− Zi)w0(xi)∑
i(1− Zi)w0(xi)

(SM–2)

where each summation (divided by n) is an unbiased estimator of the corresponding
integral in SM–1; therefore by Slutsky’s theorem τ̂h is a consistent estimator of τh.

Proof of Theorem 5: The score functions of the logistic propensity score model,
logit{e(Xi)} = β0 +Xiβ

⊤ with β = (β1 . . . , βp), are

∂ logL

∂βk

=
∑
i

xik(Zi − êi), for k = 0, 1, . . . , p.

where x0k ≡ 1 and êi = [1+exp (−Xiβ
⊤)]−1. Equating to 0 and solving, the MLE

β̂ satisfies ∑
Zi =

∑
êi, and

∑
xikZi =

∑
xikêi

It follows that∑
i

Zi(1− êi) =
∑
i

êi −
∑
i

Ziêi =
∑
i

êi(1− Zi),∑
i

xikZi(1− êi) =
∑

xikêi −
∑

xikZiêi =
∑

xikêi(1− Zi), for k = 1, . . . , p.

Therefore, for any k = 1, . . . , p, we have∑
i xikZi(1− êi)∑
i Zi(1− êi)

=

∑
i xik(1− Zi)êi∑

i(1− Zi)êi
, for k = 1, . . . , p

SM.2 Appendix for Simulation Studies

In this Section, we present some results of a sensitivity analysis in terms of mis-
specification and proportionality assumption.
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Figure SM–1: Absolute bias comparing two treatment under good overlap and
25% censoring rate using Zeng’s method, MSMs with and without covariates under
correct form, omission and different specification of IPCW.
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Figure SM–2: RMSE comparing two treatment under good overlap and 25% cen-
soring rate using Zeng’s method, MSMs with and without covariates under correct
form, omission and different specification of IPCW.
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Figure SM–3: Absolute bias comparing two treatment under poor overlap and 25%
censoring rate using Zeng’s method, MSMs with and without covariates under
correct form, omission and different specification of IPCW.
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Figure SM–4: RMSE comparing two treatment under poor overlap and 25% cen-
soring rate using Zeng’s method, MSMs with and without covariates under correct
form, omission and different specification of IPCW.
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Figure SM–5: Absolute bias comparing two treatment under good overlap and 25%
censoring rate using Zeng’s method, MSMs with and without covariates under non-
proportional hazards assumption.
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Figure SM–6: RMSE comparing two treatment under good overlap and 25% cen-
soring rate using Zeng’s method, MSMs with and without covariates under non-
proportional hazards assumption.
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Figure SM–7: Absolute bias comparing two treatment under poor overlap and 25%
censoring rate using Zeng’s method, MSMs with and without covariates under non-
proportional hazards assumption.
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Figure SM–8: RMSE comparing two treatment under poor overlap and 25% cen-
soring rate using Zeng’s method, MSMs with and without covariates under non-
proportional hazards assumption.
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Figure SM–9: Absolute bias comparing two treatment under good overlap and 50%
censoring rate using Zeng’s method, MSMs with and without covariates under non-
proportional hazards assumption.
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Figure SM–10: RMSE comparing two treatment under good overlap and 50%
censoring rate using Zeng’s method, MSMs with and without covariates under
non-proportional hazards assumption.
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Figure SM–11: Absolute bias comparing two treatment under poor overlap and
50% censoring rate using Zeng’s method, MSMs with and without covariates under
non-proportional hazards assumption.
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Figure SM–12: RMSE comparing two treatment under poor overlap and 50%
censoring rate using Zeng’s method, MSMs with and without covariates under
non-proportional hazards assumption.
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SM.3 Appendix for Real Application (part I)

Martingale residuals against continuous covariates (administrative censoring)
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Figure SM–13: The Martingale residuals to choose a functional form for the co-
variate of administrative censoring.
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Martingale residuals against continuous covariates (switching censoring)
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Figure SM–14: The Martingale residuals to choose a functional form for the co-
variate of switching censoring.
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Figure SM–15: The Deviance residuals to choose a functional form for the covariate
of administrative censoring.
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Figure SM–16: The Deviance residuals to choose a functional form for the covariate
of switching censoring.
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Figure SM–17: Testing Influential Observations by delta-beta residuals based on
administrative censoring.
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Figure SM–18: Testing Influential Observations by delta-beta residuals based on
switching censoring.
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SM.4 Appendix for Real Application (part II)
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Figure SM–19: The Martingale residuals to detect outlier based on (above) ad-
ministrative censoring and (below) switching the treatment.
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Figure SM–20: The deviance residuals to detect outlier based on (above) admin-
istrative censoring and (below) switching the treatment.
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Martingale residuals against continuous covariates (administrative censoring)
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Figure SM–21: The Martingale residuals to choose a functional form for the co-
variate of administrative censoring.
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Martingale residuals against continuous covariates (switching censoring)
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Figure SM–22: The Martingale residuals to choose a functional form for the co-
variate of switching censoring.
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Deviance residuals against continuous covariates (administrative censoring)
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Figure SM–23: The Deviance residuals to choose a functional form for the covariate
of administrative censoring.
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Deviance residuals against continuous covariates (switching censoring)

−2

0

2

20 30 40 50 60
Age

D
ev

ia
nc

e 
re

si
du

al

Age

−2

0

2

0 100 200 300 400
Disease_durat

D
ev

ia
nc

e 
re

si
du

al

Disease_durat

−2

0

2

0 2 4
EDSS

D
ev

ia
nc

e 
re

si
du

al

Baseline EDSS

−2

0

2

0 5 10 15
Relaps_pre

D
ev

ia
nc

e 
re

si
du

al

Relaps_pre

−2

0

2

4

0 25 50 75 100
ARR_pre

D
ev

ia
nc

e 
re

si
du

al

ARR_pre

−2

0

2

0 10 20 30
PI_pre

D
ev

ia
nc

e 
re

si
du

al

PI_pre

Figure SM–24: The Deviance residuals to choose a functional form for the covariate
of switching censoring.
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Figure SM–25: Testing Influential Observations by delta-beta residuals based on
administrative censoring.
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Figure SM–26: Testing Influential Observations by delta-beta residuals based on
switching censoring.
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