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We consider the L∞- optimal mass transportation problem

min
Π(μ,ν)

γ − ess sup c(x, y),

for a new class of costs c(x, y) for which we introduce a tentative notion of twist 
condition. In particular we study the conditions under which the ∞-monotone 
transport plans are induced by a transportation map. We also state a uniqueness 
result for infinitely cyclically monotone Monge minimizers that corresponds to this 
class of cost functions. We compare the results to previous works.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

We consider two Polish spaces (X, dX) and (Y, dY ). Let c : X × Y → R+ be a cost function and 
μ ∈ P(X), ν ∈ P(Y ); here by P(Z) we denote the space of Borel probability measures on a Polish space Z. 
Whereas in the classical optimal transport we minimize the integral of the cost function, in the L∞-optimal 
transport we consider the problem

min
γ∈Π(μ,ν)

C∞[γ] := min
γ∈Π(μ,ν)

γ − ess sup
(x,y)∈X×Y

c(x, y) (P∞)

where

Π(μ, ν) :=
{
γ ∈ P(X × Y ) : π1

� γ = μ and π2
� γ = ν

}
.
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Above π1 and π2 are the projections on the first and the second coordinate of X×Y , respectively. Minimizers 
for this problem exist under mild assumptions on c such as lower-semicontinuity. In [5], Champion, De 
Pascale, and Juutinen carried out a comprehensive study on the L∞-transport in the case where the cost 
of transporting a point x to a point y is given by their distance: c(x, y) = |x − y| on Rd. They studied 
the problem on compact sets of Rd, d ≥ 1, and their work was generalized in 2015 by Jylhä [9] to Polish 
spaces with more general costs c. Champion, De Pascale, and Juutinen introduced the concept of ∞-cyclical 
monotonicity, which carries the well-known notion of cyclical monotonicity of optimal transportation plans 
to the L∞-case. In general, optimal L∞-transportation plans are not as well-behaved as the minimizers of 
the standard integral Monge-Kantorovich problem. For instance, their restrictions are not always optimal 
with respect to their marginals. To address this problem, Champion, De Pascale, and Juutinen invoked 
the concept of restrictability which is commonly used in more general L∞-calculus of variations problems. 
An optimal L∞-transportation plan is restrictable if, loosely speaking, its restrictions are also optimal. 
Moreover, they showed that restrictability and ∞-cyclical monotonicity are equivalent. This equivalence 
also holds for more general cost functions at least if they are continuous, as was proven by Jylhä in [9].

If X = Y and c = d, the minimal value C∞(λ) is called ∞-Wasserstein distance of the measures μ
and ν and denoted by W∞(μ, ν). The quantity W∞(μ, ν) is actually the p → ∞ limit of the p-Wasserstein 
distances Wp(μ, ν) of the measures μ and ν. Also for more general cost functions c we can consider for every 
p ≥ 1 the optimal transportation problem

min
γ∈Π(μ,ν)

Cp[γ] :=

⎛
⎝ ∫

X×Y

cp(x, y)dγ

⎞
⎠

1
p

. (Pp)

In the case c = d the W∞-distance provides a natural control from above for the Wp-distances. Bouchitté, 
Jimenez, and Rajesh [3] and, for even more general costs, Jylhä and Rajala [10] also established necessary 
and sufficient conditions for the existence of W∞-lower bounds for the integral optimal transportation costs.

The question on whether there exists a dual formulation for the L∞-transport, similar to the now-
standard Kantorovich duality [11,12], remained open until Barron, Bocea, and Jensen stated and proved 
a duality theorem in 2017 [2]. The theory was further developed in the 1-dimensional case by De Pascale 
and Louet in [6]. Unlike in the standard integral optimal transportation, it is not immediate how to use 
the L∞-duality to prove the existence of deterministic solutions to the Monge-Kantorovich problem. By 
deterministic solutions we mean minimizers for the problem (P∞) of the form γ = (Id × T )�μ, where T
belongs to the set

T (μ, ν) := {T : X → Y : T is a Borel map and ν = T�μ}.

These solutions are also called Monge solutions, in honor of Gaspard Monge, who is one of the building 
fathers of the classical theory of optimal transportation.

In this paper we use a duality-free technique to prove that, under natural assumptions on μ, ∞-cyclical 
monotone transport plans (see Definition 2.2) – or, even less, ∞-monotone transport plans (these do not 
need to be optimal) – are actually induced by a transport map (see Theorem 2.19). The technique was 
introduced by Champion, De Pascale, and Juutinen in [5] where the authors used this property to prove on 
Rd, in the case where the cost is given by the Euclidean distance, that there exists a deterministic solution 
for the problem (P∞) and, if the target measure ν is atomic, that restrictable, deterministic solutions are 
unique. Jylhä in [9] generalized the existence result to cost functions of the form c(x, y) = h(y − x), where 
h : Rd → R+ is strictly quasiconvex in the sense that for all t ∈ (0, 1) and x, ̄x ∈ Rd with x �= x̄

h((1 − t)x + tx̄) < max{h(x), h(x̄)}.
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He also extended the uniqueness result of Champion, De Pascale and Juutinen, proving that if ν contains 
an atom, say y0, and T and S are two optimal transport maps, both corresponding to infinitely cyclically 
monotone transport plans, then μ(T−1({y0}) \ S−1({y0})) = 0.

The relevant notion in the Monge-Kantorovich problem for integral costs is an invertibility condition 
on the partial gradient of c [4,7]. This condition is commonly used in dynamical systems, it is called the 
twist condition and it goes very well along with convexity properties. There is no analogue of the twist 
condition for L∞-optimal transport problem. In this study we introduce a property which could serve as 
twist condition in this setting (see Theorem 2.17). And, in addition to giving some examples of costs which 
have this property, we observe that it is satisfied by some costs studied in previous works. The property 
we introduce is invariant (as one could expect) by composition of c with a strictly increasing, differentiable 
function.

Although we do not change the essence of the proof of uniqueness, we give a new structure to it which, in 
our opinion, makes the arguments more transparent and may allow a better understanding of the problem.

The proof of the main results is based on measure theoretic considerations and on the construction of 
certain specific cones. The same happens in [9] as well as in previous works in which these techniques are 
applied. What is different is that the construction of [9] is based on the translation invariance of the cost 
while our construction relies on the notion of normal cone to the boundary of a convex set. This points to 
the possibility of a general construction which may be adapted to different costs.

A different technique, which applies to several costs of the form c(x, y) = h(x − y), to prove the existence 
of an optimal transport map, was devised by C. Jimenez and F. Santambrogio in [8]. In that paper the 

authors minimize 
∫

|x − y|2dγ + χ(γ) among the γ ∈ Π(μ, ν) and

χ(γ) =
{

0 if supp(γ) ⊂ {(x, y) | c(x, y) ≤ M};
+∞ otherwise.

They prove that if γ is optimal then it is deterministic. However the optimal map of [8] is different from 
the one we describe here.

2. Basic definitions and main theorem

First we recall some basic results about L∞-transport, as first established in [5] and then generalized in 
[9]. The proofs can be found in these references.

The first important result is the existence of minimizers for the L∞-transportation problem. It is a direct 
consequence of the lower-semicontinuity of the functional C∞ and the compactness of the set Π(μ, ν).

Proposition 2.1. Let c be lower semicontinous. Then the problem (P∞) has at least one minimizer.

In general, there can be a high level of non-uniqueness of minimizers of the functional C∞: we are only 
optimizing the “worst case” and more locally the situation can be far from optimal. It is often useful to 
consider a subset of better-behaving minimizers, the so-called ∞ − c-cyclically monotone (ICM) transport 
plans. The idea is that on the support of such a plan, there is no rearrangement of destinations of a fixed 
finite set of points that would improve the highest cost coupling of that set. To our purpose it is also useful 
to have a definition for a plan that can not be improved by the interchange of any two destinations of a 
given pair of initial points. The formal definitions are the following:

Definition 2.2. A set Γ ⊂ X × Y is ∞ − c-cyclically monotone (ICM) if for every finite set of points 
{(xi, yi)}ki=1 ⊂ Γ and for every permutation σ of the set {1, . . . , k} we have
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max
1≤i≤k

c(xi, yi) ≤ max
1≤i≤k

c(xi, yσ(i)) .

We say that a transport plan γ ∈ Π(μ, ν) is ICM, if it is concentrated on an ICM set.

Definition 2.3. The set Γ ⊂ X × Y is ∞-monotone (IM) if for any (x, y), (x′, y′) ∈ Γ we have

max{c(x, y), c(x′, y′)} ≤ max{c(x, y′), c(x′, y)} .

We say that a transport plan γ ∈ Π(μ, ν) is IM, if it is concentrated on an IM set.

Remark 2.4. Every ICM plan is IM but the reverse is not true in general. Consider, for example, the marginal 
measures μ = ν to be the uniform probability measure on the circle S1, the cost function c(x, y) = |x − y|
(the Euclidean distance), and the set Γ = Graph(Rθ), where Rθ is the rotation of a vector v ∈ S1 by an 
angle θ < π/2. Now Γ is IM, but since the transport plan supported by Γ is not optimal (the optimal cost 
being 0, given by the identity map) the set Γ cannot be ICM.

∞ − c-cyclically monotone transport plans are much better-behaved than arbitrary solutions to the 
problem (P∞). For example, they are restrictable in the sense of the following definition.

Definition 2.5. A transport plan γ ∈ Π(μ, ν) is said to be a restrictable minimizer of the problem (P∞) if it 
satisfies the following condition: for any γ′ ≤ γ, i.e. γ′(B) ≤ γ(B) for every Borel sets B, and γ′(X×Y ) > 0
we have

C∞(γ̄) = min
{
C∞(λ) : λ ∈ Π(π1

� γ̄, π
2
� γ̄)

}
,

where γ̄ = γ′

γ′(X × Y ) .

They exist under relatively mild conditions as the following lemma, taken from [9], states.

Lemma 2.6. Let c be lower semicontinuous. Let γp be a solution of the problem (Pp), p ≥ 1. Then weak∗

cluster points of (γp)p≥1 exist and each of them is a solution of the problem (P∞). If, in addition, c is 
continuous and the minimum of each problem (Pp) is finite, then the weak∗ cluster points are ICM (here 
weak∗ convergence is tested against continuous and bounded functions).

Since in this paper we are interested in the IM plans, namely in proving that they are of the Monge-type, 
it is useful to state their existence:

Corollary 2.7. If c is continuous and the minimum of the problem (Pp) is finite for every p ≥ 1, then the 
problem (P∞) has a solution γ that is IM.

In the following we state some definitions and results which are necessary for the proof of Theorem 2.17. 
They can also be found in [5].

Definition 2.8. Let y ∈ Rd, r > 0 and let γ ∈ Π(μ, ν) be a transport plan. We define

γ−1(B(y, r)) := π1 ((Rd ×B(y, r)) ∩ supp γ
)

In other words, γ−1(B(y, r)) is the set of points whose mass is partially or completely transported to B(y, r)
by γ, and γ−1 corresponds to the inverse of the multimap induced by supp γ. Notice also that γ−1(B(y, r))
is a Borel set.
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Since this notion is important in the sequel, we recall that when U is a Borel set, one has

lim
r→0+

Ld (U ∩B(x, r))
Ld(B(x, r)) = 1,

for almost every x in U : we shall call such a point x a Lebesgue point of U and we will denote by Leb (U)
the Borel set of Lebesgue points.

Definition 2.9. We say that the couple (x, y) ∈ Rd × Rd is a γ-regular point if x ∈ Leb
(
γ−1(B(y, r))

)
for 

any positive r. We denote

R(γ) := {(x, y) ∈ Rd ×Rd : (x, y) is a γ-regular point}. (2.1)

Remark 2.10. Notice first that by the closedness of suppγ we have that R(γ) ⊂ supp γ. Moreover it is not 
difficult to show that R(γ) is a Borel set. Indeed, if for every fixed n ∈ N we consider a countable covering 
Rd ⊂

⋃
i∈N

B
(
yi,n, 2−n

)
of balls of radius 2−n, then

R(γ) =
⋂
n≥1

⋃
i∈N

(
Leb

(
γ−1 (B (

yi,n, 2−n
)))

×B
(
yi,n, 2−n

))
. (2.2)

Lemma 2.11. Let γ ∈ Π(μ, ν) and assume that μ << Ld. Then γ vanishes outside the set R(γ) of γ-regular 
points.

Proof. Let us denote by S := supp γ \ R(γ) the complement of the γ-regular points, intersected with the 
support of γ, i.e.

S := {(x, y) ∈ supp γ : x /∈ Leb
(
γ−1 (B(y, r))

)
for some positive r}.

One can prove that S is, actually, equal to the set
⋃
n≥1

⋃
i∈N

((
γ−1 (B(yi,n, 2−n)

)
\ Leb

(
γ−1 (B(yi,n, 2−n)

)))
×B(yi,n, 2−n)

)
∩ supp γ.

In particular we have that

π1(S) =
⋃
n≥1

⋃
i∈N

(
γ−1

(
B(yi,n,

1
2n )

)
\ Leb

(
γ−1

(
B(yi,n,

1
2n )

)))
,

and the set on the right-hand side has Lebesgue measure 0. Therefore, by absolute continuity of μ with 
respect to Ld we have μ(π1(S)) = 0. Finally

γ(S) ≤ γ(π1(S) ×Rd) = μ(π1(S)) = 0. �
Notation. At this point, it is natural to introduce a more refined definition

γ−1
∗ (B(y, r)) := π1 ((Rd ×B(y, r)) ∩R(γ)

)
.

For future use we also introduce a suitable notation for a cone: let x0, ξ ∈ Rd such that |ξ| = 1 and δ ∈ [0, 2]
then
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K(x0, ξ, δ) :=
{
x ∈ Rd \ {x0} : x− x0

|x− x0|
· ξ ≥ 1 − δ

}
∪ {x0},

and for a “truncated” cone

K(x0, ξ, δ, s) := K(x0, ξ, δ) ∩B(x0, s). (2.3)

Proposition 2.12. Let μ << Ld, let (x0, y0) ∈ R(γ) and let r > 0, then for every ξ ∈ ∂B(0, 1), δ ∈ (0, 2] and 
s > 0 it holds:

Ld
(
γ−1
∗ (B(y0, r)) ∩K(x0, ξ, δ, s)

)
> 0.

In general, if A is a Borel set and x0 ∈ Leb (A) it holds:

Ld
(
A ∩ γ−1

∗ (B(y0, r)) ∩K(x0, ξ, δ, s)
)
> 0.

Proof. By definition of R(γ), x0 is a Lebesgue point of γ−1(B(y0, r)) which implies Ld
(
γ−1(B(y0, r)) ∩

K(x0, ξ, δ, s)
)
> 0 for every ξ ∈ ∂B(0, 1), δ ∈ (0, 2], s > 0. Thus, since the boundary of K(x0, ξ, δ, s) is a 

Lebesgue-null set, there exists

(x, y) ∈ (intK(x0, ξ, δ, s) ×B(y0, r)) ∩ supp γ

such that x �= x0. We take ρ > 0 small enough so that B(x, ρ) ⊂ K(x0, ξ, δ, s) and B(y, ρ) ⊂ B(y0, r). We 
know that γ(B(x, ρ) ×B(y, ρ)) > 0 because (x, y) ∈ supp γ, and since γ is concentrated in R(γ) we have:

0 < γ((B(x, ρ) ×B(y, ρ)) ∩R(γ))

≤ γ((K(x0, ξ, δ, s) ×B(y0, r)) ∩R(γ))

≤ γ(K(x0, ξ, δ, s) ∩ γ−1
∗ (B(y0, r)) ×Rd)

= μ(K(x0, ξ, δ, s) ∩ γ−1
∗ (B(y0, r)).

Which in turn implies Ld(K(x0, ξ, δ, s) ∩ γ−1
∗ (B(y0, r)) > 0 by the fact that μ << Ld. �

Corollary 2.13. Let (x0, y0) ∈ R(γ) and let C be a convex set with intC �= ∅ such that x0 ∈ C. Then for 
every r > 0

Ld(γ−1
∗ (B(y0, r) ∩ intC)) > 0.

Moreover, if A is a Borel set and x0 ∈ Leb (A)

Ld(A ∩ γ−1
∗ (B(y0, r) ∩ intC)) > 0.

Proof. We observe that by convexity of C there exists a cone K (x0, ξ, δ), for some ξ ∈ ∂B(0, 1) and 
δ ∈ (0, 1), such that for s sufficiently small

K (x0, ξ, δ, s) ⊂ intC ∪ {x0}.

By the monotonicity of the Lebesgue measure, the claim now follows from Proposition 2.12. �
Before the first main result of this paper we introduce quasiconvex and strictly quasiconvex functions. 

We also present a technical lemma on convex sets that will be useful in the sequel.
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Definition 2.14. We say that a function h : Rd → R is quasiconvex if for all x, y ∈ Rd and for all t ∈ [0, 1]
we have

h((1 − t)x + ty) ≤ max{h(x), h(y)}.

We say that h is strictly quasiconvex if for all x �= y and for all t ∈ (0, 1)

h((1 − t)x + ty) < max{h(x), h(y)}.

Remark 2.15. Immediate properties are the following

(1) h is quasiconvex if and only if for all λ ∈ R the sublevel set Cλ = {x : h(x) ≤ λ} is convex (possibly 
empty);

(2) if h is continuous and strictly quasiconvex, then the only sublevel sets (possibly empty) with empty 
interior are the sets Cm with m ≤ inf h;

(3) if h is continuous and strictly quasiconvex, then the level set {x : h(x) = λ} has always empty interior.

Lemma 2.16. Let B, C ⊂ Rd be two closed convex sets with nonempty interiors, differentiable boundaries, 
and such that B∩C �= ∅. Let x ∈ ∂B∩∂C be such that nB(x) �= nC(x), where nB(x) and nC(x) are the unit 
outer normals of B and C at x, respectively. Then there exists a point a ∈ intB ∩ {w : (w− x) ·nC(x) > 0}
and δ, s > 0 such that the intersection of the cone of direction a − x and amplitude δ with the ball centered 
at x and of radius s is all contained in intB, that is

K

(
x,

a− x

|a− x| , δ, s
)

⊂ intB ∪ {x}. (2.4)

Moreover for the reverse cone we have

K

(
x,− a− x

|a− x| , δ, s
)

⊂ intC ∪ {x}. (2.5)

Proof. By the differentiability of the boundaries of sets B and C we have that nB(x) and nC(x) are well-
defined elements of Rd. In particular, by convexity nB(x) is the only unit vector such that

(b− x) · nB(x) ≤ 0, for every b ∈ B.

Hence there exists a ∈ intB such that

(a− x) · nC(x) > 0. (2.6)

Choosing s and δ close enough to 0, by the continuity of the scalar product and the convexity of B we can 

fix the cone K
(
x,

a− x

|a− x| , δ, s
)

that satisfies the first claim (2.4).

Moreover, by Condition (2.6) we have − a− x

|a− x| ·nC(x) < 0. Thus for a suitable choice of τ > 0, we have1 x −

1 There exist ρ > 0 and a concave function φ : Bd−1(0, ρ) → R such that x = (0, φ(0)) and such that ∂C is the graph of φ in 
a sufficiently small neighborhood of x. In this setting nC(x) = 1√

1 + |∇φ(0)|2
(−∇φ(0), 1). We use the notation (v, vd) = v =

−
a − x

|a − x|
, where v ∈ Rd−1 and vd ∈ R. The condition v · nC(x) < 0 becomes v · ∇φ(0) > vd. Proving that x + τv ∈ intC, 

for some τ > 0, can be done by showing that φ(τv) > φ(0) + τvd. The latter inequality follows directly by the fact that 
lim

φ(tv) − φ(0)
> vd.
t→0 t
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a− x

|a− x|τ ∈ intC. Arguing as before, there exists s′ and δ′ close enough to 0, such that K
(
x,− a− x

|a− x| , δ
′, s′

)
satisfies the (2.5). Therefore, possibly substituting s with min{s, s′} and δ with min{δ, δ′}, (2.4) and (2.5)
hold simultaneously. �
Notation. Given y ∈ Rd and λ ∈ R we denote, whenever it is possible, by

nc(·,y)(x)

the unit outer normal to the sublevel set Cλ = {z : c(z, y) ≤ λ} at the point x ∈ ∂Cλ.

Theorem 2.17. Let μ, ν be two Borel probability measures on Rd with compact supports and μ << Ld. Let 
c : Rd ×Rd → R+ be a continuous function satisfying the following properties:

(i) For all x there exists a unique y ∈ Rd such that c(x, y) = 0, and for every y ∈ Rd we have2

inf
x∈Rd

c(x, y) = 0;
(ii) c(·, y) is strictly quasiconvex for every y, i.e.

c((1 − t)x + tx̄, y) < max{c(x, y), c(x̄, y)}

for all t ∈ (0, 1) and for every x, ̄x ∈ Rd, x �= x̄;
(iii) for all λ > 0 and y ∈ Rd the convex set Cλ = {z : c(z, y) ≤ λ} has differentiable (C1) boundary;
(iv) c satisfies a “twist kind” condition, that is: for every x, y, ỹ ∈ Rd and for all λ > 0

{
c(x, y) = c(x, ỹ) = λ

nc(·,y)(x) = nc(·,ỹ)(x)
=⇒ y = ỹ.

Let γ ∈ Π(μ, ν) and (x, ỹ) ∈ R(γ). Then for every (x, y) ∈ Rd ×Rd with y �= ỹ, there exists (x′, y′) ∈ R(γ)
such that

max{c(x′, y), c(x, y′)} < max{c(x, y), c(x′, y′)}. (2.7)

Moreover, if x ∈ Leb (A), for some Borel set A, then (x′, y′) above can be taken with x′ ∈ A.

Remark 2.18. We call condition (iv) above “twist kind” because whenever c is differentiable with respect to 
x, if ∇xc(x, ỹ) �= 0 and ∇xc(x, y) �= 0, then the condition becomes

⎧⎨
⎩
c(x, y) = c(x, ỹ)
∇xc(x, y)
|∇xc(x, y)|

= ∇xc(x, ỹ)
|∇xc(x, ỹ)|

=⇒ y = ỹ.

This looks like the twist condition in the classical integral optimal transport.

Proof. Case 1: c(x, y) > c(x, ỹ).
We fix λ = c(x, y) and we consider Cλ = {z : c(z, y) ≤ λ}. Notice that intCλ is nonempty by part (2) of 

2 By the strict quasiconvexity of c(·, y) (Assumption (ii)), if there exists a point x such that c(x, y) = inf
z∈Rd

c(z, y), then such a 
point is also unique.
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Remark 2.15. Indeed c(x, y) = λ > 0 = inf
w∈Rd

c(w, ỹ), by Assumption (i). The continuity of the cost function 

allows us to fix r > 0 such that

c(x, y′) < c(x, y) for all y′ ∈ B(ỹ, r) . (2.8)

Moreover, since (x, ỹ) ∈ R(γ), thanks to Corollary 2.13, we know that there exists (x′, y′) ∈ R(γ) with 
x′ ∈ intCλ = {z : c(z, y) < λ} (so that x �= x′) and y′ ∈ B(ỹ, r) that is

(x′, y′) ∈ (intCλ ×B(ỹ, r)) ∩R(γ) .

Notice that such a y′ exists by the definition of γ−1
∗ (B(ỹ, r)). By Condition (2.8) we have

c(x, y′) < c(x, y) .

We also have that

c(x′, y) < c(x, y) ,

because x′ ∈ intCλ. These two inequalities imply that

max{c(x′, y), c(x, y′)} < c(x, y) ≤ max{c(x, y), c(x′, y′)},

concluding the proof for the Case 1.
Case 1 bis: If x ∈ Leb (A), for a Borel set A, then by the second part of Corollary 2.13, we can find 
(x′, y′) ∈ R(γ), such that x′ ∈ intCλ ∩A and y ∈ B(ỹ, r). As before, such (x′, y′) satisfies the (2.7).
Case 2: c(x, y) < c(x, ỹ).
We follow a path similar to that of [9] but with a different construction of cones.
Fix λ = c(x, ỹ), so that x ∈ ∂C̃λ, where C̃λ = {z : c(z, ỹ) ≤ λ}. Again we denote by nc(·,ỹ)(x) the unit 
outer normal to the set C̃λ at x.
Let s be a small, positive real number such that ã := x − snc(·,ỹ)(x) ∈ int C̃λ, which is not empty thanks to 
(2) of Remark 2.15. We fix

ε = 1
4 min {c(x, ỹ) − c(ã, ỹ), c(x, ỹ) − c(x, y)} .

Thanks to the continuity of c it is possible to find a positive radius r such that B(ã, r) ⊂ C̃λ, for every 
(z̃, y′) ∈ B(ã, r) ×B(ỹ, r) we have

c(z̃, y′) < c(ã, ỹ) + ε (2.9)

and for every y′ ∈ B(ỹ, r) it holds

c(x, ỹ) − ε < c(x, y′). (2.10)

Consider the set3 K̃ = {(1 − t)x + tB(ã, r) : t ∈ (0, 1)}. Thanks to the convexity, K̃ is contained in C̃λ. 
We claim that

K̃ ⊂ {z : c(z, y′) < c(x, y′)} for every y′ ∈ B(ỹ, r).

3 We use the notation K̃ because also this set is a cone, even if slightly different from the cones defined by (2.3).
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Let z ∈ K̃. Then z = (1 −t)x +tz̃, for some z̃ ∈ B(ã, r) and some t ∈ (0, 1). We observe that c(z̃, y′) < c(x, y′). 
Indeed

c(z̃, y′) < c(ã, ỹ) + ε ≤ 1
4c(x, ỹ) + 3

4c(ã, ỹ) < c(x, ỹ) − 3ε < c(x, y′), (2.11)

where the first inequality is due to Condition (2.9), the second and the third to the definition of ε
and the last one to (2.10). We conclude by the strict quasiconvexity of c(·, y′), which implies c(z, y′) <
max{c(x, y′), c(z̃, y′)} = c(x, y′).
On the other hand, if we consider the reflected cone K = (1 − t)x + tB(ã, r) with t ∈ (−1, 0), again by the 
strict quasiconvexity of c(·, y′) we show that

K ⊂ {z : c(z, y′) > c(x, y′)} for every y′ ∈ B(ỹ, r).

Indeed, let z ∈ K, then z = (1 − t)x + tz̃, for some z̃ ∈ B(ã, r) and t ∈ (−1, 0). So x = sz + (1 − s)z̃, with 

s = 1
(1 − t) . Thus c(x, y′) < max{c(z, y′), c(z̃, y′)} = c(z, y′), where the last equality is due to (2.11), and 

therefore for every x′ ∈ K and y′ ∈ B(ỹ, r) it holds

c(x, y′) < c(x′, y′).

Let now ρ > 0 such that c(x′, y) < c(x, y) + ε for every x′ ∈ K ∩ B(x, ρ). Then for every x′ ∈ K ∩ B(x, ρ)
and y′ ∈ B(ỹ, r) it also holds:

c(x′, y) < c(x, y) + ε <
1
4c(x, ỹ) + 3

4c(x, y) ≤ c(x, ỹ) − 3ε < c(x, y′) < c(x′, y′).

For ρ small enough K ∩ B(x, ρ) is a truncated cone of the form (2.3) and then the proof of Case 2 is 
concluded thanks to Proposition 2.12, for which it is possible to choose x′ in the set

(
B(x, ρ) ∩K ∩ γ−1

∗ (B(ỹ, r))
)

and therefore (x′, y′) in the set

((K ∩B(x, ρ)) ×B(ỹ, r)) ∩R(γ).

Case 2 bis: If x ∈ Leb (A) for some Borel set A, by the last part of Proposition 2.12, we can choose (x′, y′)
satisfying the (2.7) in the set

((A ∩K ∩B(x, ρ)) ×B(ỹ, r)) ∩R(γ).

Case 3: c(x, y) = c(x, ỹ) = λ > 0 (if c(x, y) = c(x, ỹ) = 0 then y = ỹ by Assumption (i)) and nc(·,y)(x) �=
nc(·,ỹ)(x).
In Fig. 2.1 we provide a visual description of the proof of this case, where we have denoted the vector 
nc(·,ỹ)(x) by −→n .
Since x ∈ ∂Cλ ∩ ∂C̃λ and since by part (2) of Remark 2.15 these sublevel sets have nonempty interiors, 
the assumptions of Lemma 2.16 above are satisfied. Therefore we can construct two “truncated” cones, one 
inside intCλ ∪ {x} and the “reverse” one contained in int C̃λ. More precisely there exist a ∈ intCλ and 
δ, s > 0 such that
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Cλ

C̃λ

x
•

−→n

B(x, s)

B(x,
s

2
)

K̃
K

a •
•x

′

• z

•y

•ỹ
r

• y
′

Fig. 2.1. Case 2 - Theorem 2.17.

K

(
x,

a− x

|a− x| , δ, s
)

⊂ intCλ ∪ {x} and

K

(
x,− a− x

|a− x| , δ, s
)

⊂ int C̃λ ∪ {x}.

In order to simplify the notation, let us denote by

K := K

(
x,

a− x

|a− x| , δ, s
)

and K̃ := K

(
x,− a− x

|a− x| , δ, s
)
.

Since c(x, ỹ) > c(z, ỹ) for every z ∈ int C̃λ, if we take z in a set well-contained in int C̃λ, for instance the 

portion of annulus K̃ \B
(
x,

s

2

)
, by the continuity of the cost there exists r > 0 such that

c(x, y′) > c(z, y′), for all y′ ∈ B(ỹ, r), for all z ∈ K̃ \B
(
x,

s

2

)
. (2.12)

Let (x′, y′) ∈ (K ×B(ỹ, r))∩R(γ) with x′ �= x, which exists by Proposition 2.12 (and definition of γ−1
∗ (ỹ, r)). 

Consider z ∈ K̃ \ B
(
x,

s

2

)
on the line passing from x′ and x (the order of the points on the line being x′, 

x, z), by the strict quasiconvexity of c with respect to the first variable we have

c(x, y′) < max{c(x′, y′), c(z, y′)}.

By Condition (2.12), we infer that c(x, y′) < c(x′, y′).
Finally, since x′ ∈ intCλ, we have c(x′, y) < c(x, y) (again we use that, by the continuity and the strict 
quasiconvexity of c, ∂Cλ = {z : c(z, y) = λ}). Hence Condition (2.7) holds.
Case 3 bis: Also in this case thanks to the second part of Proposition 2.12, we can choose our (x′, y′) ∈
((A ∩K) ×B(ỹ, r)) ∩R(γ) if x ∈ Leb (A), for some Borel set A.
Case 4: c(x, y) = c(x, ỹ) = λ > 0 and

nc(·,y)(x) = nc(·,ỹ)(x).
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If this case occurs, by the assumption (iv) (the “twist kind” condition) we know that y = ỹ against our 
assumption. �

We are now ready to state and prove the main result of this section, which follows directly by Theo-
rem 2.17.

Theorem 2.19. Let μ, ν be two Borel probability measures on Rd with compact supports and μ << Ld and 
let c : Rd × Rd → R+ be a continuous function satisfying the assumptions (i)-(iv) of Theorem 2.17. If 
γ ∈ Π(μ, ν) is ∞-monotone, then γ vanishes outside the graph of a Borel map T ∈ T (μ, ν).

Proof. By Lemma 2.11 we know that γ is concentrated on the set of γ-regular points R(γ) and that 
the set R(γ) is a Borel set. Therefore, it suffices to show that the set R(γ) is the graph of a function 
T ∈ T (μ, ν). More precisely it is enough to prove that the set R(γ) is contained in the graph of some 
function T : Rd → Rd. Indeed, Theorem 2.3 of [1] ensures that T is a Borel map and that γ = (Id × T )�μ. 
Let us assume, by contradiction, that there exist (x, y), (x, ỹ) ∈ R(γ) with y �= ỹ. Then we can apply 
Theorem 2.17 thanks to which there exists (x′, y′) ∈ R(γ) such that

max{c(x′, y), c(x, y′)} < max{c(x, y), c(x′, y′)},

contradicting the ∞-monotonicity of γ. In fact, the above inequality implies that R(γ) is not ∞-monotone 
and, since R(γ) ⊂ supp γ, neither is supp γ. By the continuity of the cost function c a transport plan γ
is ∞-c-cyclically monotone (∞-monotone) if and only if suppγ is ∞-c-cyclically monotone (∞-monotone) 
(this is immediate but the reader may also see Lemma 2.11 in [9]). �
3. On the uniqueness of ICM optimal transport plans

The next lemma is slightly less general than its equivalent in [9] but we believe it makes more transparent 
the proof of uniqueness that will follow.

Lemma 3.1. Let μ and ν be two probability measures on Rd, with compact supports and μ << Ld. Assume 
that the function c : Rd × Rd → R+ satisfies the assumptions of Theorem 2.17. Let T, T̃ ∈ T (μ, ν) be 
two transport maps associated to two ∞-monotone transport plans γ and γ̃, i.e., γ = (Id × T )�μ and 
γ̃ = (Id × T̃ )�μ. Let A ⊂ Rd be a Borel set such that for all x ∈ A, one has T (x) �= T̃ (x). Define

R(A) = {z ∈ Rd : ∃x ∈ A s.t.

max{c(x, T (z)), c(z, T̃ (x))} < max{c(x, T̃ (x)), c(z, T (z))}}.

Then μ(A \ R(A)) = 0.

Remark 3.2. The definition of R(A) is not symmetric with respect to the interchange of roles of T and T̃ , 
in the sense that

R̃(A) = {z ∈ Rd : ∃x ∈ A s.t.

max{c(x, T̃ (z)), c(z, T (x))} < max{c(x, T (x)), c(z, T̃ (z))}},

is not necessarily equal to R(A). However, the same result can also be proven for R̃(A).
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Proof. First of all we observe that

μ(A \ R(A)) = μ
(
π1(R(γ)) ∩ π1(R(γ̃)) ∩A \ R(A)

)
= μ

(
π1(R(γ)) ∩ π1(R(γ̃)) ∩ Leb (A) \ R(A)

)
,

since γ and γ̃ are respectively concentrated on R(γ) and R(γ̃) and μ << Ld. We will prove that

π1(R(γ)) ∩ π1(R(γ̃)) ∩ Leb (A) \ R(A) = ∅.

Let us assume by contradiction that there exists x ∈ π1(R(γ)) ∩ π1(R(γ̃)) ∩ Leb (A) \ R(A) and consider 
(x, T (x)) ∈ R(γ) and (x, T̃ (x)) ∈ R(γ̃). By definition of A, we have T (x) �= T̃ (x). By the final sentence of 
Theorem 2.17 applied to R(γ̃), we can find (x′, y′) = (x′, T̃ (x′)) ∈ R(γ̃) such that x′ ∈ A and

max{c(x, T̃ (x′)), c(x′, T (x))} < max{c(x, T (x)), c(x′, T̃ (x′))}. (3.1)

We conclude noticing that the inequality (3.1) implies that x ∈ R(A), contradicting the fact that x ∈
A \ R(A). �
Theorem 3.3. Let μ and ν be two probability measures on Rd, with compact support and μ << Ld. Assume 
that the function c : Rd ×Rd → R+ satisfies the assumptions (i)-(iv) of Theorem 2.17 and that ν({y0}) > 0
for some y0 ∈ Rd. Let T and T̃ be optimal transport maps corresponding respectively to ∞ − c-cyclically 
monotone transport plans γ and γ̃. Then

μ
(
T−1({y0}) \ T̃−1({y0})

)
= 0.

Proof. Assume, by contradiction, that

μ
(
T−1({y0}) \ T̃−1({y0})

)
> 0.

We first restrict to the set of the full μ-measure where both the graphs of T and T̃ are ∞ − c-cyclically 
monotone (by Theorem 2.19 we know that we may consider the set π1(R(γ)) ∩ π1(R(γ̃))). We may also 
assume, restricting our attention to the set of interest, that

T (x) �= T̃ (x) for all x ∈ π1(R(γ)) ∩ π1(R(γ̃)). (3.2)

In this proof we will apply Lemma 3.1 repeatedly to different subsets A of suppμ, this is always possible 
by Assumption (3.2).

We define B0 = {y0}, A1 = T−1(B0), A′
1 = R(A1), and B1 = T̃ (A′

1). We continue recursively: assuming 
that for all j ∈ {1, . . . , k − 1} the sets Aj , A′

j , and Bj have already been defined we set

Ak = T−1(Bk−1) , A′
k = R(Ak) , and

Bk = T̃ (A′
k).

We observe that by construction μ(Aj) > 0 and, by Lemma 3.1, also μ(A′
j) > 0 for every j. We continue 

by defining

P1 =
⋃

Ak and P2 =
⋃

Bk.

k≥1 k≥1
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We prove the following intermediate claim:

Claim y0 ∈ P2.
Proof. Let us first show that

μ(P1) = ν(P2). (3.3)

We prove that ν(P2) ≤ μ(P1). Right from the definitions of the sets P1, P2, Ak, and Bk we see that

T−1(B0 ∪ P2) = P1.

Since ν = T�μ, we get

ν(P2) ≤ ν(B0 ∪ P2) = μ(T−1(B0 ∪ P2)) = μ(P1). (3.4)

In order to prove the opposite inequality we first observe that, by using Lemma 3.1 with A = Ak, we have

μ(Ak \ R(Ak)) = 0 for all k ≥ 1; (3.5)

and we recall that in this construction A′
k = R(Ak). Now

μ(P1) = μ

⎛
⎝⋃

k≥1

Ak

⎞
⎠ a)

≤ μ

⎛
⎝⋃

k≥1

A′
k

⎞
⎠

≤ μ

⎛
⎝⋃

k≥1

T̃−1(T̃ (A′
k))

⎞
⎠ = μ

⎛
⎝T̃−1

⎛
⎝⋃

k≥1

T̃ (A′
k)

⎞
⎠
⎞
⎠

= ν

⎛
⎝⋃

k≥1

T̃ (A′
k)

⎞
⎠ = ν

⎛
⎝⋃

k≥1

Bk

⎞
⎠ = ν(P2)

where inequality a) is due to Condition (3.5). So we have μ(P1) ≤ ν(P2), which completes the proof of 
Condition (3.3).
If by contradiction y0 /∈ P2, since ν({y0}) > 0 (remember that in our construction {y0} = B0), then

ν(P2) < ν(B0 ∪ P2) = μ(P1), (3.6)

where in the last equality we have used Condition (3.4). Inequality (3.6) contradicts (3.3) and the Claim is 
proven.
By the inclusion y0 ∈ P2 we now know that y0 belongs to Bk for some k ≥ 1. Therefore there exist x′

k ∈ A′
k

(since Bk = T̃ (A′
k)) such that y0 = T̃ (x′

k). Next we choose xk ∈ Ak such that

max{c(xk, T̃ (x′
k)), c(x′

k, T (xk))} < max{c(xk, T (xk)), c(x′
k, T̃ (x′

k))}.

This is possible since A′
k = R(Ak).

Since by construction Ak = T−1(Bk−1) and xk ∈ Ak, we have that T (xk) ∈ Bk−1 = T̃ (A′
k−1), so there exists 

x′
k−1 ∈ A′

k−1 such that T̃ (x′
k−1) ∈ Bk−1 and T (xk) = T̃ (x′

k−1). And so we continue, decreasing with the 
indices down until having defined x′

1 and x1. Since x1 ∈ A1 = T−1(B0) we have that T (x1) = y0 = T̃ (x′
k). 

Thus, we have constructed two k-uples of points (xj)kj=1 and 
(
x′
j

)k
j=1 such that for all j, xj ∈ Aj and 

x′
j ∈ A′

j .
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{
T (xj) = T̃ (x′

j−1) for all 2 ≤ j ≤ k;
T (x1) = T̃ (x′

k) = y0,

and that for all 1 ≤ j ≤ k

max{c(x′
j , T (xj)), c(xj , T̃ (x′

j))} < max{c(x′
j , T̃ (x′

j)), c(xj , T (xj))}. (3.7)

We observe that by Condition (3.7), xj �= x′
j . We now apply to the set {xj}kj=1 the cyclical permutation

σ(j) =
{
j + 1 if j ∈ {1, . . . , k − 1}
1 if j = k

.

We have

max
1≤j≤k

c(xj , T (xj))
a)
≤ max

1≤j≤k
c(xj , T (xσ(j)))

b)= max
1≤j≤k

c(xj , T̃ (x′
j))

c)
< max

1≤j≤k
max{c(xj , T (xj)), c(x′

j , T̃ (x′
j))} (3.8)

where inequality a) follows from the ICM-condition assumed on T . Equality b) follows from the fact that by 
construction T (xσ(j)) = T̃ (x′

j) for all j ∈ {1, . . . , k}. Estimate c) follows from Condition (3.7). Concerning 
the last term in (3.8), we have two possibilities: either

max
1≤j≤k

max{c(xj , T (xj)), c(x′
j , T̃ (x′

j))} = c(xm, T (xm)) for some m

or

max
1≤j≤k

max{c(xj , T (xj)), c(x′
j , T̃ (x′

j))} = max
1≤j≤k

c(x′
j , T̃ (x′

j)) .

The first case leads immediately to a contradiction. So we are left with the latter case. We apply to the set 
{x′

j}kj=1 the cyclical permutation

τ(j) =
{
j − 1 if j ∈ {2, . . . , k}
k if j = 1

.

We get

max
1≤j≤k

max{c(xj , T (xj)), c(x′
j , T̃ (x′

j))} = max
1≤j≤k

c(x′
j , T̃ (x′

j))
a)
≤ max

1≤j≤k
c(x′

j , T̃ (x′
τ(j)))

b)= max
1≤j≤k

c(x′
j , T (xj))

c)
< max

1≤j≤k
max{c(xj , T (xj)), c(x′

j , T̃ (x′
j))} . (3.9)

Above, in a) we have used the ICM property of T̃ , in b) the fact that, by construction, T (xj) = T̃ (x′
τ(j)) for 

all j ∈ {1, . . . , k}, and in c) again Condition (3.7). Estimate (3.9) is impossible, so we get a contradiction 
that concludes the proof. �
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4. Some examples

In this section we give some examples of cost functions that satisfy the assumptions of Theorem 2.17. 
We also present a counterexample which shows that the assumption of the strict quasiconvexity of c(·, y) is 
necessary.

Example 4.1. Let c : Rd ×Rd → R+ be a cost function of the type introduced in [9], defined by

c(x, y) := h(y − x),

where h : Rd → R+ is a continuous and strictly quasiconvex function. Here, we also assume that there exists 
a unique p ∈ Rd such that h(p) = 0, that h is differentiable, and that ∇h(v) �= 0 for every v �= p. This cost 
function satisfies the assumptions of Theorem 2.17 from which we infer that the IM transportation plans 
corresponding to c are of the Monge type. The fact that c fulfills the condition (iv) can be seen as a special 
case of the proof of the example below.

Example 4.2. Let c : Rd ×Rd → R+ be defined by

c(x, y) := h(G(y) − F (x)),

where h : Rd → R+ is defined as in the Example 4.1, F, G : Rd → Rd affines transformations of the form

F (x) = Ax + b and G(y) = A′y + b′,

where A, A′ ∈ Md×d are invertible matrices and b, b′ ∈ Rd.
We observe that the cost function c satisfies the assumptions of Theorem 2.19. By the assumptions on h
and the invertibility of F and G, assumption (i) is satisfied. The strict quasiconvexity of h and the linearity 
of F and G ensure the strict quasiconvexity of c(·, y) for every y, and, for the same reason, c(x, ·) is strictly 
quasiconvex for every x.
Let us prove that the “twist kind” condition holds. Let y, ỹ ∈ Rd and λ > 0 be such that c(x, y) = c(x, ỹ) = λ

and nc(·,y)(x) = nc(·,ỹ)(x). We first observe that, by the fact that

∇xc(x, y) = −∇F (x)T · ∇h(G(y) − F (x)) = −AT · ∇h(G(y) − F (x)),

∇xc(x, y) �= 0 for every x, y such that G(y) − F (x) �= p (that is, for every x, y such that c(x, y) �= 0). Thus, 
the equality between the two unit normals becomes

∇xc(x, y)
|∇xc(x, y)|

= ∇xc(x, ỹ)
|∇xc(x, ỹ)|

.

Since

∇yc(x, y) = A′T · ∇h(G(y) − F (x)),

thanks to the invertibility of A′ we have that

∇xc(x, y) = −AT (A′T )−1∇yc(x, y).

The computation above, the invertibility assumptions on A and A′ and the condition on the normalized 
gradients imply
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∇yc(x, y)
|∇yc(x, y)|

= ∇yc(x, ỹ)
|∇yc(x, ỹ)|

.

We observe that both y and ỹ belong to the boundary of the sublevel set with respect to x, Cx
λ := {z ∈ Rd :

c(x, z) ≤ λ}. Then y and ỹ must coincide, since they are two points on the smooth boundary of a strictly 
convex set Cx

λ with the same normal.

The following is an example of an ICM plan that is not given by a map for a cost function that doesn’t 
satisfy the assumptions of Theorem 2.17.

Example 4.3. We consider the space X = R2 with the cost function given by the ∞-distance

d((x1, y1), (x2, y2)) = max{|x1 − y1|, |x2 − y2|} .

We denote by Q := [0, 1] × [0, 1], the unit square centered at 
(

1
2 ,

1
2

)
. We take μ = L2|Q, the 2-dimensional 

Lebesgue measure restricted to Q, and ν = L2|Q+(10,0), the 2-dimensional Lebesgue measure restricted to 
the translation of Q by the vector (10, 0). Let γ ∈ Π(μ, ν) be defined by

γ = μ⊗H1|{x1+10}×[0,1],

that is, the transport plan which distributes evenly every point (x1, x2) ∈ suppμ to the vertical line segment 
{(x1 + 10, y2) | y2 ∈ R} ∩ (Q + (10, 0))}. This plan is clearly not given by a map, but it is ICM.

To prove that γ is ICM we fix points {((xi
1, x

i
2), (xi

1 + 10, yi2))}Ni=1 in the support of γ and a permutation 
σ of the set {1, . . . , N}. Now

max
1≤i≤N

{d((xi
1, x

i
2), ((xi

1 + 10, yi2))} = max
1≤i≤N

{
max{10, |xi

2 − yi2|}
}

= 10

where in the last equality we have used the fact that

|xi
2 − yi2| ≤ 1 < 10 .

Let us prove that

max
1≤i≤N

{d((xi
1, x

i
2), (x

σ(i)
1 + 10, yσ(i)

2 ))} ≥ 10 .

It is enough to show that there exists an index k ∈ {1, . . . , N} such that

|xk
1 − (xσ(k)

1 + 10)| ≥ 10.

We may assume that σ is not the identity: for the identity permutation the ICM condition holds as an 
equality. Let us denote I = {1, . . . , N} and let k0 be such that

xk0
1 = min{xk

1 | k ∈ I}.

The point xk0
1 satisfies xk0

1 ≤ x
σ(k0)
1 . Therefore,

|xk0
1 − (xσ(k0)

1 + 10)| = 10 + (xσ(k0)
1 − xk0

1 ) ≥ 10

and we are done.
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