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a b s t r a c t

Adaptive isogeometric methods for the solution of partial differential equations rely on
the construction of locally refinable spline spaces. A simple and efficient way to obtain
these spaces is to apply the multi-level construction of hierarchical splines, that can
be used on single-patch domains or in multi-patch domains with C0 continuity across
the patch interfaces. Due to the benefits of higher continuity in isogeometric methods,
recent works investigated the construction of spline spaces with global C1 continuity on
two or more patches. In this paper, we show how these approaches can be combined
with the hierarchical construction to obtain global C1 continuous hierarchical splines
on two-patch domains. A selection of numerical examples is presented to highlight the
features and effectivity of the construction.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Isogeometric Analysis (IgA) is a framework for numerically solving partial differential equations (PDEs), see [1–3], by
sing the same (spline) function space for describing the geometry (i.e. the computational domain) and for representing
he solution of the considered PDE. One of the strong points of IgA compared to finite elements is the possibility to easily
onstruct C1 spline spaces, and to use them for solving fourth order PDEs by applying a Galerkin discretization to their
variational formulation. Examples of fourth order problems with practical relevance (in the frame of IgA) are e.g. the
biharmonic equation [4–6], the Kirchhoff–Love shells [7–10] and the Cahn–Hilliard equation [11–13].

Adaptive isogeometric methods can be developed by combining the IgA framework with spline spaces that have
ocal refinement capabilities. Hierarchical B-splines [14,15] and truncated hierarchical B-splines [16,17] are probably
he adaptive spline technologies that have been studied more in detail in the adaptive IgA framework [18–20]. Their
ulti-level structure makes them easy to implement, with the evaluation of basis functions obtained via a recursive use
f two-level relation due to nestedness of levels [21–23]. Hierarchical B-splines have been successfully applied for the
daptive discretization of fourth order PDEs, and in particular for phase-field models used in the simulation of brittle
racture [23,24] or tumor growth [25].

While the construction of C1 spaces is trivial in a single-patch domain, either using B-splines or hierarchical B-splines,
he same is not true for general multi-patch domains. The construction of C1 spline spaces over multi-patch domains
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List of symbols

Spline space

p Spline degree, p ≥ 3
r Spline regularity, 1 ≤ r ≤ p − 2
Ξ r

p Open knot vector
τi Internal breakpoints of knot vector Ξ r

p
T Ordered set of internal breakpoints τi
k Number of different internal breakpoints of knot vector Ξ r

p
Sr
p Univariate spline space of degree p and regularity r on [0, 1] over knot vector Ξ r

p

Sr+1
p , Sr

p−1 Univariate spline spaces of higher regularity and lower degree, respectively, defined from same
internal breakpoints as Sr

p

N r
i,p, N

r+1
i,p , N r

i,p−1 B-splines of spline spaces Sr
p, S

r+1
p and Sr

p−1, respectively
n, n0, n1 Dimensions of spline spaces Sr

p, S
r+1
p and Sr

p−1, respectively
I, I0, I1 Index sets of B-splines N r

i,p, N
r+1
i,p and N r

i,p−1, respectively
J0,i, J1,i Index subsets of I related to B-splines N r+1

i,p and N r
i,p−1, for i ∈ I0 and i ∈ I1, respectively

ζm Greville abscissae of spline space Sr
p, m ∈ I

N0, N1, N2 Vectors of tensor-product B-splines N r
i,pN

r
j,p

Geometry

(S) Upper index referring to specific patch, S ∈ {L, R}
Ω (S) Quadrilateral patch
Ω Two-patch domain Ω = Ω (L)

∪Ω (R)

Γ Common interface of two-patch domain Ω
F(S) Geometry mapping of patch Ω (S)

F Two patch geometry F = (F(L), F(R))
F0 Parameterization of interface Γ
d Specific transversal vector to Γ
ξ1, ξ2 Parameter directions of geometry mappings
c(S)i,j Spline control points of geometry mapping F(S)

α(S), β (S), β Gluing functions of two-patch geometry F
γ Scalar function, γ ̸= 0

C1 isogeometric space

V Space of C1 isogeometric spline functions on Ω
W Subspace of V
Φ Basis of W
ΦΩ(S) , ΦΓ0 , ΦΓ1 Parts of basis Φ , Φ = ΦΩ(L) ∪ΦΩ(R) ∪ΦΓ0 ∪ΦΓ1

φΩ
(S)

i,j Basis functions of ΦΩ(S) , i ∈ I \ {0, 1}, j ∈ I
φ
Γ0
i Basis functions of ΦΓ0 , i ∈ I0
φ
Γ1
i Basis functions of ΦΓ1 , i ∈ I1

φ̂
(S)
Γ0
, φ̂

(S)
Γ1
, φ̂

(S)
Ω(S) Vectors of spline functions φΓ0i ◦ F(S), φΓ1i ◦ F(S) and φΩ(S)

i,j ◦ F(S), respectively
B̂, B̃(S), B(S) Transformation matrices
b̂i,j, b̃

(S)
i,j , b

(S)
i,j Entries of matrices B̂, B̃(S) and B

(S)
, respectively

B(S) Block matrix assembled by the matrices B̂, B̃(S), B(S) and the identity matrix In(n−2)

Hierarchical space

ℓ Upper index referring to specific level
Λr,ℓ+1

p , Λr+1,ℓ+1
p , Λr,ℓ+1

p−1 Refinement matrices for B-splines N r,ℓ
i,p , N

r+1,ℓ
i,p and N r,ℓ

i,p−1, respectively
λℓ+1
i,j Entries of refinement matrix Λr,ℓ+1

p

Θℓ+1
ij Block matrices of refinement mask Λr,ℓ+1

p ⊗Λr,ℓ+1
p , 0 ≤ i ≤ j ≤ 2
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WH C1 hierarchical isogeometric spline space
W Basis of WH
Most notations in the paragraphs ‘‘Spline space’’ and ‘‘C1 isogeometric space’’ can be directly extended to the
hierarchical setting by adding the upper index ℓ to refer to the considered level.

is based on the concept of geometric continuity [26,27], which is a well-known framework in computer-aided design
(CAD) for the design of smooth multi-patch surfaces. The core idea is to employ the fact that an isogeometric function is
C1-smooth if and only if the associated multi-patch graph surface is G1-smooth [28], i.e., it is geometrically continuous of
order 1.

In the last few years there has been an increasing effort to provide methods for the construction of globally C1

isogeometric spline spaces over general multi-patch domains. Before giving a short overview of these existing techniques,
we first point to the approach [29], where a smooth multi-patch spline space has been generated, which is C1 (or even
p−1) across all interfaces but just C0 in the vicinity of an extraordinary vertex, and which has been extended to a
ierarchical setting, too.
The existing methods for the design of globally C1 isogeometric spline spaces for planar multi-patch domains can be

oughly classified into two groups depending on the used parameterization for the domain. The first approach relies on
multi-patch parameterization which is C1-smooth everywhere except in the neighborhood of extraordinary vertices

i.e. vertices with valencies different to four), where the parameterization is singular, see e.g. [30–32], or consists of a
pecial construction, see e.g. [33–35]. The methods [30–32] use a singular parameterization with patches in the vicinity
f an extraordinary vertex, which belong to a specific class of degenerate (Bézier) patches introduced in [36], and that
llow, despite having singularities, the design of globally C1 isogeometric spaces. The techniques [33–35] are based on G1

ulti-patch surface constructions, where the obtained surface in the neighborhood of an extraordinary vertex consists of
atches of slightly higher degree [33,35] and is generated by means of a particular subdivision scheme [34]. As a special
ase of the first approach can be seen the constructions in [37,38], that employ a polar framework to generate C1 spline
paces.
The second approach, on which we will focus, uses a particular class of regular C0 multi-patch parameterizations,

called analysis-suitable G1 multi-patch parameterization [4]. The class of analysis-suitable G1 multi-patch geometries
haracterizes the regular C0 multi-patch parameterizations that allow the design of C1 isogeometric spline spaces with
ptimal approximation properties, see [4,39], and includes for instance the subclass of bilinear multi-patch parameter-
zations [5,40,41]. An algorithm for the construction of analysis-suitable G1 parameterizations for complex multi-patch
omains was presented in [39]. The main idea of this approach is to analyze the entire space of C1 isogeometric functions
ver the given multi-patch geometry to generate a basis of this space or of a suitable subspace. While the methods
n [5,40,41] are mainly restricted to (mapped) bilinear multi-patch parameterizations, the techniques [42–46] can also
eal with more general multi-patch geometries. An alternative but related approach comprises the constructions [47,48]
or general C0 multi-patch parameterizations, which increase the degree of the constructed spline functions in the
eighborhood of the common interfaces to obtain C1 isogeometric spaces with good approximation properties.
In this work, we extend for the case of two-patch domains the second approach from above to the construction of

ierarchical C1 isogeometric spaces on analysis-suitable G1 geometries, using the abstract framework for the definition of
ierarchical splines detailed in [17]. We show that the basis functions of the considered C1 space on analysis-suitable G1

wo-patch parameterizations, which is a subspace of the space [43] inspired by [45], satisfy the required properties given
n [17], and in particular that the basis functions are locally linearly independent (see Section 3.1 for details). Note that
n case of a multi-patch domain, the general framework for the construction of hierarchical splines [17] cannot be used
nymore, since the appropriate C1 basis functions [45] can be locally linearly dependent. Therefore, the development of
nother approach as [17] would be needed for the multi-patch case, which is beyond the scope of this paper.
For the construction of the hierarchical C1 spline spaces on analysis-suitable G1 two-patch geometries, we also explore

the explicit expression for the relation between C1 basis functions of two consecutive levels, expressing coarse basis
functions as linear combinations of fine basis functions. This relation is exploited for the implementation of hierarchical
splines as in [22,23]. A series of numerical tests are presented, that are run with the help of the Matlab/Octave code
GeoPDEs [22,49].

The remainder of the paper is organized as follows. Section 2 recalls the concept of analysis-suitable G1 two-patch
geometries and presents the used C1 isogeometric spline space over this class of parameterizations. In Section 3, we
develop the (theoretical) framework to employ this space to construct C1 hierarchical isogeometric spline spaces, which
includes the verification of the nested nature of this kind of spaces, as well as the proof of the local linear independence
of the one-level basis functions. Additional details of the C1 hierarchical construction, such as the refinement masks of the
basis functions for the different levels, are discussed in Section 4 with focus on implementation aspects. The generated
hierarchical spaces are then used in Section 5 to numerically solve the laplacian and bilaplacian equations on two-patch
geometries, where the numerical results demonstrate the potential of our C1 hierarchical construction for applications
n IgA. Finally, the concluding remarks can be found in Section 6. The construction of the non-trivial analysis-suitable G1

wo-patch parameterization used in some of the numerical examples is described in detail in Appendix. For easiness of
eading, we include a list of symbols with the main notation used in this work.
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2. C1 Isogeometric spaces on two-patch geometries

In this section, we introduce the specific class of two-patch geometries and the C1 isogeometric spaces which will be
used throughout the paper.

2.1. Analysis-suitable G1 two-patch geometries

We present a particular class of planar two-patch geometries, called analysis-suitable G1 two-patch geometries, which
as introduced in [4]. This class is of importance since it comprises exactly those two-patch geometries which are suitable

or the construction of C1 isogeometric spaces with optimal approximation properties, see [4,39]. The most prominent
ember is the subclass of bilinear two-patch parameterizations, but it was demonstrated in [39] that the class is much
ider and allows the design of generic planar two-patch domains.
Let k, p, r ∈ N with degree p ≥ 3 and regularity 1 ≤ r ≤ p − 2. Let us also introduce the ordered set of internal

reakpoints T = {τ1, τ2, . . . , τk}, with 0 < τi < τi+1 < 1 for all 1 ≤ i ≤ k. We denote by Sr
p the univariate spline space in

0, 1] with respect to the open knot vector

Ξ r
p = { 0, . . . , 0  

(p+1)−times

, τ1, . . . , τ1  
(p−r)−times

, τ2, . . . , τ2  
(p−r)−times

, . . . , τk, . . . , τk  
(p−r)−times

, 1, . . . , 1  
(p+1)−times

}, (1)

and let N r
i,p, i ∈ I = {0, . . . , p + k(p − r)}, be the associated B-splines. Note that the parameter r specifies the resulting

C r -continuity of the spline space Sr
p. We will also make use of the subspaces of higher regularity and lower degree,

respectively Sr+1
p and Sr

p−1, defined from the same internal breakpoints, and we will use an analogous notation for their
basis functions. Furthermore, we denote by n, n0 and n1 the dimensions of the spline spaces Sr

p, S
r+1
p and Sr

p−1, respectively,
which are given by

n = p + 1 + k(p − r), n0 = p + 1 + k(p − r − 1) and n1 = p + k(p − r − 1),

and, analogously to I, we introduce the index sets

I0 = {0, . . . , n0 − 1}, I1 = {0, . . . , n1 − 1},

corresponding to basis functions in Sr+1
p and Sr

p−1, respectively.
Let F(L), F(R) ∈ (Sr

p ⊗Sr
p)

2 be two regular spline parameterizations, whose images F(L)([0, 1]2) and F(R)([0, 1]2) define the
two quadrilateral patches Ω (L) and Ω (R) via F(S)([0, 1]2) = Ω (S), S ∈ {L, R}. The regular, bijective mapping F(S) : [0, 1]2 →

Ω (S), S ∈ {L, R}, is called geometry mapping, and possesses a spline representation

F(S)(ξ1, ξ2) =

∑
i∈I

∑
j∈I

c(S)i,j N
r
i,p(ξ1)N

r
j,p(ξ2), c(S)i,j ∈ R2.

We assume that the two patches Ω (L) and Ω (R) form a planar two-patch domain Ω = Ω (L)
∪Ω (R), which share one whole

edge as common interface Γ = Ω (L)
∩ Ω (R). In addition, and without loss of generality, we assume that the common

interface Γ is parameterized by F0 : [0, 1] → Γ via

F0(ξ2) = F(L)(0, ξ2) = F(R)(0, ξ2), ξ2 ∈ [0, 1],

and denote by F the two-patch parameterization (also called two-patch geometry) consisting of the two spline parame-
terizations F(L) and F(R).

Remark 1. For simplicity, we have restricted ourselves to a univariate spline space Sr
p with the same knot multiplicity

for all inner knots. Instead, a univariate spline space with different inner knot multiplicities can be used, as long as the
multiplicity of each inner knot is at least 2 and at most p−1. Note that the subspaces Sr+1

p and Sr
p−1 should also be replaced

by suitable spline spaces of regularity increased by one at each inner knot, and degree reduced by one, respectively.
Furthermore, it is also possible to use different univariate spline spaces for both Cartesian directions and for both geometry
mappings, with the requirement that both patches must have the same univariate spline space in ξ2-direction.

The two geometry mappings F(L) and F(R) uniquely determine up to a common function γ : [0, 1] → R (with γ ̸= 0),
the functions α(L), α(R), β : [0, 1] → R given by

α(S)(ξ2) = γ (ξ2) det
(
∂1F(S)(0, ξ2), ∂2F(S)(0, ξ2)

)
, S ∈ {L, R},

and

β(ξ2) = γ (ξ2) det
(
∂1F(L)(0, ξ2), ∂1F(R)(0, ξ2)

)
,

satisfying for ξ2 ∈ [0, 1]

α(L)(ξ )α(R)(ξ ) < 0 (2)
2 2
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and

α(R)∂1F(L)(0, ξ2) − α(L)(ξ2)∂1F(R)(0, ξ2) + β(ξ2)∂2F(L)(0, ξ2) = 0. (3)

In addition, there exist non-unique functions β (L) and β (R)
: [0, 1] → R such that

β(ξ2) = α(L)(ξ2)β (R)(ξ2) − α(R)(ξ2)β (L)(ξ2), (4)

see e.g. [4,27]. The two-patch geometry F is called analysis-suitable G1 if there exist linear polynomial functions α(S), β (S),
S ∈ {L, R} with α(L) and α(R) relatively prime1 such that Eqs. (2)–(4) are satisfied for ξ2 ∈ [0, 1], see [4,43]. Note that
requiring that α(L) and α(R) are relatively prime is not restrictive: if α(L) and α(R) share a common factor, it is a factor of γ
too, thus α(L) and α(R) can be made relatively prime by dividing by such a factor. Note that α(L) and α(R) being linear is also
not restrictive, since the conditions are valid for non polynomial parameterizations, such as splines or NURBS, see [4,39].

In the following, we will only consider planar two-patch domains Ω which are described by analysis-suitable G1 two-
patch geometries F. Furthermore, we select uniquely determined linear polynomial functions α(S) and β (S), S ∈ {L, R}, by
minimizing the terms

∥α(L)
+ 1∥2

L2([0,1]) + ∥α(R)
− 1∥2

L2([0,1])

and

∥β (L)
∥
2
L2([0,1]) + ∥β (R)

∥
2
L2([0,1]).

The chosen linear polynomials α(S) and β (S), S ∈ {L, R}, will ensure later a more uniform scaling of the basis functions, and
are in case of parametric continuity, i.e. β = 0 and α(L)

= −α(R) just the simple functions β (L)
= β (R)

= 0 and α(L)
= −1,

α(R)
= 1, see [45].

2.2. The C1 isogeometric space V and the subspace W

We recall the concept of C1 isogeometric spaces over analysis-suitable G1 two-patch geometries studied in [4,43], and
especially focus on a specific subspace of the entire space of C1 isogeometric functions.

The space V of C1 isogeometric spline functions on Ω (with respect to the two-patch geometry F and spline space Sr
p)

is given by

V = {φ ∈ C1(Ω) : φ ◦ F(S) ∈ Sr
p ⊗ Sr

p, S ∈ {L, R}}. (5)

A function φ : Ω → R belongs to the space V if and only if the functions f (S) = φ ◦ F(S), S ∈ {L, R}, satisfy that

f (S) ∈ Sr
p ⊗ Sr

p, S ∈ {L, R}, (6)

f (L)(0, ξ2) = f (R)(0, ξ2), ξ2 ∈ [0, 1], (7)

and

α(R)(ξ2)∂1f (L)(0, ξ2) − α(L)(ξ2)∂1f (R)(0, ξ2) + β(ξ2)∂2f (L)(0, ξ2) = 0, ξ2 ∈ [0, 1],

where the last equation is due to (4) further equivalent to

∂1f (L)(0, ξ2) − β (L)(ξ2)∂2f (L)(0, ξ2)
α(L)(ξ2)

=
∂1f (R)(0, ξ2) − β (R)(ξ2)∂2f (R)(0, ξ2)

α(R)(ξ2)
, ξ2 ∈ [0, 1], (8)

see e.g. [4,28,41]. Therefore, the space V can be also described as

V = {φ : Ω → R : f (S) = φ ◦ F(S), S ∈ {L, R}, fulfill Eqs. (6)–(8)}. (9)

Note that the equally valued terms in (8) represent a specific directional derivative of φ across the interface Γ . In fact,
ecalling that f (S) = φ ◦ F(S) for S ∈ {L, R}, we have

∇φ · (d ◦ F0(ξ2)) = ∇φ · (d(S)
◦ F0(ξ2)) =

∂1f (S)(0, ξ2) − β (S)(ξ2)∂2f (S)(0, ξ2)
α(S)(ξ2)

, ξ2 ∈ [0, 1], (10)

where d is a transversal vector to Γ given by d = d(L)
= d(R) with d(S)

◦ F0(ξ2) = (∂1F(S)(0, ξ2), ∂2F(S)(0, ξ2))(1,−β (S)(ξ2))T
1

α(S)(ξ2)
, S ∈ {L, R}, see [4,43].

The structure and the dimension of the space V heavily depends on the functions α(L), α(R) and β , and was fully analyzed
in [43] by computing a basis and its dimension for all possible configurations. Below, we restrict ourselves to a simpler

1 Two polynomials are relatively prime if their greatest common divisor has degree zero.
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subspaceW (motivated by [45]), which preserves the approximation properties of V, and whose dimension is independent
of the functions α(L), α(R) and β .

The C1 isogeometric space W is defined as

W = spanΦ, Φ = ΦΩ(L) ∪ΦΩ(R) ∪ΦΓ0 ∪ΦΓ1 ,

with

ΦΩ(S) =

{
φΩ

(S)

i,j : i ∈ I \ {0, 1}; j ∈ I
}
, S ∈ {L, R}, (11)

ΦΓ0 =

{
φ
Γ0
i : i ∈ I0

}
, ΦΓ1 =

{
φ
Γ1
i : i ∈ I1

}
, (12)

where the functions φΩ
(S′)

i,j , φΓ0i and φΓ1i are defined via(
φΩ

(S′)

i,j ◦ F(S)
)
(ξ1, ξ2) =

{
N r

i,p(ξ1)N
r
j,p(ξ2) if S = S ′,

0 otherwise,
i ∈ I \ {0, 1}; j ∈ I; S, S ′

∈ {L, R}, (13)

(
φ
Γ0
i ◦ F(S)

)
(ξ1, ξ2) = N r+1

i,p (ξ2)
(
N r

0,p(ξ1) + N r
1,p(ξ1)

)
+ β (S)(ξ2)

(
N r+1

i,p

)′

(ξ2)
τ1

p
N r

1,p(ξ1), i ∈ I0; S ∈ {L, R}, (14)

and (
φ
Γ1
i ◦ F(S)

)
(ξ1, ξ2) = α(S)(ξ2)N r

i,p−1(ξ2)N
r
1,p(ξ1), i ∈ I1; S ∈ {L, R}. (15)

The construction of the functions φΩ
(S′)

i,j , φΓ0i and φΓ1i guarantees that they are linearly independent and therefore form
basis of the space W. In addition, the functions fulfill equations (6)–(8) which implies that they are C1-smooth on Ω ,
nd hence W ⊆ V. When the two spaces W and V are equal, see [43] for details, the selection of the linear polynomial
unctions β (S), S ∈ {L, R}, changes the basis functions, but does not affect the subspace W. In the case W ⊊ V, the space W
an vary for different choices of β (S). Since any selection of the functions β (S) will maintain the optimal approximation
roperties of W, by the unique selection of β (S) described in Section 2.1 we uniquely determine the space W.
The basis functions φΩ

(S′)

i,j are standard tensor-product B-splines whose support is included in one of the two patches,
hile the functions φΓ0i and φΓ1i are combinations of standard B-splines and their support crosses the interface Γ (see
ig. 1 for an example).
Moreover, the traces and specific directional derivatives (10) of the functions φΓ0i and φΓ1i at the interface Γ are equal

to

φ
Γ0
i ◦ F0(ξ2) = N r+1

i,p (ξ2), φ
Γ1
i ◦ F0(ξ2) = 0,

and

∇φ
Γ0
i · (d ◦ F0(ξ2)) = 0, ∇φ

Γ1
i · (d ◦ F0(ξ2)) = N r

i,p−1(ξ2).

herefore, the C1 isogeometric space W can be also characterized as

W = {φ ∈ V : φ ◦ F0(ξ2) ∈ Sr+1
p and ∇φ · (d ◦ F0(ξ2)) ∈ Sr

p−1}. (16)

In particular, this means that not only (7) and (8) are fulfilled, but that the terms in those equations respectively belong
to the spline spaces Sr+1

p and Sr
p−1.

3. C1 Hierarchical isogeometric spaces on two-patch geometries

This section introduces an abstract framework for the construction of the hierarchical spline basis, that is defined in
terms of a multilevel approach applied to an underlying sequence of spline bases that are locally linearly independent
and characterized by local and compact supports. The C1 hierarchical isogeometric spaces on two-patch geometries are
then defined by applying the hierarchical construction to the C1 isogeometric functions described in the previous section.
Particular attention is devoted to the proof of local linear independence of the basis functions, cf. Section 3.2, and to the
refinement mask that explicitly identifies a two-scale relation between hierarchical functions of two consecutive levels,
cf. Section 4.2. Note that, even if the hierarchical framework can be applied with different refinement strategies between
consecutive refinement levels, we here focus on dyadic refinement, the standard choice in most application contexts. In
the following the refinement level ℓ is denoted as a superscript associated to the corresponding symbol.
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Fig. 1. Example of basis functions of W on a two-patch domain: figures (a)–(b) show two basis functions of type (13) (standard B-splines whose
upport is included in one of the two patches), while figures (c) and (d) correspond to basis functions of type (14) and (15), respectively (whose
upports intersect the interface).

.1. Hierarchical splines: abstract definition

Let U0
⊂ U1

⊂ . . . ⊂ UN−1 be a sequence of N nested multivariate spline spaces defined on a closed domain D ⊂ Rd,
so that any space Uℓ, for ℓ = 0, . . . ,N − 1, is spanned by a (finite) basis Ψ ℓ satisfying the following properties.

(P1) Local linear independence;
(P2) Local and compact support.

he first property guarantees that for any subdomain S, the restrictions of the (non-vanishing) functions ψ ∈ Ψ ℓ to S
re linearly independent. The locality of the support instead enables to localize the influence of the basis functions with
espect to delimited areas of the domain. Note that the nested nature of the spline spaces implies the existence of a two-
cale relation between adjacent bases: for any level ℓ, each basis function in Ψ ℓ can be expressed as linear combination
f basis functions in Ψ ℓ+1.
By also considering a sequence of closed nested domains

Ω0
⊇ Ω1

⊇ . . . ⊇ ΩN−1, (17)

ith Ω0
⊆ D, we can define a hierarchical spline basis according to the following definition.

efinition 1. The hierarchical spline basis H with respect to the domain hierarchy (17) is defined as

H =
{
ψ ∈ Ψ ℓ

: supp0ψ ⊆ Ωℓ
∧ supp0ψ ̸⊆ Ωℓ+1, ℓ = 0, . . . ,N − 1

}
,

where supp0ψ = suppψ ∩Ω0.
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Note that the basis H = HN−1 can be iteratively constructed as follows.

1. H0
=
{
ψ ∈ Ψ 0

: supp0ψ ̸= ∅
}
;

2. for ℓ = 0, . . . ,N − 2

Hℓ+1
= Hℓ+1

A ∪ Hℓ+1
B ,

where

Hℓ+1
A =

{
ψ ∈ Hℓ

: supp0ψ ̸⊆ Ωℓ+1} and Hℓ+1
B =

{
ψ ∈ Ψ ℓ+1

: supp0ψ ⊆ Ωℓ+1} .
The main properties of the hierarchical basis can be summarized as follows.

Proposition 1. By assuming that properties (P1)–(P2) hold for the bases Ψ ℓ, the hierarchical basis satisfies the following
properties:

(i) the functions in H are linearly independent,
(ii) the intermediate spline spaces are nested, namely spanHℓ

⊆ spanHℓ+1,
(iii) given an enlargement of the subdomains (Ω̂ℓ)ℓ=0,...,N̂−1, with N ≤ N̂ , such that Ω0

= Ω̂0 and Ωℓ
⊆ Ω̂ℓ, for

ℓ = 1, . . . ,N − 1, then spanH ⊆ spanĤ.

Proof. The proof follows along the same lines as in [15] for hierarchical B-splines. □

Proposition 1 summarizes the key properties of a hierarchical set of basis functions constructed according to
Definition 1, when the underlying sequence of bases Ψ ℓ satisfies only properties (P1)–(P2).

The results in Proposition 1 remain valid when additional assumptions are considered [17]. In particular, if the basis
functions in Ψ ℓ, for ℓ = 0, . . . ,N−1 are non-negative, the hierarchical basis functions are also non-negative. Moreover, the
partition of unity property in the hierarchical setting can be recovered by considering the truncated basis for hierarchical
spline spaces [17]. In this case, the partition of unity property at each level ℓ is also required together with the positiveness
of the coefficients in the refinement mask. Even if the construction of C1 functions on two patch geometries considered
in the previous section does not satisfy the non-negativity and partition of unity properties, we could still apply the
truncation mechanism to reduce the support of coarser basis functions in the C1 hierarchical basis. Obviously, the resulting
truncated basis would not satisfy the other interesting properties of truncated hierarchical B-splines, see [16,17].

3.2. The C1 hierarchical isogeometric space

By following the construction for the C1 isogeometric spline space presented in Section 2, we can now introduce its
hierarchical extension. We recall that instead of considering the full C1 space V at any hierarchical level, we may restrict
to the simpler subspace W, whose dimension does not depend on the functions α(L), α(R) and β , and it has analogous
approximation properties as the full space.

We consider an initial knot vector Ξ r,0
p ≡ Ξ r

p as defined in (1) for then introducing the sequence of knot vectors with
respect to a fixed degree p

Ξ r,0
p ,Ξ r,1

p . . . ,Ξ r,N−1
p ,

where each knot vector

Ξ r,ℓ
p = { 0, . . . , 0  

(p+1)−times

, τ ℓ1 , . . . , τ
ℓ
1  

(p−r)−times

, τ ℓ2 , . . . , τ
ℓ
2  

(p−r)−times

, . . . , τ ℓkℓ , . . . , τ
ℓ

kℓ  
(p−r)−times

, 1, . . . , 1  
(p+1)−times

},

for ℓ = 1, . . . ,N − 1, is obtained via dyadic refinement of the knot vector of the previous level, keeping the same degree
and regularity, and therefore kℓ = 2kℓ−1

+ 1. We denote by Sr,ℓ
p the univariate spline space in [0, 1] with respect to the

open knot vector Ξ r,ℓ
p , and let N r,ℓ

i,p , for i ∈ Iℓ = {0, . . . , p + kℓ(p − r)}, be the associated B-splines. In addition, as in the
ne-level case, Sr+1,ℓ

p and Sr,ℓ
p−1 (N r+1,ℓ

i,p and N r,ℓ
i,p−1) indicate the subspaces (and their basis functions) of higher regularity

nd lower degree, respectively. We also denote by

nℓ = p + 1 + kℓ(p − r), nℓ0 = p + 1 + kℓ(p − r − 1), and nℓ1 = p + kℓ(p − r − 1),

he dimensions of the spline spaces Sr,ℓ
p , Sr+1,ℓ

p and Sr,ℓ
p−1, respectively, and, analogously to Iℓ, we introduce the index sets

Iℓ0 = {0, . . . , nℓ0 − 1}, Iℓ1 = {0, . . . , nℓ1 − 1},

orresponding to functions in Sr+1,ℓ
p and Sr,ℓ

p−1, respectively.
Let

V0
⊂ V1

⊂ . . . ⊂ VN−1
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be a sequence of nested C1 isogeometric spline spaces, with Vℓ defined on the two-patch domain Ω = Ω (L)
∪Ω (R) with

respect to the spline space of level ℓ. Analogously to the construction detailed in Section 2.2, for each level 0 ≤ ℓ ≤ N −1
let us consider the subspace

Wℓ
= spanΦℓ, with Φℓ

= Φℓ

Ω(L) ∪Φℓ

Ω(R) ∪Φℓ
Γ0

∪Φℓ
Γ1
,

where the basis functions are given by

Φℓ

Ω(S) =

{
φΩ

(S)

i,j : i ∈ Iℓ \ {0, 1}; j ∈ Iℓ
}
, Φℓ

Γ0
=

{
φ
Γ0
i : i ∈ Iℓ0

}
, Φℓ

Γ1
=

{
φ
Γ1
i : i ∈ Iℓ1

}
,

with S ∈ {L, R}, directly defined as in (11) and (12) for the one-level case.
By considering a domain hierarchy as in (17) on the two-patch domainΩ ≡ Ω0, and the sets of isogeometric functions

Φℓ at different levels, we arrive at the following definition.

Definition 2. The C1 hierarchical isogeometric space WH with respect to a domain hierarchy of the two-patch domain
Ω , that satisfies (17) with Ω0

= Ω , is defined as

WH = spanW with W =
{
φ ∈ Φℓ

: supp0φ ⊆ Ωℓ
∧ supp0φ ̸⊆ Ωℓ+1, ℓ = 0, . . . ,N − 1

}
.

The basis functions are then of the same type as in the tensor-product case, only belonging to different levels, see
Fig. 2 for an example.

In the remaining part of this section we want to prove that W is indeed a basis of the C1 hierarchical isogeometric space
WH . This requires to verify the properties for the abstract definition given in Section 3.1, in particular the nestedness of the
spaces Wℓ, and that the one-level C1 bases spanning each Wℓ, for ℓ = 0, . . . ,N−1, satisfy the hypotheses of Proposition 1,
i.e. properties (P1)–(P2). The nestedness of the spaces Wℓ, ℓ = 0, 1, . . . ,N−1, easily follows from definition (16), as stated
in the following Proposition.

Proposition 2. Let N ∈ N. The sequence of spaces Wℓ, ℓ = 0, 1, . . . ,N − 1, is nested, i.e.

W0
⊂ W1

⊂ . . . ⊂ WN−1.

Proof. Let ℓ = 0, . . . ,N − 2, and φ ∈ Wℓ
⊂ Vℓ. By definition (5) the spaces Vℓ are nested, hence φ ∈ Vℓ ⊂ Vℓ+1. Since

the spline spaces Sr+1,ℓ
p and Sr,ℓ

p−1 are nested, too, we have φ ◦ F0 ∈ Sr+1,ℓ
p ⊂ Sr+1,ℓ+1

p and ∇φ · (d ◦ F0) ∈ Sr,ℓ
p−1 ⊂ Sr,ℓ+1

p−1 ,
which implies that φ ∈ Wℓ+1. □

The locality and compactness of the support of these functions in (P2) comes directly by construction and by the same
property for standard B-splines, see (13)–(15) and Fig. 1. The property of local linear independence in (P1) instead is
proven in the following Proposition.

Proposition 3. The set of basis functions Φℓ
= Φℓ

Ω(L) ∪Φ
ℓ

Ω(R) ∪Φ
ℓ
Γ0

∪Φℓ
Γ1
, is locally linearly independent, for ℓ = 0, . . . ,N−1.

Proof. Since we have to prove the statement for any hierarchical level ℓ, we just remove the superscript ℓ in the proof
to simplify the notation. Recall that the functions in Φ are linearly independent. It is well known that the functions in
ΦΩ(L) ∪ΦΩ(R) are locally linearly independent, as they are (mapped) standard B-splines. Furthermore, it is also well known,
or easy to verify, that each of the following sets of univariate functions is locally linearly independent

(a) {N r
0,p + N r

1,p,N
r
1,p} ∪ {N r

i,p}i∈I\{0,1},
(b) {N r+1

i,p }i∈I0 ,
(c) {N r

i,p−1}i∈I1 .

We prove that the set of functions Φ is locally linearly independent, which means that, for any open set Ω̃ ⊂ Ω the
functions of Φ that do not vanish in Ω̃ are linearly independent on Ω̃ . Let Ĩ0 ⊂ I0, Ĩ1 ⊂ I1 and Ĩ(S)j ⊂ I, j ∈ I \ {0, 1},
S ∈ {L, R}, be the sets of indices corresponding to those functions φΓ0i , φΓ1i and φΩ

(S)

j,i , respectively, that do not vanish
on Ω̃ . Then the equation∑

i∈̃I0

µ0,iφ
Γ0
i (x) +

∑
i∈̃I1

µ1,iφ
Γ1
i (x) +

∑
S∈{L,R}

∑
j∈I\{0,1}

∑
i∈̃I(S)j

µ
(S)
j,i φ

Ω(S)

j,i (x) = 0, x ∈ Ω̃ (18)
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Fig. 2. Example of basis functions of WH on a two-patch domain: on the left basis functions of type (13)–(15) respectively belonging to level 0 are
shown, while on the right analogous basis functions of level 1 are reported.
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n

has to imply µ0,i = 0 for all i ∈ Ĩ0, µ1,i = 0 for all i ∈ Ĩ1, and µ
(S)
j,i = 0 for all i ∈ Ĩ(S)j , j ∈ I \ {0, 1}, S ∈ {L, R}. Eq. (18)

mplies that∑
i∈̃I0

µ0,i

(
φ
Γ0
i ◦ F(S)

)
(ξ1, ξ2) +

∑
i∈̃I1

µ1,i

(
φ
Γ1
i ◦ F(S)

)
(ξ1, ξ2) +

∑
j∈I\{0,1}

∑
i∈̃I(S)j

µ
(S)
j,i

(
φΩ

(S)

j,i ◦ F(S)
)
(ξ1, ξ2) = 0,

or (ξ1, ξ2) ∈ Ω̃ (S) and S ∈ {L, R}, where Ω̃ (S)
⊆ (0, 1)2 are the corresponding parameter domains for the geometry

appings F(S) such that the closure of Ω̃ is

cl(Ω̃) = cl
(
F(L)(Ω̃ (L)) ∪ F(R)(Ω̃ (R))

)
.

y substituting the functions φΓ0i ◦ F(S), φΓ1i ◦ F(S) and φΩ(S)

j,i ◦ F(S) by their corresponding expressions, we obtain∑
i∈̃I0

µ0,i

(
N r+1

i,p (ξ2)
(
N r

0,p(ξ1) + N r
1,p(ξ1)

)
+ β (S)(ξ2)

(
N r+1

i,p

)′

(ξ2)
τ1

p
N r

1,p(ξ1)
)

+

∑
i∈̃I1

µ1,i
(
α(S)(ξ2)N r

i,p−1(ξ2)N
r
1,p(ξ1)

)
+

∑
j∈I\{0,1}

∑
i∈̃I(S)j

µ
(S)
j,i N

r
j,p(ξ1)N

r
i,p(ξ2) = 0,

for (ξ1, ξ2) ∈ Ω̃ (S) and S ∈ {L, R}, which can be rewritten as(
N r

0,p(ξ1) + N r
1,p(ξ1)

)(∑
i∈̃I0

µ0,iN r+1
i,p (ξ2)

)
+ N r

1,p(ξ1)
(τ1
p

∑
i∈̃I0

µ0,iβ
(S)(ξ2)

(
N r+1

i,p

)′

(ξ2)
)

(19)

+ N r
1,p(ξ1)

(∑
i∈̃I1

µ1,iα
(S)(ξ2)N r

i,p−1(ξ2)
)

+

∑
j∈I\{0,1}

N r
j,p(ξ1)

(∑
i∈̃I(S)j

µ
(S)
j,i N

r
i,p(ξ2)

)
= 0.

Now, since Ω̃ and Ω̃ (S) are open, for each i ∈ Ĩ0 there exists a point (ξ (S)1 , ξ
(S)
2 ) ∈ Ω̃ (S), with S ∈ {L, R}, such that φΓ0i does

ot vanish in a neighborhood Q ⊂ Ω̃ (S) of the point. Due to the fact that the univariate functions N r
0,p + N r

1,p, N
r
1,p and

N r
j,p, j ∈ I \ {0, 1} are locally linearly independent and that N r

0,p(ξ
(S)
1 ) + N r

1,p(ξ
(S)
1 ) ̸= 0, we get that∑

i∈̃I0

µ0,iN r+1
i,p (ξ2) = 0, for ξ2 such that (ξ (S)1 , ξ2) ∈ Q .

This equation and the local linear independence of the univariate functions {N r+1
i,p }i∈̃I0 imply that µ0,i = 0. Applying this

argument for all i ∈ Ĩ0, we obtain µ0,i = 0, i ∈ Ĩ0, and the term (19) simplifies to

N r
1,p(ξ1)

(∑
i∈̃I1

µ1,iα
(S)(ξ2)N r

i,p−1(ξ2)
)

+

∑
j∈I\{0,1}

N r
j,p(ξ1)

(∑
i∈̃I(S)j

µ
(S)
j,i N

r
i,p(ξ2)

)
= 0. (20)

Similarly, we can obtain for each i ∈ Ĩ1∑
i∈̃I1

µ1,i α
(S)(ξ2)N r

i,p−1(ξ2) = 0, for ξ2 such that (ξ (S)1 , ξ2) ∈ Q , (21)

with the corresponding points (ξ (S)1 , ξ2) ∈ Ω̃ and neighborhoods Q ⊂ Ω̃ . Since the function α(S) is just a linear function
which never takes the value zero, see (2), Eq. (21) implies that∑

i∈̃I1

µ1,i N r
i,p−1(ξ2) = 0, for ξ2 such that (ξ (S)1 , ξ2) ∈ Q .

The local linear independence of the univariate functions {N r
i,p−1}i∈̃I1 implies as before that µ1,i = 0, i ∈ Ĩ1, and therefore

the term (20) simplifies further to∑
j∈I\{0,1}

N r
j,p(ξ1)

(∑
i∈̃I(S)j

µ
(S)
j,i N

r
i,p(ξ2)

)
= 0.

Finally, µ(S)
j,i = 0, i ∈ Ĩ(S)j , j ∈ I \ {0, 1}, S ∈ {L, R}, follows directly from the fact that the functions in ΦΩ(L) ∪ ΦΩ(R) are

locally linearly independent. □
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Finally, we have all what is necessary to prove the main result.

Theorem 1. W is a basis for the C1 hierarchical space WH .

Proof. The result holds because the spaces in Definition 2 satisfy the hypotheses in Proposition 1. In particular, we have
the nestedness of the spaces by Proposition 2, and for the basis functions in Φℓ the local linear independence (P1) by
Proposition 3, and the local and compact support (P2) by their definition in (13)–(15). □

Remark 2. In contrast to the here considered C1 basis functions for the case of analysis-suitable G1 two-patch geometries,
the analogous C1 basis functions for the multi-patch case based on [45] are, in general, not locally linearly dependent. Due
to the amount of notation needed and to their technicality, we do not report here counterexamples, but what happens,
even in some basic domain configurations, is that the basis functions defined in the vicinity of a vertex may be locally
linearly dependent. As a consequence, the construction of a hierarchical C1 space requires a different approach, whose
investigation is beyond the scope of the present paper.

4. Refinement mask and implementation

In this section we give some details about practical aspects regarding the implementation of isogeometric methods
based on the hierarchical space WH . First, we recall how the C1 basis functions of one level can be expressed as linear
combinations of standard B-splines. Then, we specify the refinement masks, which allow to write the basis functions
of Φℓ as linear combinations of the basis functions of Φℓ+1. The refinement masks are important, as they are needed,
for instance, for knot insertion algorithms and some operators in multilevel preconditioning. Finally, we focus on the
implementation of the hierarchical space in the open Octave/Matlab software GeoPDEs [49], whose principles can be
applied almost identically to any other isogeometric code. The implementation employs the refinement masks for the
evaluation of basis functions too.

4.1. Representation of the basis with respect to Sr
p ⊗ Sr

p

We describe the strategy shown in [43] to represent the spline functions of Section 2.2, namely φΩ
(S′)

i,j ◦ F(S), φΓ0i ◦ F(S)

and φΓ1i ◦ F(S), S ∈ {L, R}, with respect to the spline space Sr
p ⊗ Sr

p, using a vectorial notation. Let us first introduce the
vectors of functions N0, N1 and N2, given by

N0(ξ1, ξ2) = [N r
0,p(ξ1)N

r
j,p(ξ2)]j∈I, N1(ξ1, ξ2) = [N r

1,p(ξ1)N
r
j,p(ξ2)]j∈I,

and

N2(ξ1, ξ2) = [N r
i,p(ξ1)N

r
j,p(ξ2)]

T
i∈I\{0,1},j∈I,

which represent the whole basis of Sr
p ⊗ Sr

p. Let us also introduce, the vectors of functions

φΓ0 (x) = [φ
Γ0
i (x)]i∈I0 , φΓ1 (x) = [φ

Γ1
i (x)]i∈I1 ,

φΩ(S) (x) = [φΩ
(S)

i,j (x)]i∈I\{0,1}; j∈I for S ∈ {L, R},

and finally, for S ∈ {L, R}, the vectors of functions φ̂
(S)
Γ0
, φ̂

(S)
Γ1
, φ̂

(S)
Ω(S) , given by

φ̂
(S)
Γ0
(ξ1, ξ2) = [φ

Γ0
i ◦ F(S)(ξ1, ξ2)]i∈I0 , φ̂

(S)
Γ1
(ξ1, ξ2) = [φ

Γ1
i ◦ F(S)(ξ1, ξ2)]i∈I1 ,

φ̂
(S)
Ω(S) (ξ1, ξ2) = [φΩ

(S)

i,j ◦ F(S)(ξ1, ξ2)]i∈I\{0,1}; j∈I.

Since the basis functions φΩ
(S)

i,j are just the ‘‘standard’’ isogeometric functions, the spline functions φ̂
(S)
Ω(S) (ξ1, ξ2) automati-

cally belong to the basis of the spline space Sr
p ⊗ Sr

p, while an analysis of the basis functions in φ̂
(S)
Γ0
(ξ1, ξ2) and φ̂

(S)
Γ1
(ξ1, ξ2),

eads to the following representation⎡⎢⎢⎣
φ̂
(S)
Γ0
(ξ1, ξ2)

φ̂
(S)
Γ1
(ξ1, ξ2)

φ̂
(S)

(ξ , ξ )

⎤⎥⎥⎦ =

⎡⎣ B̂ B̃(S) 0
0 B(S) 0
0 0 In(n−2)

⎤⎦[ N0(ξ1, ξ2)
N1(ξ1, ξ2)
N2(ξ1, ξ2)

]
, S ∈ {L, R}, (22)
Ω(S) 1 2
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B̃

where Im denotes the identity matrix of dimension m, and the other blocks of the matrix take the form B̂ = [̂bi,j]i∈I0,j∈I,
(S)

= [̃b(S)i,j ]i∈I0,j∈I, and B(S)
= [b(S)i,j ]i∈I1,j∈I. In fact, these are sparse matrices, and by defining the index sets

J0,i = {j ∈ I : supp(N r
j,p) ∩ supp(N r+1

i,p ) ̸= ∅}, for i ∈ I0,

and

J1,i = {j ∈ I : supp(N r
j,p) ∩ supp(N r

i,p−1) ̸= ∅}, for i ∈ I1,

it can be seen that the possible non-zero entries are limited to b̂i,j, b̃
(S)
i,j , i ∈ I0, j ∈ J0,i, and b(S)i,j , i ∈ I1, j ∈ J1,i, respectively.

For the sake of completeness, we explain how to compute these coefficients as suggested in [43]. Let us denote by ζm,
with m ∈ I, the Greville abscissae of the univariate spline space Sr

p. Then, for each S ∈ {L, R} and for each i ∈ I0 or i ∈ I1,
the linear factors b̂i,j, b̃

(S)
i,j , j ∈ J0,i, and b(S)i,j , j ∈ J1,i, can be obtained by solving the following systems of linear equations(

φ
Γ0
i ◦ F(L)

)
(0, ζm) =

∑
j∈J0,i

b̂i,jN
r
j,p(ζm), m ∈ J0,i,

τ1∂1

(
φ
Γ0
i ◦ F(S)

)
(0, ζm)

p
+

(
φ
Γ0
i ◦ F(S)

)
(0, ζm) =

∑
j∈J0,i

b̃(S)i,j N
r
j,p(ζm), m ∈ J0,i,

and

τ1∂1

(
φ
Γ1
i ◦ F(L)

)
(0, ζm)

p
=

∑
j∈J1,i

b(S)i,j N
r
j,p(ζm), m ∈ J1,i,

respectively, see [43] for more details. Note that the coefficients b̂i,j, i ∈ I0, are exactly the spline coefficients of the
B-spline N r+1

j,p for the spline representation with respect to the space Sr
p, and can also be computed by simple knot

insertion.

4.2. Refinement masks

Let us recall the notations and assumptions from Section 3.2 for the multi-level setting of the spline spaces Wℓ,
ℓ = 0, 1, . . . ,N − 1, where the upper index ℓ refers to the specific level of refinement. We will use the same upper
index in an analogous manner for further notations, which have been mainly introduced in Sections 2.2 and 4.1 for the
one-level case, such as for the vectors of functions N0, N1, N2 and φ̂

(S)
Γ0
, φ̂

(S)
Γ1
, φ̂

(S)
Ω(S) , S ∈ {L, R}, and for the transformation

matrices B̂, B̃(S) and B(S), S ∈ {L, R}.
Let R+ be the set of non-negative real numbers. Based on basic properties of B-splines, there exist refinement matrices

(refinement masks) Λr,ℓ+1
p ∈ Rnℓ×nℓ+1

+ , Λr+1,ℓ+1
p ∈ R

nℓ0×nℓ+1
0

+ and Λr,ℓ+1
p−1 ∈ R

nℓ1×nℓ+1
1

+ such that

[N r,ℓ
i,p (ξ )]i∈Iℓ = Λr,ℓ+1

p [N r,ℓ+1
i,p (ξ )]i∈Iℓ+1 ,

[N r+1,ℓ
i,p (ξ )]i∈Iℓ0 = Λr+1,ℓ+1

p [N r+1,ℓ+1
i,p (ξ )]i∈Iℓ+1

0
,

and

[N r,ℓ
i,p−1(ξ )]i∈Iℓ1 = Λ

r,ℓ+1
p−1 [N r,ℓ+1

i,p−1 (ξ )]i∈Iℓ+1
1
.

These refinement matrices are banded matrices with a small bandwidth. Furthermore, using an analogous notation
to Section 4.1 for the vectors of functions, the refinement mask between the tensor-product spaces Sr,ℓ

p ⊗ Sr,ℓ
p and

Sr,ℓ+1
p ⊗ Sr,ℓ+1

p is obtained by refining in each parametric direction as a Kronecker product, and can be written in
block-matrix form as⎡⎣ Nℓ0(ξ1, ξ2)

Nℓ1(ξ1, ξ2)
Nℓ2(ξ1, ξ2)

⎤⎦ = (Λr,ℓ+1
p ⊗Λr,ℓ+1

p )

⎡⎢⎣ Nℓ+1
0 (ξ1, ξ2)

Nℓ+1
1 (ξ1, ξ2)

Nℓ+1
2 (ξ1, ξ2)

⎤⎥⎦ =

⎡⎢⎣ Θℓ+1
00 Θℓ+1

01 Θℓ+1
02

0 Θℓ+1
11 Θℓ+1

12

0 0 Θℓ+1
22

⎤⎥⎦
⎡⎢⎣ Nℓ+1

0 (ξ1, ξ2)
Nℓ+1

1 (ξ1, ξ2)
Nℓ+1

2 (ξ1, ξ2)

⎤⎥⎦ . (23)

Note that in case of dyadic refinement (as considered in this work), we have Θℓ+1
02 = 0.

The following Proposition provides the relation between basis functions of two consecutive levels, which can be
interpreted as follows: while the refinement of standard B-splines of level ℓ of course gives B-splines of level ℓ + 1,
by refining basis functions of level ℓ of the other two types we obtain functions of the respective type and standard
B-splines of level ℓ+ 1.
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Proposition 4. It holds that⎡⎢⎢⎢⎣
φℓΓ0 (x)
φℓΓ1 (x)
φℓ
Ω(L) (x)

φℓ
Ω(R) (x)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Λr+1,ℓ+1

p 0 B̃(L),ℓΘℓ+1
12 B̃(R),ℓΘℓ+1

12

0 1
2Λ

r,ℓ+1
p−1 B(L),ℓΘℓ+1

12 B(R),ℓΘℓ+1
12

0 0 Θℓ+1
22 0

0 0 0 Θℓ+1
22

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

φℓ+1
Γ0

(x)
φℓ+1
Γ1

(x)
φℓ+1
Ω(L) (x)

φℓ+1
Ω(R) (x)

⎤⎥⎥⎥⎦ . (24)

roof. The idea of the proof is based on first writing the basis functions of level ℓ in terms of standard B-splines of the
ame level by using (22), and then of level ℓ+1 by (23). Then, the same functions are written in terms of B-splines of level
+ 1, using the expressions given by (13)–(15). Comparing the two expressions, and using again (13)–(15), we finally
how that the result is a combination of basis functions of level ℓ+ 1.
We first show the refinement relation for the functions φℓΓ0 . For this, let us consider the corresponding spline functions

(S),ℓ
Γ0

, S ∈ {L, R}. On the one hand, using first relation (22) and then relation (23) with the fact that Θℓ+1
02 = 0, we obtain

φ̂
(S),ℓ
Γ0

(ξ1, ξ2) =
[

B̂ℓ B̃(S),ℓ 0
] [

Nℓ0(ξ1, ξ2) Nℓ1(ξ1, ξ2) Nℓ2(ξ1, ξ2)
]T

=
[

B̂ℓ B̃(S),ℓ 0
]⎡⎢⎣ Θℓ+1

00 Θℓ+1
01 0

0 Θℓ+1
11 Θℓ+1

12

0 0 Θℓ+1
22

⎤⎥⎦
⎡⎢⎣ Nℓ+1

0 (ξ1, ξ2)
Nℓ+1

1 (ξ1, ξ2)
Nℓ+1

2 (ξ1, ξ2)

⎤⎥⎦ ,
hich is equal to[

B̂ℓΘℓ+1
00 B̂ℓΘℓ+1

01 + B̃(S),ℓΘℓ+1
11

] [ Nℓ+1
0 (ξ1, ξ2)

Nℓ+1
1 (ξ1, ξ2)

]
+ B̃(S),ℓΘℓ+1

12 Nℓ+1
2 (ξ1, ξ2). (25)

n the other hand, from (14) the functions φ̂
(S),ℓ
Γ0

possess the form

φ̂
(S),ℓ
Γ0

(ξ1, ξ2) =

[
N r+1,ℓ

i,p (ξ2)
]
i∈Iℓ0

(
N r,ℓ

0,p(ξ1) + N r,ℓ
1,p(ξ1)

)
+
τ ℓ1

p
β (S)(ξ2)

[(
N r+1,ℓ

i,p

)′

(ξ2)
]
i∈Iℓ0

N r,ℓ
1,p(ξ1).

By refining the B-spline functions N r+1,ℓ+1
i,p (ξ2), we obtain

φ̂
(S),ℓ
Γ0

(ξ1, ξ2) = Λr+1,ℓ+1
p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

(
N r,ℓ

0,p(ξ1) + N r,ℓ
1,p(ξ1)

)
+
τ ℓ1

p
β (S)(ξ2)Λr+1,ℓ+1

p

[(
N r+1,ℓ+1

i,p

)′

(ξ2)
]
i∈Iℓ+1

0

N r,ℓ
1,p(ξ1).

Then, refining the B-spline functions N r,ℓ
0,p(ξ1) + N r,ℓ

1,p(ξ1) and N r,ℓ
1,p(ξ1) leads to

φ̂
(S),ℓ
Γ0

(ξ1, ξ2) = Λr+1,ℓ+1
p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

(∑
j∈Iℓ+1

λℓ+1
0,j N r,ℓ+1

j,p (ξ1) +

∑
j∈Iℓ+1

λℓ+1
1,j N r,ℓ+1

j,p (ξ1)
)

+
τ ℓ1

p
β (S)(ξ2)Λr+1,ℓ+1

p

[(
N r+1,ℓ+1

i,p

)′

(ξ2)
]
i∈Iℓ+1

0

∑
j∈Iℓ+1

λℓ+1
1,j N r,ℓ+1

j,p (ξ1),

where λℓ+1
i,j are the entries of the refinement matrix Λr,ℓ+1

p . Since we refine dyadically, we have λℓ+1
0,0 = 1, λℓ+1

0,1 =
1
2 ,

λℓ+1
1,0 = 0, λℓ+1

1,1 =
1
2 and τ ℓ+1

1 =
τℓ1
2 , and we get

φ̂
(S),ℓ
Γ0

(ξ1, ξ2) =

(
Λr+1,ℓ+1

p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

(
N r,ℓ+1

0,p (ξ1) + N r,ℓ+1
1,p (ξ1)

)
+
τ ℓ+1
1

p
β (S)(ξ2)Λr+1,ℓ+1

p

[(
N r+1,ℓ+1

i,p

)′

(ξ2)
]
i∈Iℓ+1

0

N r,ℓ+1
1,p (ξ1)

)
+

(
Λr+1,ℓ+1

p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

( ∑
j∈Iℓ+1\{0,1}

(λℓ+1
0,j + λℓ+1

1,j )N r,ℓ+1
j,p (ξ1)

)
+
τ ℓ1

p
β (S)(ξ2)Λr+1,ℓ+1

p

[(
N r+1,ℓ+1

i,p

)′

(ξ2)
]
i∈Iℓ+1

∑
λℓ+1
1,j N r,ℓ+1

j,p (ξ1)
)
,

0 j∈Iℓ+1\{0,1}
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which is equal to

φ̂
(S),ℓ
Γ0

(ξ1, ξ2) = Λr+1,ℓ+1
p φ̂

(S),ℓ+1
Γ0

(ξ1, ξ2)

+

(
Λr+1,ℓ+1

p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

( ∑
j∈Iℓ+1\{0,1}

(λℓ+1
0,j + λℓ+1

1,j )N r,ℓ+1
j,p (ξ1)

)
(26)

+
τ ℓ1

p
β (S)(ξ2)Λr+1,ℓ+1

p

[(
N r+1,ℓ+1

i,p

)′

(ξ2)
]
i∈Iℓ+1

0

∑
j∈Iℓ+1\{0,1}

λℓ+1
1,j N r,ℓ+1

j,p (ξ1)
)
.

y analyzing the two equal value terms (25) and (26) with respect to the spline representation in ξ1-direction formed by
he B-splines N r,ℓ+1

j,p (ξ1), j ∈ I, one can observe that the first terms in both equations only contain these B-splines with
ndex j = 0, 1, while the second terms only contain these B-splines with indices j ̸= 0, 1. Therefore, both first terms and
oth second terms each must coincide. This leads to

φ̂
(S),ℓ
Γ0

(ξ1, ξ2) = Λr+1,ℓ+1
p φ̂

(S),ℓ+1
Γ0

(ξ1, ξ2) + B̃(S),ℓΘℓ+1
12 Nℓ+1

2 (ξ1, ξ2),

hich directly implies the refinement relation for the functions φℓΓ0 .
The refinement for the functions φℓΓ1 can be proven similarly. Considering the spline functions φ̂

(S),ℓ
Γ1

, S ∈ {L, R}, we get,
n the one hand, by using relations (22) and (23) and the fact that Θℓ+1

02 = 0

φ̂
(S),ℓ
Γ1

(ξ1, ξ2) =
[

0 B(S),ℓ 0
] [

Nℓ0(ξ1, ξ2) Nℓ1(ξ1, ξ2) Nℓ2(ξ1, ξ2)
]T

=
[

0 B(S),ℓ 0
]⎡⎢⎣ Θℓ+1

00 Θℓ+1
01 0

0 Θℓ+1
11 Θℓ+1

12

0 0 Θℓ+1
22

⎤⎥⎦
⎡⎢⎣ Nℓ+1

0 (ξ1, ξ2)
Nℓ+1

1 (ξ1, ξ2)
Nℓ+1

2 (ξ1, ξ2)

⎤⎥⎦
= B(S),ℓΘℓ+1

11 Nℓ+1
1 (ξ1, ξ2) + B(S),ℓΘℓ+1

12 Nℓ+1
2 (ξ1, ξ2). (27)

On the other hand, from (15) the functions φ̂
(S),ℓ
Γ1

can be expressed as

φ̂
(S),ℓ
Γ1

(ξ1, ξ2) = α(S)(ξ2)
[
N r,ℓ

i,p−1(ξ2)
]
i∈Iℓ1

N r,ℓ
1,p(ξ1),

and after refining the B-spline functions N r,ℓ
1,p(ξ1) and N r,ℓ

i,p−1(ξ2), i ∈ Iℓ1 we obtain that this is equal to

φ̂
(S),ℓ
Γ1

(ξ1, ξ2) = α(S)(ξ2)Λ
r,ℓ+1
p−1

[
N r,ℓ+1

i,p−1 (ξ2)
]
i∈Iℓ+1

1

∑
j∈Iℓ+1

λℓ+1
1,j N r,ℓ+1

j,p (ξ1),

where λℓ+1
i,j are again the entries of the refinement matrix Λr,ℓ+1

p . Recalling that λℓ+1
1,0 = 0 and λℓ+1

1,1 =
1
2 , we get

φ̂
(S),ℓ
Γ1

(ξ1, ξ2) = α(S)(ξ2)Λ
r,ℓ+1
p−1

[
N r,ℓ+1

i,p−1 (ξ2)
]
i∈Iℓ+1

1

(1
2
N r,ℓ+1

1,p (ξ1) +

∑
j∈Iℓ+1\{0,1}

λℓ+1
1,j N r,ℓ+1

j,p (ξ1)
)

=
1
2
Λ

r,ℓ+1
p−1 φ̂

(S),ℓ+1
Γ1

(ξ1, ξ2) + α(S)(ξ2)Λ
r,ℓ+1
p−1

[
N r,ℓ+1

i,p−1 (ξ2)
]
i∈Iℓ+1

1

∑
j∈Iℓ+1\{0,1}

λℓ+1
1,j N r,ℓ+1

j,p (ξ1). (28)

Considering the two equal value terms (27) and (28), one can argue as for the case of the functions φ̂
(S),ℓ
Γ0

, that both first
terms and both second terms each must coincide. This implies

φ̂
(S),ℓ
Γ1

(ξ1, ξ2) =
1
2
Λ

r,ℓ+1
p−1 φ̂

(S),ℓ+1
Γ1

(ξ1, ξ2) + B(S),ℓΘℓ+1
12 Nℓ+1

2 (ξ1, ξ2),

hich finally shows the refinement relation for the functions φℓΓ1 .
Finally, the relation for the functions φℓ

Ω(S) , S ∈ {L, R}, directly follows from relation (23), since they correspond to
‘standard’’ B-splines. □

.3. Details about the implementation

The implementation of GeoPDEs is based on two main structures: the mesh, that contains the information related to
he computational geometry and the quadrature, and that did not need any change; and the space, with the necessary
nformation to evaluate the basis functions and their derivatives. The new implementation was done in two steps: we
irst introduced the space of C1 basis functions of one single level, as in Section 2.2, and then we added the hierarchical
onstruction.
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For the space of one level, we created a new space structure that contains the numbering for the basis functions of the
three different types, namely ΦΩ(S) ,ΦΓ0 and ΦΓ1 . Note that the number of basis functions of each type is easily obtained
from (11)–(12) and the cardinality of the sets of indices I, I0 and I1. The evaluation of the basis functions, and also matrix
assembly, is performed using the representation of C1 basis functions in terms of standard tensor-product B-splines, as
in Section 4.1. Indeed, one can first assemble the matrix for tensor-product B-splines, and then multiply on each side this
matrix by the same matrix given in (22), in the form

K (S)
W = B(S)K (S)

S (B(S))⊤, with B(S)
=

⎡⎣ B̂ B̃(S) 0
0 B(S) 0
0 0 In(n−2)

⎤⎦ , for S = L, R,

where K (S)
S represents the stiffness matrix for the standard tensor-product B-spline space on the patchΩ (S), and K (S)

W is the
contribution to the stiffness matrix for the W space from the same patch. Obviously, the same can be done at the element
level, by restricting the matrices to suitable submatrices using the indices of non-vanishing functions on the element.

Once the C1 space of one level is in place, the next step is the implementation of the hierarchical C1 space, which can
be done following [22]. As explained in that paper, although the details were given for standard hierarchical B-splines,
the same data structures and algorithms are valid for the abstract construction of hierarchical splines from [17], that we
summarized in Section 3.1. As before, the structure for the hierarchical mesh does not differ from the case of hierarchical
B-splines, and the differences are in the space structure.

For the space, it is first necessary to complete the space structure of one single level, that we have just described, with
some functionality to compute the support of a given basis function, as explained in [22, Section 5.1]. This can be easily
done from the analogous functions for B-splines combined with the knowledge of the matrix B(S). Second, the hierarchical
structures are constructed following the description in the same paper, except that for the evaluation of basis functions,
and in particular for matrix assembly, we make use of the refinement masks of Section 4.2. The support functionality
contains all the necessary information to compute the set of active functions when applying the refinement algorithms
in [22], while the refinement masks also give us the two-level relation, stored in the matrix Cℓ+1

ℓ of that paper, that is
used both during matrix assembly and to compute the refinement matrix after enlargement of the subdomains.

5. Numerical examples

We present now some numerical examples to show the good performance of the hierarchical C1 spaces for their use
in combination with adaptive methods. We consider two different kinds of numerical examples: the first three tests are
run for Poisson problems with an automatic adaptive scheme, while in the last numerical test we solve the bilaplacian
problem, with a pre-defined refinement scheme.

5.1. Poisson Problem

The first three examples are tests on the Poisson equation{
−∆u = f in Ω,

u = g on ∂Ω.

he goal is to show that using the C1 space basis does not spoil the properties of the local refinement, and that the
behavior is similar to the one obtained using spaces with C0 continuity across the interfaces. The employed isogeometric
algorithm is based on the adaptive loop (see, e.g., [50])

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

In particular, for the examples we solve the variational formulation of the problem imposing the Dirichlet boundary
condition by Nitsche’s method, and the problem is to find uh ∈ WH such that for every test function vh ∈ WH it holds∫

Ω

∇uh · ∇vh −

∫
ΓD

∂uh

∂n
vh −

∫
ΓD

uh
∂vh

∂n
+

∫
ΓD

γ

hQ
uhvh =

∫
Ω

f vh −

∫
ΓD

g
∂vh

∂n
+

∫
ΓD

γ

hQ
gvh,

where hQ is the local element size, and the penalization parameter is chosen as γ = 10(p + 1), with p the degree. The
error estimate is computed with a residual-based estimator, given by

ε(uh) =

(∑
Q∈M

ε2Q (uh)

)1/2

, with ε2Q (uh) =

(
h2
Q

∫
Q

|f +∆uh|
2
+ hQ

∫
∂Q∩Γ

[[
∂uh

∂nΓ

]]2)1/2

,

here the sum is over all the elements of the mesh M, nΓ is the unit normal vector of the interface Γ , and [[·]] denotes
he jump across the interface. Note that for C1 functions the jump term does not need to be computed. The marking of
he elements at each iteration is done using Dörfler’s strategy (when not stated otherwise, we set the marking parameter
qual to 0.75). The refinement step of the loop dyadically refines all the marked elements. Although optimal convergence
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Fig. 3. The two domains used in the numerical examples.

an be only proved if we refine using a refinement strategy that guarantees that meshes are admissible [18], previous
umerical results show also a good behavior of non-admissible meshes [50].
For each of the three examples we report the results for degrees p = (3, 3), (4, 4), with C1 smoothness across the

nterface, and with a regularity r equal to degree minus two within the single patches. We compare the results for the
daptive scheme with those obtained by refining uniformly, to show the benefits of local refinement. We also compare
hem with the ones obtained by employing the same adaptive scheme for hierarchical spaces with C0 continuity across
he interface, while the same regularity within the patches as above is kept, to validate the optimal convergence of the
daptive scheme with C1 continuity spaces.

xample 1. For the first numerical example we consider the classical L-shaped domain [−1, 1]2 \ (0, 1)× (−1, 0) defined
y two patches as depicted in Fig. 3(a), and the right-hand side f and the boundary condition g are chosen such that the
xact solution is given by

u(ρ, θ ) = ρ
4
3 sin

(
4
3
θ

)
,

with ρ and θ the polar coordinates. As it is well known, the exact solution has a singularity at the reentrant corner.
We start the adaptive simulation with a coarse mesh of 4 × 4 elements on each patch, and we use Dörfler’s parameter

equal to 0.90 for the marking of the elements. The convergence results are presented in Fig. 4. It can be seen that the error
in H1 semi-norm and the estimator converge with the expected rate, in terms of the degrees of freedom, both for the C1

and the C0 discretization, and that this convergence rate is better than the one obtained with uniform refinement. The
effectivity index of the residual estimator, that is, the ratio between the estimated error and the exact error is around 10,
as already observed in previous works [20,50]. Moreover, the errors for the C1 and the C0 discretizations are very similar,
although slightly better for the C1 case, which maintains the optimal convergence rate. Note that, since the spaces only
differ near the interface, the difference in the error between the two discretizations is very small.

We also show in Fig. 5 the final meshes obtained with the different discretizations. It is clear that the adaptive method
correctly refines the mesh in the vicinity of the reentrant corner, where the singularity occurs, and the refinement gets
more local with higher degree.

Example 2. In the second example the data of the problem are chosen in such a way that the exact solution is

u(x, y) = (−120x + x2 − 96y − 8xy + 16y2)12/5 cos(πy/20),

efined on the domain shown in Fig. 3(b). The geometry of the domain is given by two bicubic Bézier patches, and the
ontrol points are chosen following the algorithm in [39], in such a way that the geometry is given by an analysis-suitable
1 parameterization, see Appendix for details. Note that we have chosen the solution such that it has a singularity along
he interface. In this example we start the adaptive simulation with a coarse mesh of 8 × 8 elements on each patch. We
resent the convergence results in Fig. 6. As before, both the (relative) error and the estimator converge with optimal
ate, and both for the C0 and the C1 discretizations, with slightly better result for the C1 spaces. We note that, since the
singularity occurs along a line, optimal order of convergence for higher degrees cannot be obtained without anisotropic
refinement, as it was observed in the numerical examples in [51, Section 4.6].
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Fig. 4. Error in H1 semi-norm and estimator for Example 1 with p = (3, 3) and p = (4, 4), compared with C0 case (left) and with global refinement
ase (right).

We also present in Fig. 7 the finest meshes obtained with the different discretizations, and it can be observed that the
daptive method correctly refines near the interface, where the singularity occurs.

xample 3. We consider the same domain as in the previous example, and the right-hand side and the boundary
ondition are chosen in such a way that the exact solution is given by

u(x, y) = (y − 1.7)12/5 cos(x/4).

n this case the solution has a singularity along the line y = 1.7, that crosses the interface and is not aligned with the
mesh.

The convergence results, that are presented in Fig. 8, are very similar to the ones of the previous example, and show
optimal convergence rates for both the C1 and the C0 discretizations. As before, we also present in Fig. 9 the finest
meshes obtained with the different discretizations. It is evident that the adaptive algorithm successfully refines along
the singularity line.

Condition number. To show that C1 continuity does not reduce the performance of the method compared to C0

ontinuity, we have also analyzed the condition number of the corresponding stiffness matrices. In Fig. 10 we show
he condition number of the stiffness matrix for the numerical tests of Example 1 and Example 2. The reported results
orrespond, both for the C0 and the C1 case, to the solutions obtained by applying the inexpensive diagonal scaling as
reconditioner. The results show a good behavior of the C1 spaces, with a condition number very similar to the C0 ones.
ote that, due the local nature of the refinement, in many cases the condition number may remain low even without
sing a more suitable preconditioner.

.2. Bilaplacian problem

In the last example we consider the solution of the bilaplacian problem, given in strong form by⎧⎪⎨⎪⎩
∆2u = f in Ω,
u = g1 on ∂Ω,
∂u
∂n

= g2 on ∂Ω.

It is well known that the weak formulation of the problem in direct form requires the trial and test functions to be in
H2(Ω). For the discretization with a Galerkin method, this can be obtained if the discrete basis functions are C1, and this
is the main advantage of the construction of the C1 hierarchical basis. The solution of the problem with C0 basis functions,
instead, requires to use a mixed variational formulation or some sort of weak enforcement of the C1 continuity across the
interface, like with a Nitsche’s method.

Example 4. For the last numerical test we solve the bilaplacian problem in the L-shaped domain as depicted in Fig. 3(a).
The right-hand side and the boundary conditions are chosen in such a way that the exact solution is given, in polar
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T
f

t

Fig. 5. Hierarchical meshes for Example 1, with p = (3, 3) and p = (4, 4). Apparently the meshes are the same for the C0 and C1 case, but there
are some differences in the finest levels.

coordinates (ρ, θ ), by

u(ρ, θ ) = ρz+1(C1 F1(θ ) − C2 F2(θ )),

where value in the exponent is chosen equal to z = 0.544483736782464, which is the smallest positive solution of

sin(zω) + z sin(ω) = 0,

with ω = 3π/2 for the L-shaped domain, see [52, Section 3.4]. The other terms are given by

C1 =
1

z − 1
sin
(
3(z − 1)π

2

)
−

1
z − 1

sin
(
3(z + 1)π

2

)
,

C2 = cos
(
3(z − 1)π

2

)
− cos

(
3(z + 1)π

2

)
,

F1(θ ) = cos((z − 1)θ ) − cos((z + 1)θ ),

F2(θ ) =
1

z − 1
sin((z − 1)θ ) −

1
z + 1

sin((z + 1)θ ).

he exact solution has a singularity at the reentrant corner, and it is the same kind of singularity that one would encounter
or the Stokes problem.

For our numerical test we start with a coarse mesh of 8 × 8 elements on each patch. In this case, instead of refining
he mesh with an adaptive algorithm we decided to refine following a pre-defined strategy: at each refinement step, a
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w

Fig. 6. Relative error in H1 semi-norm and corresponding estimator for Example 2 with p = (3, 3) and p = (4, 4), compared with C0 case (left) and
ith global refinement case (right).

Fig. 7. Hierarchical meshes for Example 2, with p = (3, 3) and p = (4, 4).
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c

Fig. 8. Error in H1 semi-norm and estimator for Example 3 with p = (3, 3) and p = (4, 4), compared with C0 case (left) and with global refinement
ase (right).

Fig. 9. Hierarchical meshes for Example 3, with p = (3, 3) and p = (4, 4).
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Fig. 10. Comparison of the condition number of the stiffness matrix, after diagonal preconditioning, obtained in the solution of Example 1 (left) and
Example 2 (right).

Fig. 11. Hierarchical mesh (a) and comparison of the results obtained by local refinement and C1 space with global refinement (b) on Example 4.

region surrounding the reentrant corner, and composed of 4 × 4 elements of the finest level, is marked for refinement, see
Fig. 11(a). We remark that the implementation of the adaptive algorithm with a residual-based estimator would require
computing fourth order derivatives at the quadrature points, and several jump terms across the interface, that is beyond
the scope of the present work.

In Fig. 11(b) we show the error obtained in H2 semi-norm when computing with C1 hierarchical splines of degrees
3 and 4 and regularity r equal to degree minus two within the single patches, for the local refinement described above,
and with C1 isogeometric splines of the same degree and inner regularity r with global uniform refinement. It is obvious
that the hierarchical spaces perform much better, as we obtain a lower error with many less degrees of freedom. In this
case we do not see a big difference between the results obtained for degrees 3 and 4, but this is caused by the fact that
we are refining by hand, and the asymptotic regime has not been reached yet.

6. Conclusions

We presented the construction of C1 hierarchical functions on two-patch geometries and their application in isogeo-
metric analysis. After briefly reviewing the characterization of C1 tensor-product isogeometric spaces, we investigated the
properties needed to effectively use these spaces as background machinery for the hierarchical spline model. In particular,
the local linear independence of the one-level basis functions and the nested nature of the considered C1 splines spaces
was proved. We also introduced an explicit expression of the refinement masks under dyadic refinement, that among
other things is useful for the practical implementation of the hierarchical basis functions. The numerical examples show
that optimal convergence rates are obtained by the local refinement scheme for second and fourth order problems, even
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Table A.1
Control points c̃(S)i,j , S ∈ {L, R}, of the initial non-analysis-suitable G1 two-patch parameterization F̃.

c̃(L)i,j c̃(R)i,j

(0, 0) (−3, 1/3) (−6,−2) (0, 0) (13/5, 1) (6,−1)
(−2, 5/2) (−13/4, 53/20) (−5, 2) (−2, 5/2) (39/20, 3) (4, 11/3)
(0, 6) (−3, 17/3) (−7, 8) (0, 6) (3, 5) (11/2, 13/2)

Table A.2
Control points c(S)i,j , S ∈ {L, R}, of the resulting analysis-suitable G1 two-patch parameterization F.

c(L)i,j

(0, 0) (−2, 2/9) (−4,−4/9) (−6,−2)
(−4/3, 5/3) (−127/50, 44/25) (−98/25, 37/25) (−16/3, 2/3)
(−4/3, 11/3) (C3, C4) (−89/25, 189/50) (−17/3, 4)
(0, 6) (−2, 52/9) (−13/3, 58/9) (−7, 8)

c(R)i,j

(0, 0) (26/15, 2/3) (56/15, 1/3) (6,−1)
(−4/3, 5/3) (C1, C2) (87/25, 113/50) (14/3, 19/9)
(−4/3, 11/3) (C5, C6) (29/10, 4) (9/2, 83/18)
(0, 6) (2, 16/3) (23/6, 11/2) (11/2, 13/2)

in presence of singular solutions. In future work we plan to generalize the construction to the multi-patch domain setting
of [45], but this will require a different strategy with respect to the approach presented in this work since the basis
functions of a single level may be locally linearly dependent in the neighborhood of extraordinary points. A possible
approach is to express the single level basis functions as in the setting of spline manifolds [53], and define different
refinement strategies for marked elements depending on the type of chart they belong to.
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Appendix. Geometry of the curved domain

The geometry in Fig. 3(b) for the examples in Section 5 is generated by following the algorithm in [39]. This technique
is based on solving a quadratic minimization problem with linear side constraints, and constructs from an initial multi-
patch geometry F̃ an analysis-suitable G1 multi-patch parameterization F possessing the same boundary, vertices and first
derivatives at the vertices as F̃.

In our case, the initial geometry F̃ is given by the two patch parameterization consisting of two quadratic Bézier
patches F̃(L) and F̃(R) (i.e. without any internal knots) with the control points c̃(S)i,j , S ∈ {L, R}, specified in Table A.1. This
parameterization is not analysis-suitable G1.

Applying the algorithm in [39] (by using Mathematica), we construct an analysis-suitable G1 two-patch geometry F
with bicubic Bézier patches F(L) and F(R). Their control points c(S)i,j , S ∈ {L, R}, are given in Table A.2, where for presenting
some of their coordinates the notations D = 99170 and

C1 = 333939/D, C2 = 47387036/(22.5D),
C3 = −15800567/(5D), C4 = 242128576/(67.5D),
C5 = 57452423/(45D), C6 = 81952942/(22.5D),

are used.
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