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We present a newopen-source code that calculates one-loop power spectra and cross spectra formatter fields
and biased tracers in real and redshift space. These spectra incorporate all ingredients required for a direct
application to data: nonlinear bias and redshift-space distortions, infrared resummation, counterterms, and the
Alcock-Paczynski effect. Our code is based on the Boltzmann solver CLASS and inherits its advantageous
properties: user friendliness, ease of modification, high speed, and simple interface with other software. We
present detailed descriptions of the theoreticalmodel, the code structure, approximations, and accuracy tests. A
typical end-to-end run for one cosmology takes 0.3 seconds, which is sufficient forMarkov chainMonte Carlo
parameter extraction. As an example, we apply the code to the Baryon Oscillation Spectroscopic Survey
(BOSS) data and infer cosmological parameters from the shape of the galaxy power spectrum.
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I. INTRODUCTION

Observations of temperature and polarization fluctua-
tions in the cosmic microwave background (CMB) are the
main pillars of the ΛCDM model (see [1] and references
therein). The most important tools that connect the CMB
data and cosmological parameters are Boltzmann codes,
which allow one to compute various observables in a given
cosmological model. Building upon years of development
starting with CMBFAST [2], the two most popular and
independently developed Boltzmann solvers that emerged
are CAMB [3] and CLASS [4]. Both of them are very efficient
and accurate, allowing for fast and robust extraction of
CMB likelihoods. These two codes and their various
extensions (see Refs. [5,6] for some reviews) have been
widely used in the cosmology community.

Another source of cosmological information that is
becoming increasingly important is the large-scale struc-
ture (LSS) clustering of galaxies in the late universe.
This clustering is measured in redshift surveys such as
Baryon Oscillation Spectroscopic Survey (BOSS) [7].
Next generation surveys like Euclid [8,9] and DESI [10]
will map a significant volume of the Universe across a wide
range of redshifts. In order to prepare for these future
surveys and eventually harvest cosmological information
encoded in the LSS data as efficiently as possible, it is
imperative to build a simple and robust extensions
of the standard Boltzmann codes that can reevaluate
LSS likelihoods as one scans over different cosmologies.1

With this work we present one such tool, a modified CLASS

code—CLASS-PT—that embodies an end-to-end calcula-
tion of various power spectra using the state-of-the-art
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1The commonly used Boltzmann codes do have nonlinear
modules featuring fitting formulas like HALOFIT [11]. However,
the application of these modules to galaxy clustering is quite
limited for several reasons. For instance, these formulas do not
accurately capture the behavior of the matter power spectrum on
mildly nonlinear scales, in particular the nonlinear evolution of
the baryon acoustic oscillations (BAO) wiggles. Also, they were
calibrated only on a small grid of cosmological parameters, which
does not cover many beyond-ΛCDM extensions.
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perturbation theory models that incorporate all ingredients
required for a direct application to data.
We provide a JUPYTER notebook2 that generates the

spectra for galaxies and matter in real and redshift space.
Additionally, we share aMathematica notebook3 that reads
the spectra from output tables produced by CLASS-PT if it is
run using an .ini file. Besides, we publicly release a
custom-built BOSS galaxy power spectrum likelihood
written for the Markov Chain Monte Carlo sampler
MONTEPYTHON [6,12], which can be used for various
cosmological analyses. It is worth stressing that CLASS-

PT has been already applied to the analysis of the BOSS
data [13–15], and used in a blind cosmology challenge
based on a large-volume numerical simulation [16].
Moreover, in Ref. [17] it was used to assess the accuracy
of the neutrino mass and cosmological parameter measure-
ments with a future Euclid-like galaxy survey.
There have been many important developments that lead

to CLASS-PT, both in theoretical modeling and practical
implementation of perturbation theory calculations. We
postpone details of the relevant theoretical results for the
next section. Herewe only briefly review the history of some
numerical methods and publicly available software dedi-
cated to perturbation theory (PT). To the best of our
knowledge, it starts with COPTER [18], which was designed
to compute the one-loop and two-loop matter power spectra
in standard perturbation theory (SPT) and its extensions. The
first code to compute statistics beyond the power spectrum
was ZELCA [19], designed to evaluate the matter power
spectrum and bispectrum in the Zel’dovich approximation.
Later on, FNFAST [20] was developed to compute the one-
loop power spectrum, bispectrum, and trispectrum in SPT
and in the effective field theory of large-scale structure
(EFTofLSS). In all these codes perturbation theory loop
integrals were evaluated by direct numerical integration.
Recently, it has been realized that the computation of the
one-loop power spectrum integrals can be significantly
optimized by using their relatively simple structure in
position space. These new methods are based on the fast
Fourier transforms (FFT) [21,22] and they were imple-
mented in FAST-PT [22,23], a PYTHON code that evaluates the
one-loop Eulerian perturbation theory power spectra for
matter and biased tracers in real and redshift space. The FFT
approach leads to a significant boost in the performance over
the direct numerical integration, opening the door to using
complete perturbation theory templates in a realistic
Monte Carlo Markov chain (MCMC) analysis.
While CLASS-PT is built on some of these results, it also

brings several novelties. In particular, it uses an FFT
method that is very different from the original proposals

of Refs. [21,22]. This method was put forward in Ref. [24]
(see Sec. III for more details). Another major difference
with respect to previous Eulerian PT codes is that CLASS-PT
properly describes the nonlinear evolution of the BAO
wiggles, implemented via the so-called infrared (IR)
resummation scheme. This is particularly important for
redshift surveys where the correct shape of the BAO
wiggles is crucial for reliable cosmological constraints.
Finally, let us mention that, recently, a new code PYBIRD

has appeared [25], which is based on the same perturbation
theory model as CLASS-PT, but with different implementa-
tion of some of the key ingredients. The two codes agree
within designed precision when evaluated for the same
cosmological parameters.
This paper is structured as follows. In Sec. II we discuss

the main theoretical ingredients and present the corre-
sponding formulas used in CLASS-PT. In Section III we
review the structure of the code. In Sec. IV we discuss in
detail the technical implementation of the nonlinear model
and test various approximations. Section V contains some
examples and important caveats that must be kept in mind
when using our code. As an illustration, in Sec. VI we
apply CLASS-PT to the cosmological analysis of the BOSS
galaxy clustering data. We release our BOSS likelihoods
along with the code. In Sec. VII we draw conclusions.
Two short Appendixes contain some useful additional
information: explicit expressions for the FFTLog redshift-
space master integrals (Appendix A) and a quick instal-
lation manual (Appendix B).

II. THE POWER SPECTRUM MODEL

In this section we describe the theoretical model used in
CLASS-PT. We start with a brief summary of theoretical
developments that lead to a complete and consistent
description of large-scale clustering. A reader familiar with
these results can skip this part. We will give details of all
relevant ingredients needed for the description of the
nonlinear power spectrum: the clustering of matter and
biased tracers in real space, IR resummation, the effects of
redshift space and Alcock-Paczynski (AP) distortions.

A. Brief overview of perturbation theory

Since Yakov Zel’dovich proposed a first model for
nonlinear gravitational clustering of cosmological fluctua-
tions in 1970 [26], there were numerous attempts to build a
consistent theoretical description of large-scale structure in
the mildly nonlinear regime. The most popular approach
was SPT ([27–29], for a review see [30]), where dark matter
is treated as a pressureless perfect fluid and the nonlinear
equations of motion are solved perturbatively in Eulerian
space. The major problem of SPT was that higher order
perturbative corrections to the power spectrum did not lead
to significant improvements on mildly nonlinear scales
[31,32]. This apparent breakdown of perturbation theory

2https://github.com/Michalychforever/CLASS-PT/blob/master/
notebooks/nonlinear_pt.ipynb

3https://github.com/Michalychforever/CLASS-PT/blob/master/
read_tables.nb
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led to attempts to partly resum the diagrammatic expansion
in order to improve convergence properties [31,33].
However, such resummation schemes were insufficient,
as it can be seen from a simple example of the one-
dimensional universe [34]. In that case, the whole standard
perturbation theory expansion can be explicitly and exactly
resummed, but it does not lead to any notable improvement
compared to the linear theory prediction.
Efforts to resolve this problem have eventually led to the

development of the effective field theory of large-scale
structure [35]. The key insight was that the ideal fluid
approximation is inconsistent even on large scales, and that
the true equations of motion are those of imperfect fluid with
various contributions to the effective stress tensor. Starting
from theBoltzmannequation (which is the true descriptionof
the dynamics for dark matter particles) and focusing on the
dynamics of the long-wavelength fluctuations (averaging
over the short modes), one can show that these terms
naturally arise and can be organized in a perturbative
derivative expansion. While the form of these terms is
dictated by symmetry, their amplitudes are unknown free
parameters which have to be measured from the data. Since
these free parameters—the counterterms—capture the
effects of the poorly known short scale physics, including
them in the nonlinear power spectrum significantly improves
the performance of the theory on the mildly nonlinear scales
[36,37]. The realization that the LSS theory must include
unknown free parameters has finally resolved the long-
standing problem of the consistent description of matter
clustering on mildly nonlinear scales. Another major advan-
tage of the EFTapproach is that it provides reliable estimates
of theoretical errors, allowing for theoretical uncertainties to
be included in the total error budged and guaranteeing
unbiased inference of cosmological parameters [38].
Another problem of Eulerian perturbation theory is the

long-wavelength displacement of dark matter particles
which can be very large in our Universe. While the effects
of these bulk flows are locally unobservable due to the
equivalence principle [39–41], they still affect features in the
power spectrum, such as the BAO wiggles. It is well known
that treating them perturbatively leads to significant errors in
the description of the BAO peak [42–44], even though their
effect on the broadband part of the correlation function (or
the power spectrum) remains under perturbative control.
Since the dominant dynamical effect of the bulk flows is a
simple translation produced by the linear theory displace-
ments, there is a relatively straightforward way to take them
into account nonperturbatively [45–52]. In other words,
large contributions from these displacements at different
orders in perturbation theory can be rigorously resummed.
For this reason this procedure is referred to as infrared (IR)
resummation. IR resummation allows one to take advantage
of simplicity of the Eulerian description, while keeping the
impact of large displacements exact and hence significantly
improving prediction for the shape of the BAO wiggles.

To make connection to observations, two additional
ingredients are necessary. The first one is the nonlinear
description of biased tracers. After first attempts to build
such a description in terms of a local in the density field
bias expansion, an important milestone was a realization
that various tidal and higher derivative bias operators must
be included as well [53,54]. Furthermore, since the for-
mation of biased tracers is nonlocal in time [55], the bias
expansion has to include additional terms that cannot be
expressed in terms of local operators involving only two
derivatives of gravitational and velocity potentials [55–57].
The perturbative bias model, at least up to third order which
is needed for the one-loop power spectrum, is now well
established and tested against various numerical simula-
tions (for a review see [58]). The second important
ingredient is the treatment of redshift space distortions
(RSD). The RSD standard perturbation theory kernels were
known for a long time [30]. However, a consistent
calculation of the one-loop power spectrum in redshift
space requires additional counterterms related to the
velocity field [59,60]. We discuss these contributions in
detail in what follows.
While CLASS-PT is entirely based on Eulerian perturba-

tion theory, it is worth emphasizing that similar progress
has been made in Lagrangian perturbation theory (LPT) as
well [61–66]. One advantage of the LPT is that IR
resummation is automatically incorporated already at the
first order, but the drawback is a larger computational
complexity compared to the Eulerian perturbation theory
calculations. Nevertheless, whenever all relevant biases and
counterterms are taken into account, the two approaches
always agree [65–67]. After all, once all small parameters
are properly identified, the Lagrangian and Eulerian
schemes are just two different ways of solving the exact
same equations of motion.

B. Dark matter power spectrum

We begin the detailed discussion of the model from the
matter power spectrum in real space. On very large scales
(or early times) the dark matter fluctuations follow the
linear evolution. Thus, to a very good approximation, their
power spectrum is given by

Plinðz; kÞ ¼ D2ðzÞPlinðkÞ; ð2:1Þ

where DðzÞ is the linear growth factor and PlinðkÞ is
the linear power spectrum at redshift zero. In the
mildly nonlinear regime one can calculate perturbative
corrections to this simple result. The first such correction
is the so-called one-loop contribution. For the real space
dark matter power spectrum it is given as a sum of
two terms,

P1-loopðz; kÞ ¼ P1-loop;SPTðz; kÞ þ Pctrðz; kÞ; ð2:2Þ
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where P1-loop;SPTðz; kÞ is the SPT contribution [30] and
Pctrðz; kÞ is the counterterm needed for the consistency of
the one-loop result [35,36]. The explicit expression for the
counterterm at this order in perturbation theory is given by

Pctrðz; kÞ ¼ −2c2sðzÞk2Plinðz; kÞ; ð2:3Þ
where c2sðzÞ is an effective parameter (sometimes refereed
to as effective sound speed). The amplitude and time
dependence of this parameter are not known a priori.
Thus, c2sðzÞ must be treated as a nuisance parameter in data
analysis. The SPT one-loop term can be written as a sum of
two well-known pieces,

P1-loop;SPTðz; kÞ ¼ D4ðzÞðP13ðkÞ þ P22ðkÞÞ; ð2:4Þ

where each of them is given as a particular convolution
integral,

P22ðkÞ ¼ 2

Z
q
F2
2ðq;k − qÞPlinðqÞPlinðjk − qjÞ;

P13ðkÞ ¼ 6PlinðkÞ
Z
q
F3ðk;−q;qÞPlinðqÞ: ð2:5Þ

Here, and throughout the rest of the paper, we use the

notation
R
q ≡

R d3q
ð2πÞ3. The convolution kernels F2 and F3

are the usual perturbation theory kernels [30,48].
Equations (2.3) and (2.5) give a complete description of
the one-loop power spectrum of dark matter in real space.
This model has been exhaustively tested against N-body
simulations and found to predict the nonlinear matter power
spectrum at mildly nonlinear scales quite well, see e.g.,
Ref. [68].
It is important to stress that Eq. (2.4) is, strictly speaking,

correct only in the Einstein-de Sitter (EdS) universe, where
the momentum and time dependences of the loop integrals
factorize. For a more general case the common practice is to
still use the EdS perturbation theory kernels but replace the
scale factor4 with the linear growth factor computed in the
true cosmology. We will use this approximation throughout
the paper and we also implement it in the CLASS-PT code.5

We make this choice for two reasons. First, this approxi-
mation is quite accurate. Indeed, the residual difference
with respect to the full calculation is so small that it is
irrelevant even for future galaxy surveys [69–71]. Second,
it allows the nonlinear corrections to be easily calculated
for any time by simply rescaling the result at redshift zero.6

In other words, one can rewrite Eq. (2.4) as

P1-loop;SPTðz; kÞ ¼ P13ðz; kÞ þ P22ðz; kÞ; ð2:6Þ

where P13ðz; kÞ and P22ðz; kÞ are obtained from Eq. (2.5)
by doing the loop integrals with the linear power spectrum
evaluated at the redshift of interest, Plinðz; kÞ.

C. Power spectrum of biased tracers

In order to calculate the one-loop power spectrum of
biased tracers, we have to include all possible operators up
to third order in the bias expansion:

δg ¼ b1δþ ϵþ b2
2
δ2 þ bG2

G2 þ
b3
6
δ3 þ bδG2

δG2

þ bG3
G3 þ bΓ3

Γ3 þ R2�∂2δ: ð2:7Þ

Here we have defined

G2ðΦgÞ≡ ð∂i∂jΦgÞ2 − ð∂2
iΦgÞ2; ð2:8Þ

whereΦg is gravitational potential. The only cubic operator
that gives a nontrivial contribution to the one-loop power
spectrum can be written as

Γ3 ≡ G2ðΦgÞ − G2ðΦvÞ; ð2:9Þ

whereΦv is velocity potential.
7 For the definition of G3 and

relations of our operators to other equivalent choices of
basis, see [58]. The term ϵ denotes the stochastic contri-
bution which is uncorrelated with the large-scale density
field. Poisson noise, the simplest model for ϵ, has constant
power spectrum. In practice, the stochastic power spectrum
is more complicated and has scale-dependent corrections.
Finally, the last term in Eq. (2.7) is the higher derivative
bias which we keep for consistency and completeness. In
general, b1; b2; b3; bδG2

; bG3
; bΓ3

and R2� are free parameters.
Using the particular bias expansion given above, the one-

loop autopower spectrum of the bias tracers takes the
following form [54,55,58]:

Pggðz;kÞ¼b21ðzÞðPlinðz;kÞþP1-loop;SPTðz;kÞÞ
þb1ðzÞb2ðzÞIδ2ðz;kÞ
þ2b1ðzÞbG2

ðzÞIG2
ðz;kÞþb1ðzÞ

×

�
2bG2

ðzÞþ4

5
bΓ3

ðzÞ
�
FG2

ðz;kÞ

þ1

4
b22ðzÞIδ2δ2ðz;kÞþb2G2

ðzÞIG2G2
ðz;kÞ

þb2ðzÞbG2
ðzÞIδ2G2

ðz;kÞþP∇2δðz;kÞþPϵϵðz;kÞ;
ð2:10Þ

4Note that in the EdS cosmology the growth factor is identical
to the scale factor, D ¼ a.

5In principle, one can still do the exact calculation using the
appropriate Green’s functions. In this case the momentum
integrals have similar form as in EdS, but the time integrals
have to be done numerically.

6This is not true if IR resummation is included.

7The two potentials Φg and Φv are the same in linear theory,
but they differ at higher orders in perturbation theory.
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where Pϵϵðz; kÞ is the power spectrum of the stochastic
component. In the previous equation we were using the
following definitions [54]:

Iδ2ðz; kÞ≡ 2

Z
q
F2ðq;k − qÞPlinðz; jk − qjÞPlinðz; qÞ;

ð2:11aÞ

IG2
ðz; kÞ≡ 2

Z
q
σ2ðq;k − qÞF2ðq;k − qÞ

× Plinðz; jk − qjÞPlinðz; qÞ; ð2:11bÞ

FG2
ðz; kÞ≡ 4Plinðz; kÞ

Z
q
σ2ðq;k − qÞF2ðk;−qÞPlinðz; qÞ;

ð2:11cÞ

Iδ2δ2ðz; kÞ≡ 2

Z
q
Plinðz; jk− qjÞPlinðz; qÞ− 2

Z
q
P2
linðz; qÞ;

ð2:11dÞ

IG2G2
ðz; kÞ≡ 2

Z
q
σ4ðq;k − qÞPlinðz; jk − qjÞPlinðz; qÞ;

ð2:11eÞ

Iδ2G2
ðz; kÞ≡ 2

Z
q
σ2ðq;k − qÞPlinðz; jk − qjÞPlinðz; qÞ;

ð2:11fÞ

P∇2δðz; kÞ≡ −2b1ðzÞðR2�ðzÞ þ c2sðzÞb1ðzÞÞk2Plinðz; kÞ;
ð2:11gÞ

where σ2ðk1;k2Þ≡ ðk1 · k2Þ2=ðk21k22Þ − 1.
Three important comments are in order here. First, we

define I δ2δ2ðz; kÞ by subtracting the low-k constant con-
tribution. This way, Iδ2δ2ðz; kÞ has the Oðk2Þ behavior on
large scales and the constant contribution is reabsorbed in
the stochastic power spectrum since it is perfectly degen-
erate with the shot noise. Second, the dark matter counter-
term is combined with the higher derivative bias since they
are perfectly degenerate for the galaxy power spectrum.
Third, the contributions from operators δ3; δG2;G3 disap-
peared after renormalization. This is the reason why
b3; bδG2

; bG3
are absent in Eq. (2.10).

Using the same bias model we can also calculate the
galaxy-matter cross spectrum which is relevant, for in-
stance, for lensing surveys. It has the following form [54]:

Pgmðz; kÞ
¼ b1ðzÞðPlinðz; kÞ þ P1-loop;SPTðz; kÞÞ

þ 1

2
b2ðzÞIδ2ðz; kÞ þ

�
bG2

ðzÞ þ 2

5
bΓ3

ðzÞ
�
FG2

ðz; kÞ

þ bG2
ðzÞIG2

ðz; kÞ − ðR2�ðzÞ þ 2c2sðzÞb1ðzÞÞk2Plinðz; kÞ:
ð2:12Þ

Note that the matter counterterm and the higher-derivative
bias enter the cross spectrum and the autospectrum in
different combinations. This allows one, in principle, to
break the degeneracy between them using the galaxy-
lensing observations.

D. Power spectrum of biased tracers in redshift space

The radial positions of galaxies in a survey are assigned
using their redshifts, which are contaminated by the
peculiar velocity field. This gives rise to the so-called
redshift-space distortions, which allow one to probe the
velocity field along the line-of-sight direction z. We will
work within the flat-sky plane-parallel approximation,
where the redshift-space mapping is fully characterized
by the cosine of the angle between the line-of-sight z and
the wave vector of a given Fourier mode k, μ≡ ðz · kÞ=k.
In this setup, the expression for the one-loop redshift-space
power spectrum is given by (see Refs. [59,60])

Pgg;RSDðz; k; μÞ
¼ Z2

1ðkÞPlinðz; kÞ

þ 2

Z
q
Z2
2ðq;k − qÞPlinðz; jk − qjÞPlinðz; qÞ

þ 6Z1ðkÞPlinðz; kÞ
Z
q
Z3ðq;−q;kÞPlinðz; qÞ

þ Pctr;RSDðz; k; μÞ þ Pϵϵ;RSDðz; k; μÞ: ð2:13Þ

The redshift-space kernels are given by

Z1ðkÞ ¼ b1 þ fμ2; ð2:14aÞ

Z2ðk1;k2Þ ¼
b2
2
þ bG2

�ðk1 · k2Þ2
k21k

2
2

− 1

�

þ b1F2ðk1;k2Þ þ fμ2G2ðk1;k2Þ

þ fμk
2

�
μ1
k1

ðb1 þ fμ22Þ þ
μ2
k2

ðb1 þ fμ21Þ
�
;

ð2:14bÞ
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Z3ðk1;k2;k3Þ ¼ 2bΓ3

�ðk1 · ðk2 þ k3ÞÞ2
k21ðk2 þ k3Þ2

− 1

�
½F2ðk2;k3Þ −G2ðk2;k3Þ�

þ b1F3ðk1;k2;k3Þ þ fμ2G3ðk1;k2;k3Þ þ
ðfμkÞ2

2
ðb1 þ fμ21Þ

μ2
k2

μ3
k3

þ fμk
μ3
k3

½b1F2ðk1;k2Þ þ fμ212G2ðk1;k2Þ� þ fμkðb1 þ fμ21Þ
μ23
k23

G2ðk2;k3Þ

þ b2F2ðk1;k2Þ þ 2bG2

�ðk1 · ðk2 þ k3ÞÞ2
k21ðk2 þ k3Þ2

− 1

�
F2ðk2;k3Þ þ

b2fμk
2

μ1
k1

þ bG2
fμk

μ1
k1

�ðk2 · k3Þ2
k22k

2
3

− 1

�
; ð2:14cÞ

where k ¼ k1 þ k2 þ k3 andG2 is the velocity divergence
kernel [30]. Note that Z3ðk1;k2;k3Þ contains only bias
parameters that give nontrivial contribution to the redshift-
space one-loop power spectrum and that it must be
symmetrized over its momentum arguments when used
in Eq. (2.13). In the previous equation all bias parameters
and the growth function f ≡ d logD

d log a are functions of time.
We omitted their explicit time dependence to avoid clutter.
Let us discuss the structure of the last two terms in

Eq. (2.13) in some detail. The leading counterterm con-
tributions in redshift space can be seen as a simple
generalization of the dark matter sound speed [59,72],

Pctr;RSD;∇2δðz; k; μÞ ¼ −2c̃0ðzÞk2Plinðz; kÞ
− 2c̃2ðzÞfðzÞμ2k2Plinðz; kÞ
− 2c̃4ðzÞf2ðzÞμ4k2Plinðz; kÞ; ð2:15Þ

where c̃0ðzÞ, c̃2ðzÞ and c̃4ðzÞ are quantities that are
generically expected to have similar value to the real space
dark matter sound speed in units of ½Mpc=h�2. However,
due the presence of fingers-of-God [73] these counterterms
can be more significant for some tracers than naively
expected. Since the fingers-of-God are induced by the
higher-derivative terms in the nonlinear RSD mapping, one
may include an additional counterterm proportional to
k4μ4Plinðz; kÞ as a proxy of the higher-order contributions,

Pctr;RSD;∇4
zδ
ðz; k; μÞ

¼ c̃∇4
zδ
ðzÞf4ðzÞμ4k4ðb1ðzÞ þ fðzÞμ2Þ2Plinðz; kÞ; ð2:16Þ

where we have inserted the linear Kaiser factor ðb1ðzÞ þ
fðzÞμ2Þ2 [74] for convenience. We leave the systematic
derivation of all corrections of this order for future work.
Let us stress that addition of this term can be important in
order to fit the data or results from N-body simulations
[13,16]. The full counterterm contribution is then given by

Pctr;RSDðz;k;μÞ ¼Pctr;RSD;∇2δðz;k;μÞþPctr;RSD;∇4
zδ
ðz;k;μÞ;
ð2:17Þ

and it depends on four free functions of time c̃0ðzÞ;
c̃2ðzÞ; c̃4ðzÞ and c̃∇4

zδ
ðzÞ.

Finally, the stochastic power spectrum in redshift space
has the following structure at next-to-leading order in
derivative expansion:

Pϵϵ;RSDðz; k; μÞ ¼ PshotðzÞ þ a0ðzÞk2 þ a2ðzÞμ2k2; ð2:18Þ

where Pshot describes a constant shot noise and the addi-
tional two terms are scale-dependent shot noise contribu-
tions for the monopole and the quadrupole. Note that the
amplitude of the shot noise and the two coefficients a0 and
a2 are functions of time only, while the k and μ dependence
of the stochastic power spectrum is very simple. It is worth
mentioning that the pair-counting Poissonian contribution
1=n̄ is often subtracted from the power spectrum estimator.
Still, it is important to keep the residual constant Pshot in the
model in order to capture deviations from the Poissonian
prediction, which are expected on general grounds.
While all the terms presented above should be kept in a

data analysis for consistency, some of the contributions are
quite degenerate at the galaxy power spectrum level. For
instance, the Pctr;RSD;∇4

zδ
counterterm turns out to be very

degenerate with the a2μ2k2 stochastic contribution, given
the slope of the linear power spectrum on mildly nonlinear
scales. Therefore, as far as galaxy clustering is concerned
and depending on the required precision, one can keep only
one of the two terms. In the recent reanalyses of BOSS data,
only the higher derivative counterterm is kept in Ref. [13],
while the analysis of Ref. [75] uses the a2μ2k2 contribution
in its model. As it can be seen from these two papers, the
particular choice does not impact the inference of cosmo-
logical parameters. Moreover, the authors of Ref. [67], have
shown that the a0 contribution can be neglected on scales
with k≲ 0.3h=Mpc. Given these reasons, we will neglect
the a0 and a2 terms in what follows.
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So far we have presented the perturbation theory model
for the redshift space power spectrum, keeping the full k
and μ dependence. However, it is more convenient to
summarize the full angular information in a few multipoles.
Generally we can write

Pgg;RSDðz; k; μÞ ¼
X
l even

LlðμÞPlðz; kÞ; ð2:19Þ

where LlðμÞ are Legendre polynomials. The galaxy power
spectrum multipoles are then given by

Plðz; kÞ≡ 2lþ 1

2

Z
1

−1
dμLlðμÞPgg;RSDðz; k; μÞ: ð2:20Þ

In this paper and our code we will focus on the monopole
(l ¼ 0), quadrupole (l ¼ 2) and hexadecapole (l ¼ 4),
since they contain the bulk of cosmological information.
Recall that these are the only moments that appear at zeroth
(linear) order of perturbation theory. To compute them at
next-to-leading order, we will take into account all terms
induced by the one-loop corrections up to Oðμ8Þ.
The final expression for the multipoles of the galaxy

power spectrum that follows from Eq. (2.13) can be written
analogously to Eq. (2.10),

P0ðz; kÞ ¼ ðPlin
0;θθðz; kÞ þ P1-loop;SPT

0;θθ ðz; kÞÞ þ b1ðzÞðPlin
0;θδðz; kÞ þ P1-loop;SPT

0;θδ ðz; kÞÞ
þ b21ðzÞðPlin

0;δδðz; kÞ þ P1-loop;SPT
0;δδ ðz; kÞÞ þ 0.25b22ðzÞIδ2δ2ðz; kÞ

þ b1ðzÞb2ðzÞI0;δδ2ðz; kÞ þ b2ðzÞI0;θδ2ðz; kÞ þ b1ðzÞbG2
ðzÞI0;δG2

ðz; kÞ
þ bG2

ðzÞI0;θG2
ðz; kÞ þ b2ðzÞbG2

ðzÞIδ2G2
ðz; kÞ þ b2G2

ðzÞIG2G2
ðz; kÞ

þ ð2bG2
ðzÞ þ 0.8bΓ3

ðzÞÞðb1ðzÞF 0;δG2
ðkÞ þ F 0;θG2

ðz; kÞÞ
þ c0ðzÞP0;∇2δðz; kÞ þ c̃∇4

zδ
ðzÞP0;∇4

zδ
ðz; kÞ þ PshotðzÞ; ð2:21aÞ

P2ðz; kÞ ¼ ðPlin
2;θθðz; kÞ þ P1-loop;SPT

2;θθ ðz; kÞÞ þ b1ðzÞðPlin
2;θδðz; kÞ þ P1-loop;SPT

2;θδ ðz; kÞÞ
þ b21ðzÞP1-loop;SPT

2;δδ ðz; kÞ þ b1ðzÞb2ðzÞI2;δδ2ðz; kÞ þ b2ðzÞI2;θδ2ðz; kÞ
þ b1ðzÞbG2

ðzÞI2;δG2
ðz; kÞ þ bG2

ðzÞI2;θG2
ðz; kÞ þ ð2bG2

ðzÞ þ 0.8bΓ3
ðzÞÞF 2;θG2

ðz; kÞ
þ c2ðzÞP2;∇2δðz; kÞ þ c̃∇4

zδ
ðzÞP2;∇4

zδ
ðz; kÞ; ð2:21bÞ

P4ðz; kÞ ¼ ðPlin
4;θθðz; kÞ þ P1-loop;SPT

4;θθ ðz; kÞÞ þ b1ðzÞP1-loop;SPT
4;θδ ðz; kÞ þ b21ðzÞP1-loop;SPT

4;δδ ðz; kÞ
þ b2ðzÞI4;θδ2ðz; kÞ þ bG2

ðzÞI4;θG2
ðz; kÞ þ c4ðzÞP4;∇2δðz; kÞ þ c̃∇4

zδ
ðzÞP4;∇4

zδ
ðz; kÞ; ð2:21cÞ

where Pδδ, Pθδ, Pθθ are the power and cross spectra of the
density field δ and the velocity divergence field θ. The
different contributions Il;n and F l;n are redshift-space
generalizations of the real space bias loop integrals (2.11a).
Note that we changed the basis of counterterms to have a
single free coefficient for each multipole moment. The new
contributions are defined as

Pl;∇2δðz;kÞ≡2lþ 1

2

Z
1

−1
dμLlðμÞμlfl=2k2PlinðkÞ: ð2:22Þ

The mapping between the old and new coefficients is given
by8

c0≡ c̃0þ
f
3
c̃2þ

f2

5
c̃4; c2≡ c̃2þ

6f
7
c̃4; c4≡ c̃4: ð2:23Þ

E. IR resummation

As we already discussed, IR resummation is imperative
to properly describe the spread of the BAO peak, which was
not implemented in the previous formulas. In this section
we present our implementation of IR resummation. We will
use two closely related but somewhat different approaches
in the real and redshift space cases. Since the large bulk
flows affect only the BAO wiggles, the common starting
point is to split the linear power spectrum into the smooth
Pnw and wiggly component Pw,

PlinðkÞ ¼ PnwðkÞ þ PwðkÞ: ð2:24Þ

The details of the algorithm used to do the splitting are
given in Sec. IV.
In real space we follow the approach presented in

Refs. [49], which was developed in the context of
time-sliced perturbation theory (TSPT) [48]. After the

8This mapping, strictly speaking, is not exact when IR
resummation and the AP effect are present, but we have checked
that the residual difference is smaller than our baseline accuracy
of 0.1% and the size of the two-loop corrections.
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wiggly-smooth decomposition one computes the damping
factor9

Σ2ðzÞ≡ 1

6π2

Z
kS

0

dqPnwðz;qÞ
�
1− j0

�
q

kosc

�
þ 2j2

�
q

kosc

��
;

ð2:25Þ

where kosc is the wave number corresponding to the BAO
wavelength lBAO ∼ 110h=Mpc, jnðxÞ are spherical Bessel
functions of order n, and kS is the scale separating the long
and short modes. We use the value kS ¼ 0.2h=Mpc as
advocated in Ref. [49], even though any other choice in
the physically relevant range ð0.05 ÷ 0.1Þh=Mpc produces a
very similar result. When we perform the one-loop calcu-
lation, the residual dependence of the final result on kS is
comparable to the two-loop wiggly contribution and hence
should be treated as a small theoretical error. Once the
damping factor Σ2ðzÞ is obtained, one computes the tree-
level IR-resummed dark matter power spectrum as

Pmm;LOðz; kÞ ¼ Pnwðz; kÞ þ e−k
2Σ2ðzÞPwðz; kÞ: ð2:26Þ

The various one-loop IR-resummed power spectra for matter
(XY ¼ mm), galaxy (XY ¼ gg), and thematter-galaxy cross
spectrum (XY ¼ gm) can be obtained from the usual one-
loop integrals evaluated using Pmm;LOðz; kÞ as an input
instead of the linear power spectrum. Schematically, we
can write

PXY ¼ Ptree;XY½Pmm;LO� þ P1-loop;XY½Pmm;LO�; ð2:27Þ

where various spectra Ptree;XY are given by

Ptree;mm ¼ Pnwðz; kÞ þ e−k
2Σ2ðzÞPwðz; kÞð1þ k2Σ2ðzÞÞ;

Ptree;gm ¼ b1Ptree;mm; Ptree;gg ¼ b21Ptree;mm: ð2:28Þ

Note that the additional term k2Σ2ðzÞe−k2Σ2ðzÞPwðz; kÞ pre-
vents double counting of the bulk flow contributions that are
contained in the one-loop expression.
Let us now focus on the redshift space galaxy density

autopower spectrum. IR resummation becomes more com-
plicated in this case because the tree-level IR resummed
matter power spectrum picks up nontrivial angular depend-
ence from the anisotropic damping factor [51],

Pmm;LOðz; k; μÞ
≡ ðb1ðzÞ þ fðzÞμ2Þ2ðPnwðz; kÞ þ e−k

2Σ2
totðz;μÞPwðz; kÞÞ;

ð2:29Þ
where we introduced the new damping function [fðzÞ is the
logarithmic growth factor],

Σ2
totðz; μÞ ¼ ð1þ fðzÞμ2ð2þ fðzÞÞÞΣ2ðzÞ

þ f2ðzÞμ2ðμ2 − 1ÞδΣ2ðzÞ; ð2:30Þ

which depends on the real space damping (2.25) and on a
new contribution,

δΣ2ðzÞ≡ 1

2π2

Z
kS

0

dqPnwðz; qÞj2
�

q
kosc

�
: ð2:31Þ

Due to the anisotropy of the BAO damping the one-loop
calculation requires, strictly speaking, a computation of
anisotropic loop integrals. In contrast to the real space case,
these integrals cannot be reduced to one-dimensional ones.
However, one can simplify these integrals by splitting the
one-loop contribution itself into a smooth and wiggly part.
More precisely, one first computes the usual redshift-space
one-loop integrals with a smooth part only. Second, one
evaluates the same integrals with one insertion of the
unsuppressed wiggly power spectrum and applies the
direction-dependent damping factor (2.30) to the output,
which gives [46]

Pggðz; k; μÞ ¼ ðb1ðzÞ þ fðzÞμ2Þ2ðPnwðz; kÞ þ e−k
2Σ2

totðz;μÞPwðz; kÞð1þ k2Σ2
totðz; μÞÞÞ

þ Pgg;nw;RSD;1-loopðz; k; μÞ þ e−k
2Σ2

totðz;μÞPgg;w;RSD;1-loopðz; k; μÞ; ð2:32Þ

where P…1-loop½Plin� are treated as functionals of the input
linear power spectrum,

Pgg;nw;RSD;1-loopðz; k; μÞ≡ Pgg;RSD;1-loop½Pnw�;
Pgg;w;RSD;1-loopðz; k; μÞ≡ Pgg;RSD;1-loop½Pnw þ Pw�

− Pgg;RSD;1-loop½Pnw�: ð2:33Þ

Note that for simplicity we have neglected the one-loop
contributions that are obtained from two insertions of the
wiggly power spectrum (they scale as P2

w). Once the two
contributions are added, the eventual IR-resummed aniso-
tropic power spectrum can be used to compute the multi-
poles in Eq. (2.20).
It is important to stress that our implementation of IR

resummation at one-loop order contains four potential
sources of error:

(i) imperfectness of wiggly-nonwiggly decomposition,
9Note that additional factors of 2π as compared to Refs. [49,51]

are a result of using a different Fourier transform convention.
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(ii) dependence of the damping factor on the separation
cutoff,

(iii) inaccuracy of the factorization prescription,
(iv) one-loop corrections OðP2

wÞ from two insertions
of Pw.

In Refs. [49,51] is was shown that these effects are smaller
than the two-loop contribution. Furthermore, it can be
shown that the errors above can be consistently subtracted
and shifted to the next order at any given order of
perturbation theory. We will additionally discuss this point
in Sec. IV.

F. Alcock-Paczynski effect

The observed galaxy distribution is a function of angles
and redshift. However, it is more convenient to switch to
the geodesic distances between galaxies and consider the
“deprojected” three-dimensional power spectrum instead
of the two-dimensional angular power spectrum [76]. In
practice, the change of coordinates is realized by means
of the so-called Alcock-Paczynski scaling parameters that
are based on some trial fiducial cosmology [77–80].
Importantly, if the trial cosmology is different from the
correct one, the reconstructed 3D power spectrum appears
distorted compared to the true one [81]. These distortions
are routinely used to constrain cosmological parameters
from galaxy surveys, see e.g., [7].
One does not need, of course, to assume a wrong

cosmology on purpose to generate the Alcock-Paczynski
distortions. If the fiducial cosmology is correct, there are no
distortions in the data, but they are present in the theoretical
templates that are fitted to these data. After all, the Alcock-
Paczynski coordinate conversion is only a technical tool to
extract the distance information that is encoded in the angle
and redshift dependence of the galaxy distribution.
Mathematically, it does not change the information content
of the galaxy power spectrum.
To account for the Alcock-Paczynski effect one has to

compute the observable galaxy power spectrum using the
following formula:

Pobsðz; kobs; μobsÞ ¼ Pggðz; ktrue½kobs; μobs�; μtrue½kobs; μobs�Þ

·
D2

A;fidðzÞHtrueðzÞ
D2

A;trueðzÞHfidðzÞ
; ð2:34Þ

where ktrue and μtrue are the values that one would obtain in
the true cosmology, whereas kobs and μobs refer to quantities
obtained in a fiducial cosmology that was used to build
galaxy catalogs. In practice, the “true” coordinates refer to
the ones used to compute the theory model and the
“observed” coordinates refer to the ones used in the data
processing. The relation between the true and observed
wave vectors and angles is given by (suppressing the
explicit time dependences)

k2true¼k2obs

��
Htrue

Hfid

�
2

μ2obsþ
�
DA;fid

DA;true

�
2

ð1−μ2obsÞ
�
;

μ2true¼
�
Htrue

Hfid

�
2

μ2obs

��
Htrue

Hfid

�
2

μ2obsþ
�
DA;fid

DA;true

�
2

ð1−μ2obsÞ
�
−1
:

ð2:35Þ

These formulas realize the map ðktrue; μtrueÞ → ðkobs; μobsÞ,
which is used in our code.
During the likelihood analysis one samples cosmological

parameters in an attempt to find the true vales Htrue and
DA;true given Hfid and DA;fid that were fixed in the fiducial
cosmological model used to create catalogs. The final
galaxy multipoles including the AP effect are given by

Pl;APðz; kÞ ¼
2lþ 1

2

Z
1

−1
dμobsPobsðz; kobs; μobsÞ · LlðμobsÞ:

ð2:36Þ

Note that the AP effect and IR resummation lead to the
leakage of some bias contributions to higher order multi-
poles. For instance, in the absence of these effects the term
Iδ2δ2 only contributes to the monopole moment. However,
the AP effect produces some nontrivial angle dependence
and generates contributions into higher multipole moments.
CLASS-PT explicitly computes these contributions, but they
turned out to be absolutely negligible, which is why we
drop them in the PYTHON wrapper CLASSY for memory
optimization reasons. The plots with these contributions
can be found in theMathematica notebook in the code web
folder.

G. Tree-level IR-resummed bispectrum

The tree-level IR-resummed bispectrum in real space can
be easily obtained from our code as well. One can just take
the usual expression for the tree-level matter bispectrum
and replace Plinðz; kÞ with the leading order IR-resummed
spectrum given in (2.26). Note that this replacement is the
exact result in real space. In redshift space, one has to use
the anisotropic expression (2.29) and consistently average
over the angular variables that include the AP effect. This
procedure will be implemented in future versions of
CLASS-PT.

III. STRUCTURE OF THE CODE

Our code is executed as a module nonlinear_pt.c
in the standard CLASS code v2.6.3., which was the latest
CLASS version when the work on the code started. The
module nonlinear_pt.c is implemented as a clone of
the nonlinear.c module that evaluates HALOFIT. A
work cycle of our new module can be schematically
represented as a sequence of the following three steps:

(i) The function nonlinear_pt_pk_l() takes
the linear transfer functions from the module
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perturbations.c and convolves them with the
primordial power spectrum from primordial.c
to get the linear matter power spectra at redshifts
specified by the user.

(ii) For each required redshift, various nonlinear power
spectra are evaluated by the function nonli-
near_pt_loop(), which uses FFTLog with
precomputed cosmology-independent matrices M
[see Eq. (4.9)].

(iii) These spectra are passed to next modules similarly
to the nonlinear spectra computed by HALOFIT in
nonlinear.c.

The most important ingredients that made our FFTLog
calculation possible are the CLASS realization of FFT
developed in CLASS-MATTER

10 (see Ref. [82]), and the fast
matrix multiplication algorithms realized in an open-source
C library OpenBLAS.11 We stress that OpenBLAS is the
only external library used in our code. It is free and its
installation is fast and straightforward. A detailed installa-
tion manual is given in Appendix B.
Our new module does not alter the way CLASS works.

The module is written in C and it is wrapped as a PYTHON

library CLASSY. Compared to the usual CLASSY, only one
function is modified, pk(k,z). Examples of working
sessions of our code are given in the JUPYTER notebook
available at the code webpage.
There are several important flags that regulate our

nonlinear module:
(i) nonlinear = PT. This flag executes the nonlinear

module. The syntax here is analogous to the one
used to execute the HALOFIT module, “nonlin-
ear = Halofit.”

(ii) z_pk=0,0.61,1100. Redshifts for which the
nonlinear corrections should be computed.

(iii) IR resummation = Yes. Decide whether IR
resummation is performed.

(iv) Bias tracers = Yes. Decide whether the loop
integrals for biased tracers are computed.

(v) RSD = Yes. Decide whether the redshift-space loop
integrals are computed.

(vi) AP = Yes. If both “RSD” and “IR resummation”
are switched on, you can choose whether you want
to implement the AP effect.

(vii) Omfid=0.31. Pass the fiducial value of Ωm that
was used to create the catalogs with the AP effect.
One must never scan over this parameter in an
MCMC analysis. The value of Ωm;fid must be always
fixed to the one used in the survey data production.

(viii) FFTLog mode=Normal. Depending on a particu-
lar situation, the user can either run the code with
high precision settings (which is a default choice), or
in the fast mode, which is slightly less accurate but

much faster. This regime can be activated by the flag
“FFTLog mode=FAST.” If the code is run in the
default regime, the flag “FFTLog mode” does not
need to be specified.

(ix) output format=Normal. This flag specifies the
size of the wave number grid used to compute and
store the power spectra. By default, our module uses
the standard CLASS array of wave number. However,
if one computes both the CMB power spectraCl and
the nonlinear power spectra PðkÞ in one CLASS call,
one is encouraged to use the flag “output for-
mat=FAST.” In this case the nonlinear power
spectra are stored on a reduced wave number grid,
which leads to a notable gain in speed.

(x) cb=Yes. By default, CLASS-PT uses the linear power
spectrum of the cold dark matter and baryon (“cb”)
fluid as an input for the nonlinear calculations. This
is motivated by the evidence that galaxies trace the
cb fluid and not the total matter density that includes
massive neutrinos. If the user is willing to compute
the nonlinear corrections to the total matter density
field, they should use the flag “cb=No.”

The concrete architecture of our module is not essential
for its running. Moreover, it will likely change in the future
to match the most resent official version of CLASS. We warn
the users that some functions that exist in the current
version of CLASS-PT are redundant and will be optimized in
the future. Besides, we believe that there are more elegant
ways to organize our module. The current stable version of
the code is available,12 where one can find some comments
in case of modifications.

IV. TECHNICAL IMPLEMENTATION AND
APPROXIMATIONS

Numerical algorithms and approximations used to evalu-
ate the theoretical model are essential elements of our code.
In this section we describe some of these technical details
including the FFTLog algorithm used to evaluate loop
integrals, the wiggly-nonwiggly decomposition and their
application to the evaluation of the IR-resummed redshift-
space galaxy power spectrum multipole moments.

A. Basics of the FFTLog method

The one-loop perturbation theory integrals involve con-
volution kernels that reduce to simple multiplications in
position space. This inspired methods that use the fast
Fourier transform to switch between Fourier and position
space to evaluate these integrals [21,22]. Alternatively, the
fast Fourier transform (with uniform binning in log k) can
be used only as a tool to decompose the linear power
spectrum into complex power laws [83]. The loop integrals
are then not deconvolved, but they have a simple analytical

10https://github.com/lesgourg/class_public/tree/class_matter
11https://github.com/xianyi/OpenBLAS 12https://github.com/Michalychforever/CLASS-PT
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solution for the power-law universes [24]. We refer to this
particular approach as the FFTLog method. Importantly,
this method can be extended to the one-loop bispectrum
and the two-loop power spectrum [24], which are not
simple convolution integrals.13 Keeping in mind these
statistics as our eventual goal, we choose FFTLog for
the implementation in CLASS. Another advantage of this
algorithm is that it is very easy to implement, since it
boils down to simple multiplications of the cosmology-
independent matrices with the cosmology-dependent vec-
tors, which can be easily obtained from the linear matter
power spectrum with FFT.
The FFTLog method is based on the representation of

the linear matter power spectrum as a sum of complex
power laws in k. This is naturally achieved using the
discrete Fourier transform with equal spacing in log k,
hence the name FFTLog [83]. The discrete approximation
to the linear power spectrum in a finite momentum interval
½kmin; kmax�, denoted as P̄ðz; kÞ, can be written as

P̄linðz; kÞ ¼
Xm¼N=2

m¼−N=2

cmkνþiηm; ð4:1Þ

where the Fourier coefficients cm and exponents ηm are
given by

cm ¼ 1

N

XN−1

j¼0

Plinðz; kjÞk−νj k−iηmmin e−2πimj=N;

ηm ¼ 2πm
lnðkmax=kminÞ

: ð4:2Þ

The parameter ν is sometimes refereed to as “bias.” In
principle, ν can be an arbitrary real number. However, the
converging properties of convolution integrals on different
scales are different depending on the value ν. Thus, the
freedom to choose ν can be used to boost the efficiency of
numerical evaluation.
The perturbation theory loop integrals over each power-

law function kνþiηm can be done analytically. This allows
one to reduce the evaluation of the whole loop integral to a
matrix multiplication. Crucially, the elements of this matrix
are cosmology independent and can be precomputed and
saved as a table. All the cosmology dependence resides in
the coefficients cm, whose evaluation takes very little time
by virtue of the FFT algorithm.
In order to find analytical solutions for the loop integrals

with power-law power spectra, the integration has to be
performed over the whole momentum range, i.e., for
q ∈ ½0;∞�. This implies that perturbation theory loop
integrals are evaluated with the same integration

boundaries. One may be worried about this in the context
of perturbation theory, since we are integrating over the
small scales where perturbative description breaks down.
However, as we have already emphasized, the purpose of
counterterms in the EFT approach is precisely to absorb all
small scale dependence of the loop integrals. In this way, it
is guaranteed that the final results are independent of the
exact short-distance behavior of the power spectrum.14

1. FFTLog in redshift space

In real space all one-loop integrals can be expressed in
terms of the single master integral

Z
q

1

q2ν1 jk − qj2ν2 ¼ k3−2ν12 Iðν1; ν2Þ; ð4:3Þ

where ν12 ≡ ν1 þ ν2 and

Iðν1; ν2Þ≡ 1

8π3=2
Γð3

2
− ν1ÞΓð32 − ν2ÞΓðν12 − 3

2
Þ

Γðν1ÞΓðν2ÞΓð3 − ν12Þ
: ð4:4Þ

However, in redshift space the loop integrals become more
complicated due to the anisotropy introduced by the line-
of-sight direction z. One can find up to four loop momenta
multiplying z in the one-loop integrands. To evaluate these
integrals, we generalize Eq. (4.3) as follows:

Z
q

qi

q2ν1 jk − qj2ν2 ¼ k3−2ν12 · A1ki;

Z
q

qiqj

q2ν1 jk − qj2ν2 ¼ k3−2ν12 · ðk2A2O
ij
2a þ B2O

ij
2bÞ;

Z
q

qiqjql

q2ν1 jk − qj2ν2 ¼ k3−2ν12 · ðk2A3O
ijl
3a þ B3O

ijl
3bÞ;

Z
q

qiqjqlqm

q2ν1 jk − qj2ν2 ¼ k3−2ν12

· ðk4A4O
ijlm
4a þ k2B4O

ijlm
4b þ C4O

ijlm
4c Þ;
ð4:5Þ

where An, Bn and Cn are some functions of ν1 and ν2, and
we introduced the following operators:

13For some related results regarding the two-loop power
spectrum see also [84,85].

14Alternatively, one may introduce a UV cutoff Λ by simply
padding the power spectrum with zeros for all wave numbers
k ≥ Λ. In this case the EFT counterterms absorb the cutoff
dependence of the loops and ensure that the final result for the
one-loop power spectrum does not depend on Λ. Thus, even
though we use Λ ¼ ∞, this choice is irrelevant for the cosmo-
logical constraints and it can only affect the amplitudes of the
counterterms.
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Oij
2a¼δij; Oij

2b¼kikj;

Oijl
3a¼

1

3
ðδijklþ2perms:Þ; Oijl

3b¼kikjkl;

Oijlm
4a ¼1

3
ðδijδlmþ2perms:Þ; Oijlm

4b ¼1

6
ðδijklkmþ5perms:Þ

Oijlm
4c ¼kikjklkm: ð4:6Þ

By contracting the left-hand sides of the integrals (4.5) with
different powers of q and k, one can reduce these integrals
to the form (4.3). The resulting formulas are just a set of
simple algebraic equations that can be solved to find the
functions An, Bn and Cn. The explicit solutions can be
found in Appendix A. Plugging these expressions into
(4.5), it is straightforward to obtain the following redshift-
space master integrals:

Z
q

ðẑ · qÞ
q2ν1 jk − qj2ν2 ¼ k3−2ν12 · kμA1;

Z
q

ðẑ · qÞ2
q2ν1 jk − qj2ν2 ¼ k3−2ν12 · k2ðA2 þ μ2B2Þ;

Z
q

ðẑ · qÞ3
q2ν1 jk − qj2ν2 ¼ k3−2ν12 · k3μðA3 þ μ2B3Þ;

Z
q

ðẑ · qÞ4
q2ν1 jk − qj2ν2 ¼ k3−2ν12 · k4ðA4 þ μ2B4 þ μ4C4Þ: ð4:7Þ

With these formulas at hand one can compute the one-
loop redshift-space integrals in the discrete FFTLog rep-
resentation just like in the real space case [24]. Crucially,
the dependence on μ is given by simple polynomials, e.g.,
the one-loop matter power spectrum takes the following
form:

P1-loop;RSDðz; k; μÞ

¼ ð1þ fðzÞμ2Þ
X3
n¼0

PðnÞ
13 ðz; kÞμ2n þ

X4
n¼0

PðnÞ
22 ðz; kÞμ2n;

ð4:8Þ

and each PðnÞ can be computed via FFTLog in full analogy
with the real space case,

PðnÞ
22 ¼ k3D4ðzÞ

X
m1;m2

cm1
k−2ν1MðnÞ

22 ðν1; ν2Þcm2
k−2ν2 ;

PðnÞ
13 ¼ k3Plinðz; kÞD2ðzÞ

X
m1

cm1
k−2ν1MðnÞ

13 ðν1Þ; ð4:9Þ

where Mð0Þ
22 ;M

ð0Þ
13 are the standard real space matrices [24]

and MðnÞ
22 ;M

ðnÞ
13 with n > 0 are their redshift-space gener-

alizations. The explicit expressions for these matrices are
quite cumbersome so we do not give them here. They can
be found in the main body of the code.

Since the μ dependence of basic perturbation theory one-
loop integrals is known explicitly, one can easily do the
Legendre integrals analytically already at the levels of the
FFTLog matrices. This allows one to obtain master
matrices M22;l and M13;l. Using these matrices each
multipole can be computed with only two matrix multi-
plications just like in the real space case. This is not the case
when IR resummation and the Alcock-Paczynski effect are
present. To account for them, we evaluate each integral
entering (4.8) separately, combine them into the full Pðk; μÞ
and then do the μ integrals numerically. This procedure will
be discussed in more detail shortly.

2. Practical realization

We use the FFTLog grid with NFFTLog ¼ 256 (default
mode) and NFFTLog ¼ 128 (fast mode) harmonics spanning
the range

½5 × 10−5; 100�h=Mpc:

We use two different values of the FFTLog bias exponent ν
for the matter and bias tracer loop integrals (see [24] for
details)

ν¼−0.3 ðmatterÞ; ν¼−1.6 ðbiased tracersÞ: ð4:10Þ

It is important to stress that the choice ν ¼ −0.3 leads to
poor convergence for the matter one-loop integrals at small
scales, k > 1h=Mpc. To alleviate this issue we apply an
exponential cutoff for these high ks. This is justified
because the one-loop predictions are not valid on these
scales at the redshifts relevant for current and future galaxy
surveys. If need be, one can always choose a different value
of the bias for which the FFTLog calculation will be better
convergent for large wave numbers.

3. Accuracy test

Let us discuss the accuracy of our code on the example of
the one-loop real space calculations. The purpose of this
comparison is to show that our FFTLog routine has precision
comparable to that of direct numerical integration.
The residuals between the FFTLog-based calculation

and the direct numerical evaluation of the one-loop matter
power spectrum are shown in Fig. 1. The singularity around
0.1h=Mpc reflects the fact that the one-loop spectrum
crosses zero in this region. We show the results for the
default precision with NFFTLog ¼ 256 and for the fast mode
with NFFTLog ¼ 128. We see that default choice of
NFFTLog ¼ 256 provides accuracy ∼0.1% over the range
wave numbers k ∼ 0.2h=Mpc relevant for future galaxy
surveys.
However, the 0.1% accuracy of the one-loop correction

can be an unjustified excessive precision in many cases. For
this reason, for all practical applications the user is
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encouraged to run the code in the fast mode. It provides us
with somewhat lower accuracy ∼1%, but a significant
speed gain. On the one hand, this numerical error is still
smaller than the two-loop contribution omitted in our
model. On the other hand, the one-loop contribution itself
must be a small correction to the linear power spectrum in
order for perturbation theory to make sense. Thus, the
Oð1%Þ accuracy on the one-loop correction translates into
the Oð0.1%Þ accuracy on the total power spectrum.
Therefore, the fast mode seems to be sufficient for the
bulk of practical applications in which the one-loop power
spectrum is used as a model. To explicitly verify this, we
have rerun the MCMC analysis of the BOSS data from
Ref. [13] and the analysis of the large N-body simulation
data from Ref. [16]. In either case both fast and default
modes yielded indistinguishable results.

B. Wiggly-nonwiggly splitting

The algorithm for wiggly-nonwiggly splitting that we
implement in the code is based on the discrete spectral
analysis method proposed in Ref. [86]. The main idea is to
Fourier transform the power spectrum to position space,
localize the BAO peak, remove it, and smoothly interpolate

the correlation function in the previous location of the peak.
For computational efficiency this is done by means of a
discrete Fourier transform. In practice, we do the following:

(i) Sample an array of lnðkPlinðz; kÞÞ in 216 points over
the range ½7 × 10−5; 7� Mpc−1.

(ii) Fast sine transform (FST) this array.
(iii) Interpolate the odd and even harmonics using

splines.
(iv) Remove the harmonics spanning the range of indices

[120, 240], see Fig. 2. These harmonics correspond
to the BAO peak for the comoving sound horizon at
decoupling rd ∼ 150 Mpc. We have found that this
choice of the boundaries works well for the varia-
tions of rd in the range (130,170) Mpc.

(v) Interpolate the FST harmonics in the BAO range.
(vi) Fast sine transform back the new coefficients to

recover lnðkPnwðkÞÞ.
The resulting wiggly power spectrum Pw ≡ Plin − Pnw is

shown in the right panel of Fig. 2. It is important to stress
that we work in units of Mpc, in which case the splitting is
insensitive to h. The only cosmology-sensitive part of our
procedure is the location of the BAO peak, which corre-
sponds to the comoving sound horizon rd. However, rd is a
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FIG. 2. Left: visualization of our wiggly-smooth splitting algorithm. We show even and odd discrete fast sine transform coefficients of
lnðkPlinðkÞÞ for the range of indices relevant for the BAO before (in blue) and after (in red) the splitting. Right: the resulting wiggly
power spectrum normalized to the smooth one.
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FIG. 1. Residuals between our calculation of the one-loop contribution and the direct numerical evaluation for the default settings (left
panel) and in the “FAST” mode (right panel).
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very weak function of cosmology. For instance, in ΛCDM
rd ∝ ω−0.25

m ω−0.12
b [13]. Given this reason, we use the same

frequency cuts in the wiggly-nonwiggly procedure during
MCMC scans over different cosmologies. Alternatively, we
tried an algorithm which rescales the frequency cuts “on-
the-fly” according to the value of rd which is being sampled
by the code. The difference between the two procedures is
negligibly small and does not affect parameter inference
even from the large-volume PT challenge simulation
data [16].

C. Error budget of IR resummation

In Sec. II E we listed various sources of error in our
implementation of IR resummation. It was argued that these
errors are under control, i.e., their contributions can be
minimized to arbitrary small values. This is a theoretical
statement, which may not hold in reality due to various
choices made in practical implementation. In this subsec-
tion, we will explicitly show that the residual error of the
one-loop power spectrum with IR resummation is smaller
than the two-loop contributions. Let us discuss each
problematic ingredient separately.

1. Wiggly-nonwiggly decomposition

The error introduced by our splitting procedure is always
smaller than the two-loop corrections. One can argue that
this is a generic statement which can be generalized to
higher orders. Indeed, imagine that the BAO were
described by an analytic harmonic function so that one
could find an exact analytic expression for Pnw;true. Imagine
now that instead of using this analytic expression we
perform a numerical wiggly-nonwiggly decomposition that
introduces some intrinsic error ΔPw-nw ≪ Plin,

Pnw ¼ Pnw;true þ ΔPw-nw; Pw ¼ Pw;true − ΔPw-nw: ð4:11Þ

Now let us perform a leading order tree-level calculation,

PLO ¼ Pnw þ e−Σ
2k2Pw ¼ Pnw;true þ e−Σ

2k2Pw;true

þ ΔPw-nwð1 − e−Σ
2k2Þ: ð4:12Þ

We see that at small wave numbers the wiggly-nonwiggly
error cancels when we sum up the wiggly and smooth parts.
The residual error term on the rhs can be Taylor expanded
and compared to the one-loop contribution at low ks,

ΔPw-nwð1 − e−Σ
2k2Þ ≈ Σ2k2ΔPw-nw ≪ k2σ2vPlin; ð4:13Þ

where σ2v ≈ 36D2ðzÞ ½Mpc=h�2 is the variance of the linear
displacement field, which controls the size of the one-loop
correction at low k. A similar calculation can be repeated at
the one-loop order. Given this observation, one can argue
that as long as the wiggly-nonwiggly splitting error
ΔPw-nw ≪ Plin is much smaller than the power spectrum
itself, the residual error of a n-loop calculation will be
smaller than the nþ 1 loop correction. In Fig. 3 we show
the residuals between the two one-loop spectra produced by
changing the cuts of the Fourier harmonics. The difference
generated by the wiggly-smooth procedure is clearly much
smaller than the two-loop contribution and can be safely
neglected.

2. Dependence on kS
This ambiguity is intrinsic to the IR resummation

procedure. However, it was shown in Refs. [49,51] that
this ambiguity reduces at higher loop orders. Thus, the error
due to the separation scale choice is always under rigorous
perturbative control. To estimate it, we compute the
residuals between the two spectra evaluated with kS ¼
0.1h=Mpc and kS ¼ 0.2h=Mpc, and display the result
in Fig. 3.

3. Factorization

Another source of error can be the approximation due to
IR resummation in redshift space. Recall that, in principle,
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FIG. 3. Errors introduced by various approximations in IR resummation vs the two-loop contribution at z ¼ 0 (left panel) and z ¼ 1
(right panel). See the main text for detail.
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it requires computing anisotropic three-dimensional inte-
grals, in which case the FFTLog algorithm does not directly
apply anymore. However, it is possible to approximately
factorize the BAO damping by neglecting terms which are
formally either higher order or exponentially small. For
that, one should, essentially, repeat the same arguments as
for the wiggly-nonwiggly decomposition, see Refs. [49,51]
for more detail.
In practice, we have checked that these terms are indeed

smaller than the two-loop correction at redshifts relevant
for future surveys. In order to estimate this error we
computed the difference between the full formula for the
one-loop matter power spectrum (2.27) and its “factorized”
version (2.32). Crucially, the residual generated by the
factorization is a smooth function without a pronounced
BAO feature. The reason behind this is that the factoriza-
tion mostly affects the P22-like integrals, in which the
oscillating residuals are integrated over and hence become
washed out. The absence of the features suggests that even
if we neglected the theoretical error associated with two
loops completely, this residual could be absorbed by the
counterterms without biasing cosmological parameters in a
real data analysis.
One may wonder what happens if we approximate the IR

resummation of one-loop redshift-space integrals with a
direction-independent damping exponent (as it is the case
in real space). Naively, this prescription would guarantee
the absence of smooth residuals in the loop integrals.
However, we have found that this approximation leads to
non-negligible oscillation residuals in the density and
velocity spectra, which motivated us to switch back to
the factorization prescription. These residuals are mostly
produced by P13-like integrals, for which the factorization
procedure is exact and fast, so that there is no need to use
the isotropic damping template. The most time-consuming
process is the IR resummation of the P22-like integrals, for
which the difference between the direction-independent
and full anisotropic templates was found to be quite small.
Approximating the BAO damping of the P22 integrands
with the direction-independent template notably reduces
the computational cost of IR resummation. This introduces
≲0.1% error on the full power spectra, which is smaller
than the neglected two-loop contributions on mildly non-
linear scales. Even though this approximation seems
promising, it has not yet been fully included in the current
version of the code. We have implemented this method only
for the P22-like integrals of biased tracers. We plan to test
this approximation more thoroughly before implementing it
for the matter loop integrals as well.
We stress that we have implemented the full factorization

formula with the anisotropic damping factor for the P13-
like bias integrals produced by the operator FG2

. This
formula is exact for these types of integrals.

4. Corrections of order OðP2
wÞ

Finally, we have checked that the terms ∼P2
w omitted in

the IR resummation procedure of Ref. [49] are indeed
negligible. In principle, these corrections can be taken into
account at zeroth order at no additional cost, but their
contribution is so small that they are irrelevant for all
practical applications.
All the sources of error related to IR resummation are

shown in Fig. 3. We see that the biggest error is introduced
by the factorization procedure, but its contribution is quite
smooth and its slope matches the shape of the two-loop
contribution.

D. Evaluation of redshift space multipoles

Without IR resummation and the AP effect we do the μ
integrals analytically, which speeds up the code consid-
erably. In this case we use the explicit FFTLog matrices
directly for the power spectrummultipoles. This calculation
is initiated if the flag “IR resummation = No” is passed
to the code. Note the AP effect is not implemented in this
case. If the flag “IR resummation = Yes” is passed
instead, a different routine is initiated.
When IR resummation in redshift space and the AP are

demanded, we separately compute all Fourier integrals that
multiply different powers of μ2, see Eq. (4.8). To account
for IR resummation and the AP effect, we use the following
algorithm:
(1) Compute each loop integral separately for wiggly

and nonwiggly components. First, we evaluate it for
the nonwiggly input power spectra only. Second, we
compute the one-loop integrals with one entry of Pw
and one entry of Pnw.

(2) Suppress the wiggly one-loop spectra with the
anisotropic damping factor.

(3) Combine everything together and add the tree-level
IR-resummed part. This allows us to arrive at a final
expression for Pggðz; k; μÞ given in Eq. (2.32).

(4) Map the arguments ðk; μÞ → ðkobs; μobsÞ as dictated
by the AP conversion for an input cosmologi-
cal model.

(5) Perform the angular integrals over μobs from
Eq. (2.36) using the precomputed Gaussian quad-
rature with 40 weights.

Note that there is only one numerical routine that
performs the Legendre integrals over μ both for IR
resummation and the AP distortions. If one needs to take
into account the AP distortions but not IR resummation,
one can customarily put to zero the BAO damping factor
Σtot. Moreover, the AP effect can be computed only if all
three flags “RSD = Yes,” “IR resummation = Yes,”
and “AP = Yes” are passed to the code. If need be, one
could compute the multipoles induced by the AP effect in
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real space by forcefully defining f ¼ 0 before the RSD
module is executed.

E. Neutrino masses

Massive neutrinos require some special treatment.
Strictly speaking, our method is not applicable if the
growth rate is scale dependent. In this case one cannot
use the usual EdS perturbation theory kernels, and the
whole calculation of time-and-scale dependent Green’s
functions is needed [87,88]. However, these references
showed that for real space dark matter the difference
between the full calculation and the EdS approximation
is very small for realistic neutrino masses. This suggests
that it is safe to use our EdS-based FFTLog calculations in
this case.
To approximately incorporate massive neutrinos in the

calculation of biased tracers, we use the linear power
spectrum for the “cold dark matter þ baryons” fluid as
an input in all loop calculations. This prescription has been
advocated on the basis of N-body simulations in [89,90,
90–93]. Besides, Refs. [94,95] claimed its importance for
the neutrino mass measurement. The “cb” power spectrum
is a default input of our nonlinear module. If need be, one
can use the total matter density by using the flag “cb=No.”
The situation is more complicated in redshift space. Just

like in the biased tracer case, N-body simulations (e.g.,
[93]) suggest that one has to use the linear logarithmic
growth factor fcb of the “cb” fluid. Then the halo power
spectra of N-body simulations approach the Kaiser pre-
diction [74] evaluated with the “cb” quantities. Crucially,
for observationally allowed neutrino masses the scale
dependence of fcb is around 0.1% on large scales where
the definition of fcb is meaningful. Strictly speaking, the
presence of this scale dependence invalidates our whole
redshift-space one-loop calculation including IR resumma-
tion and calls for a computation of the appropriate Green’s
functions. However, given that this effect is very small, we
will neglect it and use the EdS approximation with a scale-
independent approximation for fcb. In principle, one can
include the effect of appropriate Green’s functions by
perturbatively expanding around the EdS kernels. We leave
this for future work.
Overall, in the presence of massive neutrinos, we use the

same FFTLog-EdS formulas as before, but apply them to
the actual linear “cb” power spectrum suppressed at short
scales by massive neutrinos’ free-streaming. At any
required redshift the code takes the power spectrum at this
exact redshift, such that the linear time dependence of the
neutrino suppression is taken into account. This approach is
justified by N-body simulations of Ref. [93], which showed
that the leading effect of massive neutrinos is always a
suppression of the linear power spectrum, and any residual
scale dependence of this suppression is insignificant even

for volumes as large as 100 ðGpc=hÞ3. This observation
was also confirmed in various forecasts, e.g., [17,96].
Given these reasons, we expect that using the usual
FFTLog formulas in the presence of massive neutrinos
will be a good approximation even for future surveys like
DESI or Euclid.

F. Nonstandard extensions of ΛCDM
The code in its current form can be used without any

limitations for all nonminimal cosmological models that do
not require modification of the perturbation theory kernels.
One such example is the early dark energy (EDE) model,
in which the standard ΛCDM early universe physics is
significantly modified in an attempt to resolve the Hubble
tension [97]. CLASS-PT has been already successfully used
to put the strongest constraints to date on the EDE model
from the combination of the CMB and LSS data [98]
(see also [99]).
In principle, CLASS-PT can be extended even to those

cases which require modifications in the mode-coupling
kernels, e.g., modified gravity. If these models do not
violate the equivalence principle, one has to simply
recompute the perturbation theory matrices using new
kernels from these extended models. In this case the body
of the code does not need to be modified. If the equivalence
principle is violated, one has to modify IR resummation
accordingly, see Refs. [100,101].

G. Modified CMB lensing routine

In certain situations, it may be useful to have some
alternative estimate for nonlinear corrections that can be
used instead of HALOFIT for the CMB lensing calcula-
tions. This is clearly the case for exploration of the non-
standard cosmological models for which the HALOFIT
fitting formula was not calibrated. Since the nonlinear
corrections relevant for CMB lensing are relatively small
for angular multipoles l < few × 103 [102], one may
expect that perturbation theory gives reasonably accurate
results for current lensing data such as, e.g., the Planck
measurements. One technical difficulty in applying pertur-
bation theory to CMB lensing is a significant width of the
lensing kernel. This requires nonlinear corrections from
many different redshifts, whose full calculation is very time
consuming. However, given that the perturbations of the
lensing potential are very mildly nonlinear, and given the
statistical errors of current lensing data, the accuracy of
nonlinear corrections around ∼1% is tolerable. In this case
one can adopt the following simple approximation scheme:
(1) Compute the full matter power spectrum Pref

1-loop at
some fixed reference redshift zref .

(2) Obtain the spectra at different redshifts zi by
rescaling Pref

1-loop with scale-independent linear
growth factors,
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P1-loopðzi; kÞ ¼
�

DðziÞ
DðzrefÞ

�
4

Pref
1-loopðzref ; kÞ:

This procedure is exact in EdS if we neglect the time
dependence of IR resummation and counterterms. The
effect of both is around 1% on mildly nonlinear scales
and hence can be neglected for our purposes.
Our modified lensing module was tested on the Planck

2018 data in Ref. [14], where it was found to give the same
result as HALOFIT for νΛCDM and νΛCDMþ Neff
models. However, we would like to stress that its accuracy
has not been extensively tested for the precision required
for future experiments.

V. RESULTS AND PERFORMANCE

In this section we show some results and discuss the
performance of the code. All plots shown in this section are

generated with the JUPYTER notebook that can be down-
loaded from the GitHub page of the code. Our timing
results were obtained on a MacBook Pro Retina Early 2015
laptop, with a 2.7 GHz Intel Core i5 processor and using
OS X version 10.11.6. All results are obtained by running
CLASS with the C compiler gcc-6.1.0. Our CLASSY is
based on PYTHON 2.7.10, numpy 1.14.5, and scipy
0.19.0. The results of this section will be presented for
the nonlinear power spectrum of Planck best-fit cosmology
at z ¼ 0.61. We use the following nuisance parameters:

c2s ¼ 1 ½Mpc=h�2; R2� ¼ c0 ¼ 5 ½Mpc=h�2;
Pshot ¼ 5 × 103 ½Mpc=h�3;
b1 ¼ 2; b2 ¼ −1; bG2

¼ 0.1; bΓ3
¼ −0.1;

c2 ¼ 15 ½Mpc=h�2; c4 ¼ −5 ½Mpc=h�2;
c̃∇4

zδ
¼ 100 ½Mpc=h�4: ð5:1Þ

These parameters are consistent with the values extracted
from high-resolution BOSS mock galaxy catalogs and the
actual BOSS survey data [13]. We stress that these nuisance
parameters should be fitted from the data in any realistic
analysis.

A. Examples of nonlinear spectra

Figure 4 shows the breakdown of different contributions
to the matter power spectrum in redshift space without IR
resummation. In Fig. 5 we show the effect of IR resum-
mation. Without this procedure the one-loop correction
fails to capture the shape of the BAO wiggles and even their
frequency. This result is well known in the literature [46,49]
and it explicitly shows that IR resummation is a necessary
ingredient of any realistic nonlinear calculation. For com-
parison, we also display the linear theory power spectrum.
In Fig. 6 we show the galaxy-galaxy, galaxy-matter and

matter-matter spectra in real space (left panel) and the
breakdown of different bias loop corrections (right panel).

FIG. 5. Left panel: the total power spectrum with and without IR resummation, along with the linear theory prediction. All spectra are
multiplied by k3=2 for better visualization. Right panel: the position space correlation functions extracted from the same calculations.

FIG. 4. Breakdown of different contributions to the one-loop
matter power spectrum.
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Figure 7 displays redshift space multipoles of dark matter
(left panel) and BOSS galaxies (right panel). Note that in the
latter case we have included the c̃∇4

zδ
counterterm.15

Figure 9 shows the lensed temperature (TT) and the CMB
lensing potential power spectra computed in perturbation
theory and with HALOFIT (divided by the linear theory
prediction), as well as the relative difference between the
two nonlinear calculations. One sees that the difference
between the PT and HALOFIT is less than 0.1% for the
lensed TT spectrum and around ∼2% at the small-scale part

of the CðϕϕÞ
l spectrum. These differences can be taken as an

estimate for the theoretical error associated with the
modeling of nonlinear corrections. We believe that the

residual between PT and HALOFIT can be reduced by an
appropriate tuning of the dark matter effective sound speed
c2s . Moreover, an even better description can be obtained by
combining the two methods. Indeed, perturbation theory is
very accurate on mildly nonlinear scale, whereas the N-
body based fitting formulas capture the leading behavior in
the fully nonlinear regime. The exploration of the matter
power spectrum on these short scales can be done with
relatively cheap small-box simulations. A thorough study of
this possibility is left for future work.

B. Performance

Let us discuss now the performance of our numerical
routine. Table I displays the run time for various spectra
computed by CLASS-PT in the default (high-precision) and
fast modes. These values are the typical ones obtained on
authors’ laptops. They can vary for different machines.
Importantly, the execution time reduces by a factor of 4 in
the fast mode, which uses a grid twice smaller than the
default one. This is a consequence of the fact that the most

FIG. 7. Left panel: redshift space multipoles of the matter power spectrum. Right panel: the same for the galaxy power spectrum of the
BOSS-like sample.

FIG. 6. Left panel: one-loop predictions for the matter-matter, matter-galaxy and galaxy-galaxy power spectra of the BOSS-like
galaxy sample. Right panel: breakdown of different bias contributions to the one-loop galaxy power spectrum.

15This counterterm was obtained by simply multiplying the
hexadecapole P4 counterterm by k2 contribution at no additional
computational cost. We have checked that a small residual
difference between this procedure and the full treatment, which
appears due to subleading effects in the AP effect and IR
resummation, is negligible.
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time-consuming process is matrix multiplication, which
very roughly scales as N2

FFTLog.
We see that basic runs for the real space power spectrum

without IR resummation are quite fast. Their speed is
comparable to that of other methods, e.g., FAST-PT [22]. IR
resummation and bias tracers increase the execution time
by a factor of ∼5 separately. Since these two procedures are
independent, this results in an overall speed loss by a factor
of 10 compared to the basic run. Redshift space distortions

affect the calculation in two ways. First, there are additional
convolution integrals that appear in multipole moments.
Second, redshift space requires a more sophisticated IR
resummation procedure, which increases the number of
convolution integrals even further. When the two effects are
combined, the execution time reaches the level of 1.3 sec-
onds for high precision settings and 0.3 seconds in the fast
mode. The inclusion of the AP effect does not notably
affect the speed.

FIG. 8. Regime of applicability of the one-loop corrections computed by our code.

TABLE I. Performance of the code for baseline precision runs. We show the execution time in [sec] as follows:
tfullðtFFTLogÞ, where tfull is the full end-to-end time taken by the nonlinear module, and tFFTLog is the time elapsed
during the matrix multiplication with FFTLog.

Run Real space IR resummation RSD IRþ RSD IRþ RSDþ AP

Default mode
Matter 0.036 (0.036) 0.175 (0.036) 0.375 (0.375) 0.75 (0.62) 0.76 (0.63)
Tracers 0.21 (0.21) 0.35 (0.21) 0.89 (0.89) 1.27 (1.12) 1.30 (1.14)

FAST mode
Matter 6.3ð6.1Þ × 10−3 0.14 (0.0061) 0.063 (0.061) 0.22 (0.09) 0.22 (0.09)
Tracers 0.033 (0.034) 0.17 (0.034) 0.14 (0.14) 0.31 (0.18) 0.31 (0.18)
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C. Cautionary remarks

There are several caveats to be borne in mind when using
our code.
First, at face value, the code can be used for any

beyond-ΛCDM cosmology provided that the structure of
perturbation theory kernels is not modified. This is the
case for the bulk of extended models explored by Planck
[1]. However, the numerical implementation choices made
in the code were not extensively tested for cosmological
models that are extremely different from the Planck
best-fitting cosmology. Some of our choices, i.e., the
frequency cuts in the wiggly-nonwiggly decomposition,
would have to be reconsidered if someone wants to
explore, say, a model with a large numbers of neutrino
species, e.g., Neff ¼ 42.
Second, many implementation choices in our code were

made to maximize precision on large scales k ≤ 1h=Mpc.
Our baseline realization of the nonlinear calculation must
not be used for k≳ 3h=Mpc. Therefore, our code is not
suitable for small-scale galaxy clustering or some lensing
calculations where a significant amount of signal comes
from the very nonlinear scales. One also has to be careful
about choices of kmax as a function of redshift, given that
the loop corrections are getting smaller which allows one to
go to smaller scales. The maximal wave number where our
code can be used to extract information from the matter
clustering corresponds to a scale where the loop expansion
blows up, i.e., the two-loop correction becomes comparable
to the tree-level prediction. Using the fit to the two-loop
power spectrum from Refs. [17,38], this scale can be
estimated as

kNLðzÞ ¼ 0.45½DðzÞ�− 4
3.3hMpc−1: ð5:2Þ

The use of nonlinear corrections computed with our code
is, strictly speaking, justified only for k < kNL. The
corresponding validity domain is shown in Fig. 8 as a
function of redshift.16

One obvious caveat is that our code does not include
relativistic corrections and wide-angle effects, and therefore
it should be used with care on very large scales.
Furthermore, it does not have corrections to the linear bias
due to the local primordial non-Gaussianities. All of these
corrections do not require nonlinear calculations and can be
easily added if necessary.
Finally, a software-related warning is in order. We have

found that the OpenBLAS library conflicts with the library
INTEL MKL that is used in NumPy version 1.16 and higher
on some machines. This incompatibility makes CLASSY

crash with “segmentation fault” even though the code can
be executed by a C call using an .ini file without any
errors. If this is the case on the user’s computer, an easy fix
is to use the NumPy versions lower than 1.16. We plan to
resolve this issue in future releases.

VI. APPLICATION TO THE BOSS DATA

In this section we illustrate an application of our code
to the analysis of the final BOSS data release [7]. To
that end, we interface CLASS-PT with the MCMC sampler
MONTEPYTHON v3.0 [6,12]. We will analyze a full-shape
likelihood built out of the publicly available BOSS data
and products that can be accessed,17 see Refs. [103,104]
for more detail. This likelihood was already used in
Refs. [13–15], where one can find all technical details.
We repeat it here just as an illustration.
As an aside, we would like to mention that the shape of

the galaxy power spectrum has been used for cosmological
parameter measurements since the dawn of galaxy surveys,
see e.g., [105–110]. This practice, however, has been
abandoned in the recent full-shape analyses that are based
on the methodology borrowed from the BAO measure-
ments [7,104,111]. These analyses infer distance informa-
tion by studying how the AP effect distorts some fixed-
shape power spectrum template. The fixed template method

PT breakdown
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FIG. 9. Left upper panel: the lensed TT CMB power spectrum
computed with perturbation theory (PT) and HALOFIT, normal-
ized to the linear theory prediction. Right upper panel: a similar
fraction for the CMB lensing potential power spectrum. Lower
panels: comparison between the nonlinear models for the lensing
potential power spectrum and the lensed CMB TT power
spectrum.

16Note that even if the two-loop corrections are not directly
included in the model, one can still use the one-loop perturbation
theory prediction evaluated by our code at high kmax provided that
the two-loop corrections are included in the theoretical error
covariance [17,38].

17https://fbeutler.github.io/hub/hub.html; https://github.com/
fbeutler/fbeutler.github.io/tree/master/hub.
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is also adopted in the measurement of rms velocity
fluctuation fσ8. This method has a number of limitations
which can compromise the cosmological analysis of future
high-precision data [13,17].18

An alternative to the fixed shape approach is to return to
the methodology of measuring the cosmological parame-
ters of a given model from the full power spectrum. This is
the standard method adopted in the analyses of the CMB
data [1]. An important advantage of this method is its
universality: it can be applied to any model including
beyond ΛCDM cosmologies. In this section, for illustration
purposes, we present the constraints obtained in this way
for the base ΛCDM model. It is straightforward to repeat
this analysis for more complicated beyond-ΛCDM models,
see e.g., [25] for the analysis within wCDM and [14,15] for
νΛCDM and νΛCDMþ Neff . We stress that the key
novelty of our analysis is the most advanced theoretical
model for the nonlinear power spectrum. In other aspects
our method closely follows the ones proposed and used
decades ago.
Our likelihood embodies the prereconstructed redshift-

space power spectra of BOSS galaxies across two non-
overlapping redshift bins, 0.2 < z < 0.5 and 0.5 < z <
0.75 from two patches of the sky (North Galactic Cap and
South Galactic Cap, NGC and SGC). We use the momen-
tum range ½0.01; 0.25�h=Mpc, which is stable with respect
to instrumental systematics and two-loop corrections,
omitted in our theory model. We fit the BOSS galaxy
power spectra assuming the base flat ΛCDMmodel. We fix
the tilt of the primordial power spectrum of scalar fluctua-
tions ns and the physical baryon density ωb to the Planck
2018 best-fit values [1],

ns ¼ 0.9649; ωb ¼ 0.02237: ð6:1Þ

The role of these priors and their impact on parameter
inference have been thoroughly investigated in Ref. [13].
Following Ref. [1] we approximate the neutrino sector with
only one massive eigenstate and fix its mass to the
lowest value allowed by the oscillation experiments,

mν ¼ 0.06 eV. This choice is made just for simplicity.
We believe that it is more appropriate to scan over this
unknown parameter, as it is done in Refs. [13–15].
Our MCMC chains sample the remaining cosmological

parameters of the minimal ΛCDM model: the physical
density of dark matter ωcdm, the Hubble constant H0 and
the amplitude of primordial scalar fluctuationsAs. We do not
assume any priors on these parameters. To be more precise,
we scan over A1=2

s normalized to the Planck best-fit value,

A1=2 ¼ norm≡
�

As

As;Planck

�
1=2

: ð6:2Þ

This choice allows us to scan overAs in the fast mode, which
leads to better convergence.19 We have run our analysis both
in the fast and default modes and obtained identical results.
As far as the nuisance parameters are concerned, we fit

them for each galaxy sample separately. We have seven
nuisance parameters in total: linear bias b1, quadratic bias
b2, tidal bias bG2

, shot noise Pshot and three counterterms
c0; c2; c̃. The cubic bias bΓ3

is set to zero. The detailed
description of these parameters can be found in Ref. [13].
We chose the following priors for bias parameters20:

b1A1=2 ∈ flatð1;4Þ; b2A1=2∼N ð0;1Þ;
bG2

A1=2∼N ð0;1Þ; Pshot∼N ð0.5;0.5Þ×104½h−1 Mpc�3;
ð6:4Þ

and the counterterms,

c0; c2 ∈ N ð0; 30Þ ½h−1 Mpc�2;
c̃ ∈ N ð500; 500Þ ½h−1 Mpc�4; ð6:5Þ

which are selected such that the corresponding shapes do
not exceed the linear theory spectra on the scales used for
the fit. Besides, the priors for the bias parameters are
motivated by the coevolution model and results of N-body
simulations. Alternatively, one could fix the priors on the

18First, it can lead to biased results. In ΛCDM the power
spectrum shape is fixed by ωb;ωcdm and ns, which are measured
very precisely from the CMB data. However, future surveys will
probe the shape parameters with precision comparable to that of
the CMB [17,112]. Fixing these parameters instead of margin-
alizing over them can result in bias and underestimation of errors.
Second, the power spectrum shape is dictated by the recombi-
nation physics, and hence the shape priors imply very strong
priors on the early universe. Third, the distances measured with
the fixed template method cannot be easily related to parameters
of particular models. Fourth, this method works only for the
cosmological models where the shape of the matter power
spectrum remains unaltered after recombination. Strictly speak-
ing, even the standard ΛCDM model with massive neutrinos
violates this assumption because the linear growth factor is scale
dependent [113].

19Modulo IR resummation, the nonlinear power spectra
depend on As through a simple rescaling,

PtreeðAsÞ ¼
As

As;ref
PtreeðAs;refÞ;

P1-loopðAsÞ ¼
�

As

As;ref

�
2

P1-loopðAs;refÞ: ð6:3Þ

Once IR resummation is taken into account; this rescaling is,
strictly speaking, not exact because As also controls the amplitude
of the BAO damping scale. However, variations of the damping
scale are analogous to a change of the separation scale kS, which
is a higher order effect. Thus, using the rescaling of As is accurate
up to two-loop contributions, which are omitted in our model
anyway.

20We use the notation N ðmean; standard deviationÞ for the
Gaussian prior.
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nuisance parameters using the method proposed in
Ref. [16]. We discuss our treatment of nuisance parameters,
including their priors and measurements in Appendix C.
All in all, the priors for nuisance parameters do not
significantly affect the constraints on cosmological param-
eters. All nuisance parameters and A1=2 were sampled in the
“fast” mode [114].
The results of our analysis21 are shown in Fig. 10 and in

Table II, where we separated the actually sampled param-
eters ðωcdm;H0; AsÞ from the derived ones ðΩm; σ8Þ. These

constraints agree well with the ones reported in Ref. [13],
although the priors used in our present analysis are slightly
different. Note that presented BOSS constraints should
always be taken in conjunction with the priors on ωb, ns
and mν made in our analysis. For comparison, we also show
the results of our analysis of the baseline Planck 2018
likelihood [116] for the same cosmological model.22

We publicly release our BOSS MONTEPYTHON likeli-
hoods in a separate repository.23 We warn the users that the

FIG. 10. The posterior distribution for ωcdm; H0; lnð1010AsÞ and derived parameters Ωm; σ8 inferred from the joint BOSS DR12 full-
shape likelihood. For comparison we also show the Planck 2018 posterior (red contours) for the same model (base flat ΛCDM). H0 is
quoted in units [km=s=Mpc].

21The plot and marginalized limits are produced with the
GETDIST package (available at https://getdist.readthedocs.io/en/
latest/) [115], which is part of the COSMOMC code [3,114].

22We stress that in our Planck analysis we also varied ns, ωb
(and the reionization depth τreio), which should be contrasted with
our BOSS analysis, where ns, ωb were fixed.

23https://github.com/Michalychforever/lss_montepython
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current joint likelihood is somewhat slow due to the
necessity to convolve the CLASS-PT output spectra with the
BOSS survey window function for each data chunk. We plan
on improving our BOSS likelihood in the future, e.g., by
using the Fourier-space window function along the lines of
Ref. [75] and the analytic covariance matrix of Ref. [117].

VII. CONCLUSIONS

In this paper we have presented a new open-source
extension of the Boltzmann solver CLASS that incorporates
one-loop perturbation theory calculations. This module,
called CLASS-PT, computes Fourier power spectra of matter
and biased tracers in real and redshift space. It embodies all
ingredients required for the application to data: IR resum-
mation to describe the nonlinear evolution of the BAO
wiggles and UV counterterms that capture the effects of
poorly known short-scale physics on large scales. These
effects include nonlinear bias, fingers-of-God, baryonic
feedback etc. We stress that the main advantage of
perturbation theory over other approaches is that it guar-
antees high precision on wave numbers smaller than the
nonlinear scale kNL ∼ 0.5h=Mpc. Many complicated phe-
nomena that operate on short scales drastically simplify in
the long-wavelength limit, where they can be consistently
and accurately taken into account.
The realization of the nonlinear perturbation theory

module directly inside the Boltzmann code CLASS has
many advantages. It is clearly structured, easy to modify,
and designed to avoid hard coding. Moreover, it can be
readily interfaced with other software, e.g., conventional
MCMC samplers such as MONTEPYTHON [6,12] or

COBAYA.24 The CLASS code is one of the standard tools
established in cosmology. By writing our module directly
as a part of CLASS we wanted to make the nonlinear
cosmological perturbation theory calculations more avail-
able to the broad community. Now all users familiar with
CLASS can easily perform these calculations.
The current execution time of CLASS-PT is fast enough to

make the Markov chain Monte Carlo analysis of redshift
space clustering data feasible. The code was already used
for these purposes in Refs. [13–17].
We are currently exploring various ways to improve

CLASS-PT. The first line of research is devoted to the
improvement of efficiency and accuracy of our calculation.
We believe that some implementation choices used in the
current version of CLASS-PT may not be optimal and will
definitely be revisited in the future.
The second line of research is aimed at incorporating

new nonlinear effects. In particular, the FFTLog algorithm
is convenient for the implementation of two-loop power
spectrum and one-loop bispectrum calculations [24].
Moreover, we plan to implement the observer-dependent
convolution integrals describing selection effects such as
intrinsic alignment of galaxies (see Ref. [118] and refer-
ences therein). Additionally, it is important to accurately
take into account corrections due to the scale-dependent
growth introduced, e.g., by massive neutrinos. We leave
these research directions for future work.

Our code and custom-built BOSS likelihoods are avail-
able at https://github.com/Michalychforever/CLASS-PT and
https://github.com/Michalychforever/lss_montepython.
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APPENDIX A: REDSHIFT-SPACE FFTLOG
MASTER INTEGRALS

In this Appendix we present explicit expressions for
the functions that appear in the integrals (4.5). The
coefficients of the integrals with one and two insertions
of loop momenta read

TABLE II. The results of our MCMC analysis for the joint
BOSS DR12 full-shape likelihood (left table). For comparison we
also show the results from the final Planck data release [1] (right
table) for the same cosmological model as used in our analysis
(base ΛCDMwith the fixed neutrino mass). H0 is quoted in units
[km=s=Mpc].

BOSS DR12 Best fit Mean �1σ

ωcdm 0.1169 0.1159þ0.0050
−0.0054

H0 67.91 67.98þ1.1
−1.1

lnð1010AsÞ 2.83 2.82þ0.13
−0.13

Ωm 0.3034 0.3006þ0.010
−0.010

σ8 0.716 0.710þ0.043
−0.043

Planck 2018 Best fit Mean �1σ

ωcdm 0.1204 0.1202þ0.0012
−0.0012

H0 67.29 67.28þ0.53
−0.55

lnð1010AsÞ 3.04 3.045þ0.014
−0.015

Ωm 0.3168 0.3166þ0.0075
−0.0075

σ8 0.8099 0.8117þ0.0057
−0.006

24https://github.com/CobayaSampler/cobaya
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A1ðν1; ν2Þ ¼
1

2
ðIðν1 − 1; ν2Þ − Iðν1; ν2 − 1Þ þ Iðν1; ν2ÞÞ;

A2ðν1; ν2Þ ¼ −
1

8
ðIðν1; ν2Þ þ Iðν1; ν2 − 2Þ þ Iðν1 − 2; ν2Þ − 2Iðν1; ν2 − 1Þ − 2Iðν1 − 1; ν2Þ − 2Iðν1 − 1; ν2 − 1ÞÞ;

B2ðν1; ν2Þ ¼ 3

�
Iðν1; ν2Þ þ Iðν1; ν2 − 2Þ þ Iðν1 − 2; ν2Þ þ

2

3
Iðν1; ν2 − 1Þ − 2Iðν1 − 1; ν2Þ − 2Iðν1 − 1; ν2 − 1Þ

�
: ðA1Þ

For the integrals with three insertions one finds

A3ðν1;ν2Þ ¼ −
3

16
ðIðν1;ν2Þ þ Iðν1 − 3;ν2Þ− 3Iðν1 − 2;ν2 − 1Þ− Iðν1 − 2;ν2Þ þ 3Iðν1 − 1;ν2 − 2Þ

− 2Iðν1 − 1;ν2 − 1Þ− Iðν1 − 1;ν2Þ− Iðν1;ν2 − 3Þ þ 3Iðν1;ν2 − 2Þ− 3Iðν1;ν2 − 1ÞÞ;

B3ðν1;ν2Þ ¼
1

16
ð5Iðν1 − 3;ν2Þ− 15Iðν1 − 2;ν2 − 1Þ þ 3Iðν1 − 2;ν2Þ þ 15Iðν1 − 1;ν2 − 2Þ

− 18Iðν1 − 1;ν2 − 1Þ þ 3Iðν1 − 1;ν2Þ− 5Iðν1;ν2 − 3Þ þ 15Iðν1;ν2 − 2Þ− 15Iðν1;ν2 − 1Þ þ 5Iðν1;ν2ÞÞ: ðA2Þ

Finally, the integrals with four insertions of the loop momentum yield

A4ðν1; ν2Þ ¼
3

128
ðIðν1 − 4; ν2Þ − 4Iðν1 − 3; ν2 − 1Þ − 4Iðν1 − 3; ν2Þ þ 6Iðν1 − 2; ν2 − 2Þ

þ 4Iðν1 − 2; ν2 − 1Þ þ 6Iðν1 − 2; ν2Þ − 4Iðν1 − 1; ν2 − 3Þ þ 4Iðν1 − 1; ν2 − 2Þ
þ 4Iðν1 − 1; ν2 − 1Þ − 4Iðν1 − 1; ν2Þ þ Iðν1; ν2 − 4Þ − 4Iðν1; ν2 − 3Þ
þ 6Iðν1; ν2 − 2Þ − 4Iðν1; ν2 − 1Þ þ Iðν1; ν2ÞÞ; ðA3Þ

B4ðν1; ν2Þ ¼ −
3

64
ð5Iðν1 − 4; ν2Þ − 20Iðν1 − 3; ν2 − 1Þ − 4Iðν1 − 3; ν2Þ

þ 30Iðν1 − 2; ν2 − 2Þ − 12Iðν1 − 2; ν2 − 1Þ − 2Iðν1 − 2; ν2Þ − 20Iðν1 − 1; ν2 − 3Þ
þ 36Iðν1 − 1; ν2 − 2Þ − 12Iðν1 − 1; ν2 − 1Þ − 4Iðν1 − 1; ν2Þ þ 5Iðν1; ν2 − 4Þ − 20Iðν1; ν2 − 3Þ
þ 30Iðν1; ν2 − 2Þ − 20Iðν1; ν2 − 1Þ þ 5Iðν1; ν2ÞÞ; ðA4Þ

C4ðν1; ν2Þ ¼
1

128
ð35Iðν1 − 4; ν2Þ − 140Iðν1 − 3; ν2 − 1Þ þ 20Iðν1 − 3; ν2Þ þ 210Iðν1 − 2; ν2 − 2Þ

− 180Iðν1 − 2; ν2 − 1Þ þ 18Iðν1 − 2; ν2Þ − 140Iðν1 − 1; ν2 − 3Þ þ 300Iðν1 − 1; ν2 − 2Þ
− 180Iðν1 − 1; ν2 − 1Þ þ 20Iðν1 − 1; ν2Þ þ 35Iðν1; ν2 − 4Þ − 140Iðν1; ν2 − 3Þ
þ 210Iðν1; ν2 − 2Þ − 140Iðν1; ν2 − 1Þ þ 35Iðν1; ν2ÞÞ: ðA5Þ

APPENDIX B: BRIEF INSTALLATION MANUAL

CLASS-PT is installed and configured in eight easy steps:
(1) Download the OpenBLAS library.25

(2) Extract the library in a folder and configure the
package by executing

$gmakeCC ¼ gccFC ¼ gfortran

in that folder.

(3) Install the package via

$makeinstallPREFIX¼path=to=OpenBLAS

(4) Download and unpack CLASS-PT.
(5) Change the path to Openblas in CLASS-PT/Make-

file to your actual path to the compiled library
path/to/OpenBLAS/lib/libopenblas.a

(6) Update the paths to path/to/OpenBLAS/lib/
libopenblas.a in the extra_link_args of
CLASS-PT/python/setup.py25http://www.openblas.net/
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(7) Compile CLASS-PT as usual by typing

$make clean

$make

(8) All set to run CLASS-PT and CLASSY.

APPENDIX C: TREATMENT OF NUISANCE
PARAMETERS

Let us first discuss our choice of priors for the nuisance
parameters. We assume a flat noninformative prior on
b1A1=2 ∈ ð1; 4Þ. Since the satellite fraction of the BOSS
galaxy sample is quite small, most of the galaxies are

TABLE III. The results of our MCMC analysis for the joint BOSS DR12 full-shape likelihood including all
nuisance parameters. We use the following units: [km=s=Mpc] for H0, ½Mpc=h�2 for c0, c2, ½Mpc=h�4 for c̃,
½Mpc=h�3 for Pshot. The upper group displays the cosmological parameters that are considered to be the same for all
data chunks.

Parameter Best fit Mean� σ 95% lower 95% upper

ωcdm 0.1169 0.1159þ0.0050
−0.0054 0.1061 0.1258

H0 67.91 67.98þ1.1
−1.1 65.81 70.18

A1=2 0.9499 0.9069þ0.058
−0.054 0.7931 1.016

Ωm 0.3034 0.3006þ0.010
−0.010 0.2812 0.3207

σ8 0.716 0.710þ0.043
−0.043 0.627 0.794

bð1Þ1 A1=2 1.949 1.958þ0.05
−0.048 1.86 2.056

bð1Þ2 A1=2 −1.722 −1.766þ0.62
−0.79 −3.145 −0.2932

bð1ÞG2
A1=2 −0.02759 −0.04753þ0.19

−0.22 −0.466 0.3902

10−1cð1Þ0
1.794 1.991þ2.3

−2.2 −2.438 6.494

10−1cð1Þ2
2.192 1.949þ2.2

−1.9 −2.216 5.992

10−3Pð1Þ
shot

3.308 3.344þ1.7
−1.8 −0.1072 6.83

10−3c̃ð1Þ 0.1775 0.1684þ0.086
−0.09 −0.008266 0.348

bð2Þ1 A1=2 2.015 2.024þ0.065
−0.06 1.897 2.148

bð2Þ2 A1=2 −0.5063 −0.7053þ0.83
−1 −2.475 1.179

bð2ÞG2
A1=2 0.05212 0.1852þ0.22

−0.24 −0.2893 0.6625

10−1cð2Þ0
1.284 1.081þ2.5

−2.4 −3.826 5.964

10−1cð2Þ2
4.206 2.711þ2.4

−2.1 −1.846 7.03

10−3Pð2Þ
shot

1.352 2.141þ1.9
−2 −1.707 6.119

10−3c̃ð2Þ 0.2429 0.2977þ0.12
−0.12 0.05633 0.5421

bð3Þ1
1.813 1.864þ0.049

−0.048 1.768 1.961

bð3Þ2
−1.985 −1.164þ0.61

−0.8 −2.488 0.2811

bð3ÞG2

−0.05043 −0.1177þ0.12
−0.14 −0.3899 0.1657

10−1cð3Þ0
−1.577 −0.3099þ2.1

−2.1 −4.457 3.89

10−1cð3Þ2
1.14 3.118þ2.2

−1.9 −1.019 7.129

10−3Pð3Þ
shot

1.927 0.7849þ2
−1.9 −3.205 4.718

10−3c̃ð3Þ 0.5257 0.5022þ0.13
−0.14 0.235 0.7746

bð4Þ1 A1=2 1.848 1.857þ0.065
−0.062 1.729 1.985

bð4Þ2 A1=2 −1.078 −1.301þ0.63
−0.9 −2.761 0.3134

bð4ÞG2
A1=2 0.232 0.2693þ0.18

−0.23 −0.1374 0.7091

10−1cð4Þ0
2.036 1.032þ2.5

−2.4 −3.908 5.88

10−1cð4Þ2
3.319 2.637þ2.6

−2.4 −2.412 7.552

10−3Pð4Þ
shot

3.849 3.467þ2.4
−2.4 −1.243 8.23

10−3c̃ð4Þ 0.1109 0.1476þ0.17
−0.17 −0.1991 0.4959
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centrals and hence they should trace the properties of the
host dark matter halos. The measurements of b2 and bG2

from N-body simulations [119] yield

b2 ≈ −0.6; bG2
≈ −0.3 for b1 ≈ 2: ðC1Þ

Note that the values for bG2
found in N-body simulations

are also consistent with the predictions of the coevolution

model [58]. On general grounds, the bias parameters are
expected to be Oð1Þ in the EFT, which motivates the priors
b2A1=2; bG2

A1=2 ∼N ð0; 1Þ. Note that we have inserted
A1=2 ≈ 1 in the definition of our sample parameters because
this choice leads to somewhat better convergence of the
MCMC chains.
As far as the higher-derivative counterterms c0 and c2 are

concerned, they are, in general, also expected to be

FIG. 11. The posterior distribution for ωcdm, H0, A1=2 ≡ ðAs=As;PlanckÞ1=2 and the high-z NGC nuisance parameters inferred from the
joint BOSS DR12 full-shape likelihood.
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c0; c2 ¼ Oð1Þ × k−2NL: ðC2Þ

The nonlinear scale in redshift space depends on the
velocity dispersion of the BOSS galaxies, which can be
quite large. Indeed, previous BOSS full-shape analyses
report σv ∼ 5 Mpc=h [104], which is several times larger
than the real-space estimate k−1NL ∼ 2 Mpc=h. It is important
to stress that the quoted measurement of σv from Ref. [104]
results from an application of a simplified fitting function,

and the actual velocity dispersion can be different if one is
using the full EFT model. Nevertheless, we adopt the
following priors for the counterterms that are wide enough
to accommodate a large velocity dispersion,

c0; c2 ∼N ð0; 30Þ ½Mpc=h�2: ðC3Þ

The prior for the next-to-leading order RSD counterterm
c̃ is more subtle. Naively, this contribution has the order of

FIG. 12. The posterior distribution for ωcdm, H0, A1=2 ≡ ðAs=As;PlanckÞ1=2 and the high-z SGC nuisance parameters inferred from the
joint BOSS DR12 full-shape likelihood.
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the two-loop correction and hence has not been originally
included in the one-loop EFT theory model [59,72].
However, due to strong fingers-of-God found in the
BOSS galaxy sample, the coefficient c̃ turned out to be
enhanced compared to the naive EFT estimates. Dedicated
analyses of the BOSS mock catalogs and the real data [13]
gave

c̃ ∼ σ4v ∼ ½5 Mpc=h�4 ∼ 500 ½Mpc=h�4: ðC4Þ

This motivated us to use the prior c̃ ∼N ð500;
500Þ ½Mpc=h�4.
Finally, as far as the constant shot noise contribution

Pshot is concerned, its true value is expected to deviate from
the Poissonian prediction n̄−1 due to exclusion effects [120]
and fiber collisions [121]. The latter are not possible to
predict from first principles and they are hard to model even
in mock catalogs [122]. Thus, we adopted a more practical
data-driven approach. We first find the best-fit values for

FIG. 13. The posterior distribution for ωcdm, H0, A1=2 ≡ ðAs=As;PlanckÞ1=2 and the low-z NGC sample nuisance parameters inferred
from the joint BOSS DR12 full-shape likelihood.
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Pshot from the data itself and then impose a large
conservative prior centered at this best-fit value. The
Poissonian part n̄−1 has already been subtracted from the
power spectrum estimator of our data. We found the
residual shot noise contribution best fits to be roughly

Pshot ∼ 5 × 103 ½Mpc=h�3; ðC5Þ

for all the data chunks studied in this paper. This motivated
us to impose the prior Pshot ∼N ð5; 5Þ × 103 ½Mpc=h�3.
This prior is wide enough to accommodate absolute
deviations from n̄−1 across all data samples, in particular,
in the high-z SGC sample, whose Poissonian shot noise is
quite large. Notice that the residual Pshot can, in principle,
be negative. This fact is reflected in our prior.
We present the optimal values of the nuisance parameters

found in our MCMC analysis in Table III and in Figs. 11

FIG. 14. The posterior distribution for ωcdm, H0, A1=2 ≡ ðAs=As;PlanckÞ1=2 and the low-z SGC sample nuisance parameters inferred
from the joint BOSS DR12 full-shape likelihood.
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(high-z NGC), 12 (high-z SGC), 13 (low-z NGC), and 14
(low-z SGC). We differentiate between nuisance parame-
ters for different BOSS data samples with the following
superscripts:

ð1Þ ¼ high-z NGC; ð2Þ ¼ high-z SGC;

ð3Þ ¼ low-z NGC; ð4Þ ¼ low-z SGC: ðC6Þ

We stress that these parameters are obtained from a joint fit,
i.e., the cosmological parameters are assumed to be the

same across all samples. One can see that the best-fit values
are in good agreement with the ones expected from the
BOSS galaxy sample. The measured values of c0, c2 and c̃
are indeed consistent with the estimate for the velocity
dispersion effects (C3) and (C4). Moreover, the best-fitting
values of b2 and bG2

agree with the values found in the
N-body simulations for the host halos similar to those of the
BOSS sample (C1). It would be interesting to further
investigate if these values are also compatible with biases
inferred from the bispectrum [123,124].
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