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A B S T R A C T

The popularity of social networks as primary mediums for sharing visual content has made it crucial for forensic
experts to identify the original platform of multimedia content. Various methods address this challenge, but
the constant emergence of new platforms and updates to existing ones often render forensic tools ineffective
shortly after release. This necessitates the regular updating of methods and models, which can be particularly
cumbersome for techniques based on neural networks which cannot quickly adapt to new classes without
sacrificing performance on previously learned ones – a phenomenon known as catastrophic forgetting. Recently,
researchers aimed at mitigating this problem via a family of techniques known as continual learning. In this
paper we study the applicability of continual learning techniques to the social network identification task
by evaluating two relevant forensic scenarios: Incremental Social Platform Classification, for handling newly
introduced social media platforms, and Incremental Social Version Classification, for addressing updated versions
of a set of existing social networks. We perform an extensive experimental evaluation of a variety of continual
learning approaches applied to these two scenarios. Experimental results demonstrate that, although Continual
Social Network Identification remains a difficult problem, catastrophic forgetting can be significantly mitigated
in both scenarios by retaining only a fraction of the image patches from past task training samples or by
employing previous tasks prototypes.
1. Introduction

Multimedia content such as images and videos have become one of
the primary means by which information is shared between Internet
users. Unfortunately, this also includes content used to perpetrate
crimes such as cyber bullying, incitement to hatred, and revenge porn.
As a result, determining the origin of multimedia content is of great
interest not only to law enforcement agencies but also to the general
public. As the number of images and videos stored in seized devices
can easily reach into the thousands, such analysis can often only be
performed by automatic tools. This problem has been addressed by
the multimedia forensics community through a number of techniques
capable of analyzing different aspects of content history. Among these,
discovering the social network from which content was downloaded has
become of great interest in the last few years [1]. Knowledge about the
social network of origin can then be used to guide further analyses,
which can ultimately lead to the complete reconstruction of content
history.

Unfortunately, the identification of social networks is a daunting
task due to their black box nature. Their inner workings are closely
guarded by parent companies who consider them proprietary informa-
tion and researchers are consequently forced to depend on hidden clues
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embedded in shared media that arise from the processing performed
by social platforms. The processing chain that multimedia content
undergoes ends with a compression algorithm to reduce file size as
much as possible while maintaining maximum visual quality [2]. When
a picture is taken, the vast majority of smartphones and cameras store
the resulting file in JPEG format. A similar procedure, which can also
include resizing, renaming, and editing all or part of the metadata [3],
occurs when content is shared on a social platform, resulting in a double
JPEG compression trace. Numerous studies propose methodologies for
Social Network Identification (SNI) that rely on factors such as JPEG
quantization tables, pixel resolution, and image metadata [4]. Some
researchers exploit the distribution of Discrete Cosine Transform (DCT)
coefficients [5–8] as well as Discrete Wavelet Transform coefficients
(DWT) [9]. Moreover, the distinctive fingerprint of Photo Response
Non-Uniformity (PRNU) noise [10], renowned for its camera ballis-
tics capabilities, has also been taken into account for image-based
SNI [11–13]. Researchers have also investigated the importance of the
container structure of multimedia content [14–17] to detect a specific
SN platform in the content history. Today, the task of social network
identification (single or multiple) is addressed predominantly through
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deep learning techniques based on Convolutional Neural Networks
(CNNs) [1,18], using all or a combination of the above-mentioned
fingerprints to exploit both spatial and meta information of the content
itself.

Despite the remarkable SNI results reported for existing CNN-based
methods, the task of keeping them current and effective poses a signif-
icant challenge due to the ever-changing nature of the social network
landscape. Indeed, as companies fiercely compete to attract new users
to their platforms, the software responsible for managing these net-
works undergoes constant updates to incorporate new features and
enhance existing ones. This, in turn, leads to modifications in the
traces left on shared content, consequently requiring the update of
previously trained models. Additionally, new economic players consis-
tently strive to enter the market by proposing new platforms, hoping
to address gaps in existing products and establish themselves in this
growing industry. As data-driven methods are usually designed to clas-
sify among a predetermined set of possibilities, incorporating additional
platforms inevitably requires training a new model. Because of the
phenomenon known as catastrophic forgetting, existing models cannot be
easily updated by solely finetuning them on new data; indeed, when a
CNN is initially trained on one task and subsequently trained on one
or more new tasks, it quickly loses its ability to perform the initial
task [19]. A naive solution to avoiding catastrophic forgetting, called
Joint Incremental Training, consists of jointly training the network on
the new data along with the old ones. The main problem with joint
training is that it is expensive to re-train the network with the entire
dataset each time new data become available. Furthermore, it may not
always be possible to retrieve data from previous tasks due to privacy
considerations or because they are simply no longer available.

Continual Learning (or Incremental Learning) approaches strive
to reduce catastrophic forgetting by making efficient use of limited
data from past tasks. In the context of multimedia forensics, a first
attempt at applying continual learning techniques (although not for
social network identification) was performed by Marra et al. [20]. This
work showcased the efficacy of iCaRL [21] in expanding the capabilities
of a network for GAN-generated image identification. Early work on
applying continual learning for SNI was done by Magistri et al. [22],
who introduced an effective convolutional architecture that was shown
to be extensible to new social platforms.

In this paper we extend the findings of Magistri et al. [22], whose
study focused on updating a model to accurately classify newly intro-
duced social media platforms. We denote this scenario as Incremental
Social Platform Classification (ISPC). Here we introduce a more challeng-
ing task in which we must update a model in order to accommodate
versions of the original set of social networks. This update entails not
only the ability to handle these new versions but also to differentiate
between them. We denote this scenario as Incremental Social Version
Classification (ISVC). We perform an extensive experimental evaluation
of the techniques used by Magistri et al. [22], as well as three new state-
of-the-art methods, on both scenarios. Additionally, we investigate how
the number of exemplars from past tasks affects the results of exemplar-
based techniques. Our experiments demonstrate that, by employing a
limited memory budget of image patches, existing continual learning
methods can approach Joint Incremental Training performance in both
ISPC and ISVC scenarios.

2. Continual learning

In this section we introduce the formulation of the Continual Learn-
ing problem and discuss works from the literature most related to our
83

contributions.
2.1. Continual learning scenarios

Typically, a Convolutional Neural Network model  designed for
classification consists of two key components: a feature extractor pa-
rameterized by 𝜃, which processes input 𝑥 ∈  and produces a
representation 𝑧 = 𝑓 (𝑥; 𝜃), and a classification head 𝑔(𝑧;𝑊 ), parameter-
ized by 𝑊 responsible for classifying the input into a set of predefined
categories.

In a continual learning scenario, the model  undergoes sequential
training on a collection of 𝑇 disjoint classification tasks, denoted as
 =

{

(𝑡,𝑡)
}𝑇
𝑡=1, where 𝐶𝑡 ∩ 𝐶𝑡′ = ∅ for 𝑡 ≠ 𝑡′. Each task 𝑡 consists

f a set of input samples 𝑡 and their associated labels 𝑡. For each
ncremental learning task 𝑡, the model is trained to accurately classify
he class 𝐶𝑡. This is accomplished by introducing a classification head
𝑡 dedicated to task 𝑡. The optimizer jointly trains the heads {𝑊 ′

𝑡 }
𝑡
𝑡′=1

nd feature extractor weights 𝜃 during this step. At the end of task 𝑇 ,
he network should be capable of classifying classes from all seen tasks
= 1,… , 𝑇 .

Continual learning seeks to mitigate catastrophic forgetting by in-
roducing a regularizer into the network training objective in order
o preserve performance on previous tasks. A general structure of a
raining loss for continual learning is:

𝑡 = 𝐿𝐶𝐸
𝑡 + 𝜆𝑟𝑒𝑔𝐿

𝑟𝑒𝑔
𝑡 (1)

where 𝐿𝐶𝐸
𝑡 is the cross entropy loss for task 𝑡, 𝐿reg

𝑡 is a regularization
loss aimed at reducing catastrophic forgetting, and 𝜆reg ∈ R is a hy-
perparameter balancing the two losses. In the next section we provide
an overview of continual learning methods and describe some common
regularization losses.

2.2. Related work

Continual learning methods can be roughly grouped into two macro-
categories: exemplar-free approaches [23–25] which do not store exem-
plars from past tasks and only add extra terms to the training loss to
incorporate knowledge from past tasks during the training of new ones,
and exemplar-based approaches [21,26,27], which rely on a small subset
of representative samples (exemplars) from previous tasks.

The main goal of exemplar-free methods is to reduce catastrophic
forgetting with the assumption that samples from previous task cannot
be stored due to privacy regulations or data security constraints. Ex-
amples of exemplar-free methods include Elastic Weight Consolidation
(EWC) [23] and Riemannian Walk (RWalk) [24] which define a weight
regularization term 𝐿reg

𝑡 based on the Fisher Information Matrix to pre-
vent network weights from drifting away from the previous task model
when learning new task classes. Learning without Forgetting (LwF),
instead, uses Knowledge Distillation [28] to discourage predictions
from drifting when learning new tasks [25].

Knowledge Distillation (KD) has been employed as a regularization
technique by many exemplar-based methods [21,26,27,29]. Moreover,
exemplar-based approaches place a significant emphasis on tackling
the challenge of imbalanced data between exemplars and current-task
data. The imbalance between the number of exemplars from past task
classes and number of training samples for current-task classes results
in a task-recency bias towards classifying images into classes of the
current task [30]. To mitigate this task-recency bias, methods such
as Bias Correction (BIC) [26] and Incremental Learning With Dual
Memory (IL2M) [27] rectify the network outputs. More recently, the
SS-IL [29] was proposed which employs a separated softmax output
layer in combination with task-wise knowledge distillation in order to
reduce task-recency bias. Techniques like Incremental Classifier and
Representation Learning (iCaRL) [21] avoid this bias by using a nearest-
mean rule in feature space for classification instead of relying on
classification heads trained with the cross-entropy loss.

The primary challenge faced by initial attempts at exemplar-free
methods lies in their inability to mitigate task-recency bias due to
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Fig. 1. The Incremental Social Platform Classification (ISPC) and Incremental Social
Version Classification (ISVC) scenarios. See Section 3 for details.

absence of exemplars. Recent advancements have introduced prototype
rehearsal as a method to leverage past-task deep features, enhancing
the final classifier output and thereby mitigating task-recency bias.
Prototypes, or class-means, are computed as the averages of feature
vectors for each class in previous tasks. The storage of these proto-
types aligns with the privacy requirements inherent in exemplar-free
methods. In FeTrIL [31] a fixed feature extractor was proposed and the
training is performed only on the last classifier using both previous task
prototypes and current task features. EFC [32] suggests using a Proto-
type Rehearsal Asymmetric Cross-entropy loss (PR-ACE) along with the
Empirical Feature Matrix (EFM) to selectively regularize feature space
drift and prevent catastrophic forgetting while maintaining enough
plasticity to still learn new tasks.

3. Continual SNI scenarios and model architecture

Given the perpetual state of change and evolution in the social
network landscape, we believe that the application of continual learn-
ing techniques can significantly enhance social network identification
systems. A notable advantage of Continual SNI methods is that they
eliminate the need for maintaining a continually expanding dataset
containing both old and new data. Such approaches would address con-
cerns related to efficiency and privacy, as managing massive datasets
is complicated and sensitive content need not be retained indefinitely.
Additionally, the capability to update a model by training it solely on
new data would offer significant time-efficiency advantages compared
to retraining the entire model from scratch, thus making the process of
building an updated model more cost-effective and energy-efficient.

3.1. Two scenarios for continual social network identification

To demonstrate these advantages, we envision two practical scenar-
ios arising from real-world social network identification tasks. In the
first scenario, which we call Incremental Social Platform Classification
(ISPC), we hypothesize the emergence of new social networks over
time. Since existing models could not have possibly been trained on
these new platforms, they are bound to misclassify content coming from
them, associating images with one of the pre-existing social networks.
In this case our goal is to update the model to make it capable of
classifying both the platforms on which it was originally trained on as
well as newly-introduced ones.

In the second scenario, which we call Incremental Social Version Clas-
sification (ISVC), we hypothesize the release of new versions of existing
social networks. These updates may significantly alter the processing
pipeline used to produce media content, leading to a drop in classifica-
tion accuracy for models trained on older datasets. We therefore have
the aim to update the network to make it correctly classify both media
content produced by older version of the available social platforms
and media content produced by the updated versions. Moreover, by
modifying the model to make it capable of classifying both the social
84
platform and its version, we could leverage this additional information
as a clue on the temporal origin of the content.

We give a pictorial representation of the two proposed scenarios
in Fig. 1. In the ISVC scenario the goal is to classify images according
to one of two possible social platforms (e.g. Instagram, Twitter) from
which they were downloaded, and we assume that those platforms
undergo updates over time to incorporate new features. In this case,
the first task involves classifying images from the original versions of
the social networks. The second task entails classifying images from the
first update of those platforms, and so on for subsequent tasks. For ISPC,
on the other hand, we assume that completely new social platforms are
introduced over time. In this case, the primary task involves classifying
images from an initial set of social platforms (e.g. Instagram, Twitter).
The second task then entails classifying images from the new platforms
(e.g. Viber, WhatsApp), and each subsequent task then involves han-
dling an additional set of social networks. In both scenarios, our goal
is to update a classifier to handle subsequent tasks while still retaining
its ability to classify the previous ones.

3.2. Model architecture

We use the SNI architecture first presented in the study conducted
by Magistri et al. [22], which is depicted for completeness in Fig. 2.
The dual-branch network is inspired by the one proposed by Amerini
et al. [13]. Due to the fixed-sized input requirement of the neural
network, images are divided into non-overlapping patches of 256 × 256
pixels. This partitioning allows for inclusion of images with different
resolutions, eliminating the need for resizing operations which can
introduce artifacts caused by the subsampling algorithm and inadver-
tently erase the subtle cues left by the social network.

Instead of using image patches directly, we first perform a prepro-
cessing step to produce as input to the network two complementary
representations of the image signal. In the first representation, each
patch 𝑥 is split in non-overlapping 8 × 8 pixel blocks aligned with the
JPEG grid. The first 9 quantized AC DCT components of each block are
then used to build 9 histograms representing values between −50 and
50, which are then concatenated in a feature vector ℎ. For the second
representation, the original patch 𝑥 is transformed into a residual
image 𝑥̂ by means of a high-pass filter which discards DCT coefficients
corresponding to the lowest 1250 frequencies. The rationale for this is
that recompression traces are usually left in medium frequencies, so
the two strategies respectively enhance low/medium or medium/high
frequencies.

The DCT histogram representation is processed by the Histogram
Branch, a classical feed-forward neural network composed of three
ReLU layers (of 512, 256, and 256 neurons) interleaved with two
dropout layers. The high-pass patch representation is processed by
the Convolutional Branch, a ResNet-18 [33] backbone which has been
shown to be a good convolutional backbone for multiple tasks. Rep-
resentations learned by the two branches are then concatenated and
fused using a single ReLU layer with 512 neurons, producing a feature
vector 𝑧. Finally, 𝑧 is fed into several classification heads, each cor-
responding to a different task in continual SNI scenarios, to generate
output probabilities.

4. Experimental setup and training procedure

In this section we describe the experimental protocol, our proposed
dataset splits, and the implementation we use for our experiments on
continual SNI.
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Fig. 2. Model architecture for Continual SNI [22]. The network consists of two parallel branches: the top branch is a multilayer perceptron taking as input the histograms of
quantized DCT coefficients, and the lower branch is a ReNet-18 backbone taking as input an image after high-pass filtering. The two representations are fused via concatenation
before the classification heads. See Section 3.2 for details.
Table 1
Smartphone Images and Social Update dataset statistics.

Dataset #Classes Split #Patches #Images #Devices

Smartphone Images 14
Train 462k 17k 13
Valid 92k 2k 2
Test 131k 5k 4

Social Update 4/15
Train 574k 26k 52
Valid 78k 3k 7
Test 138k 6k 13

4.1. Datasets

To assess the effectiveness of continual learning approaches in ISPC
and ISVC scenarios, we require datasets characterized by a substantial
number of classes for task partitioning. In the ISPC scenario, we use the
Smartphone Images (SI) dataset [34]. This dataset consists of a va-
riety of indoor and outdoor images captured by multiple smartphones.
Similarly to Magistri et al. [22], we consider 14 social networks split
into 4 tasks. Specifically, we allocated five social networks for the first
task and three for each of the remaining three tasks. We do not use a
fixed class order for the tasks, but we use different random seeds for
each run in order to reduce the bias induced by the choice of class
ordering [30].

For the ISVC scenario, we collected a dataset, called Social Update
(SU), which contains different versions of four major social platforms:
Facebook, Instagram, Twitter, WhatsApp. The SU dataset was created
by gathering images from multiple datasets including SI, IPLAB [4]
and FODB [35]. These datasets consist of both indoor and outdoor
scenes, captured using smartphones and cameras, and shared on social
media. Moreover, we incorporate SocialNews [36], a dataset consisting
of images shared by news organizations and influencers on social
networks. From this last dataset we only have images from Facebook,
Instagram, and Twitter since WhatsApp was not available. As a result,
the dataset it characterized by 4 social network platforms and a total of
15 versions. We adopted a specific task division where each task focuses
on a particular social network version, corresponding to a specific
dataset. The tasks are ordered based on the chronological sequence
of their publication date. The first task is based on the SI dataset
(containing data released in 2015), followed by the IPLAB dataset
(2016), the FODB dataset (2021), and finally the SocialNews dataset
(2023). As a result, the first three tasks consist of four social networks
each, while the last task only includes three. We use the SU dataset
for two distinct objectives. The first is to assess the capability of an
incrementally trained network to accurately classify a social network
after an update, which entails a 4-class classification problem. The
second objective entails evaluating the performance of the network in
terms of social version classification, which is a 15-class classification
problem.

To ensure a fair evaluation and eliminate any biases stemming from
the acquisition device, we divided the SI and SU dataset into three
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separate sets (training, validation, and test). These sets were carefully
constructed to ensure there is no overlap in the devices used. In Table 1
we report the overall statistics of the two datasets.

4.2. Task agnostic performance metric

In the context of continual learning, where multiple tasks 𝑡 = 1,… , 𝑇
are sequentially trained, we require a metric quantifying the perfor-
mance deterioration caused by catastrophic forgetting across these
tasks. The average accuracy 𝐴𝑇 on the seen tasks up to the last task
𝑇 is a common metric to assess the overall performance:

𝐴𝑇 = 1
𝑇

𝑇
∑

𝑖=1
𝑎𝑖,𝑇 (2)

where 𝑎𝑖,𝑇 is the accuracy obtained on task 𝑖 after learning task 𝑇 . We
measure this metric for both patches and images in Task Agnostic (TAG)
setting, assuming that task identifier is not known at inference time. As
outlined in the preliminary version of this work [22], this scenario is
more challenging and realistic for performance evaluation in continual
SNI, if compared to Task Aware (TAW) setting where the task identifier
is given.

4.3. Training and test settings

We ran all experiments using FACIL [30], a continual learning
framework for PyTorch. We used the default hyperparameters of FACIL
for all tested approaches, except for EWC where we use 𝜆𝑟𝑒𝑔 = 500
to give less weight to the regularizer, and for LwF and BIC where we
set the KD temperature [28] to 𝑇 = 1. See the FACIL paper for more
details on the hyperparameters of these approaches [30]. In addition
we implemented three recent approaches (SS-IL [29], FeTrIL [31],
EFC [32]) that were not available in FACIL. For these methods, we used
the hyper-parameters provided by the authors. All experiments were
run five times initializing the weights with different random seeds and,
for the ISPC scenario, randomizing class order.

For each task, we trained our model from scratch (i.e. we did not use
a pretrained ResNet-18 for the convolutional branch) using Adam [37]
with an initial learning rate of 10−3 which was decayed when the
validation loss on the current task did not improve for 20 epochs.
Training was stopped when the learning rate reached 10−6 or when
200 epochs were reached. For each epoch, we randomly sampled one
crop per image in order to reduce the training time. All patches were
evaluated during the validation and test phases.1

Moreover, all the evaluated continual learning approaches except
iCaRL compute the global decision by averaging the softmax outputs for
patches. For iCaRL, after training each task, the feature vectors belong-
ing to every patch class are extracted and their mean is computed. At
inference time, test patches are classified according to the nearest class
mean, while images are classified according to the minimum average
distance of their patches to the class mean.

1 Code is available at https://github.com/simomagi/continual_SNI.

https://github.com/simomagi/continual_SNI
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Table 2
Comparison on Smartphone Images with the state-of-the-art. The proposed architecture obtains a higher accuracy both on patch- and image-level
classification problems. At the same time, our network is smaller (with respect to the number of parameters) compared to the model proposed
for SNI in [13].

Method Patch accuracy ↑ Image Accuracy ↑ # Parameters ↓

Avg softmax Majority vote

Amerini et al. [13] 63.1 (±1.2) 72.9 (±1.6) 71.7 (±1.4) 73.3 M
Proposed architecture 64.6 (±1.2) 75.4 (±0.6) 74.7 (±0.8) 12.2 M
e
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d
a

Table 3
Performance comparison on Smartphone Images using only the convolutional branch
after preprocessing with different filters.

Image pre-processing Accuracy ↑

Patch Image

No filter 38.1 (±6.0) 48.3 (±7.5)
Mihcak Filter [38] 49.7 (±2.8) 62.6 (±3.7)
Ours (DCT High-pass filter) 55.1 (±2.9) 67.9 (±3.2)

5. Experimental results and discussion

In this section we discuss the effectiveness of the proposed architec-
ture on both standard and two continual learning scenarios (ISPC and
ISVC). For each continual scenario, the lower-bound (LB) baseline for
comparison is Finetuning which simply consists of training the network
on the new task data, while the upper bound (UB) is Joint Incremental
training which consists of re-training the network on new task data
along with all data from previous tasks.

For exemplar-based methods we used a fixed-size memory  with a
capacity of 𝐾, containing randomly sampled image patches. We chose
to save only patches and not entire high resolution images for two
reasons. Firstly, since the patches have a fixed size of 256 × 256, they
incur a lower memory burden. Secondly, saving only patches can be
useful for applications where the full image content cannot be saved
due to privacy concerns. After each new task, we use a rebalancing pro-
cedure for the patches stored in . We randomly discard patches from
previous tasks to ensure a uniform distribution of exemplar patches per
class. By ensuring this uniform distribution, we maintain a constant
overall memory dimension 𝐾.

5.1. The effectiveness of the SNI architecture

To validate the effectiveness of our architecture, we trained it
on all 14 Smartphone Image classes and compared results with the
method of Amerini et al. [13]. We present image-level performance
using both patch majority voting (as in [13]) and averaged patch
softmax predictions. Our model outperforms theirs in both image and
patch classification (see Table 2), demonstrating superior accuracy with
reduced complexity.

We also evaluated different image preprocessing filters for the
convolutional branch, comparing non-filtered images, those filtered
using [38] (as in [13]), and our proposed high-pass filter. Results (see
Table 3) highlight the performance improvement achieved through im-
age filtering, with our DCT-based method yielding improved accuracy
for the convolutional branch.

5.2. Incremental social platform classification (ISPC)

In Table 4 we report performance in average accuracy after the
last task. We compare both exemplar-free and exemplar-based methods
as originally reported in [22]. In addition, three new methods are
evaluated, FeTrIL and EFC which are exemplar-free and SS-IL which
uses exemplars. We also provide results for exemplar-based extensions
of EWC, LwF, and RWalk in which a small number of training samples
for each task are retained as exemplars and replayed when training on a
86
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new one. Most exemplar-free techniques fail to achieve satisfactory per-
formance, demonstrating only modest improvement over Finetuning.
Only two approaches (EFC and FeTrIL) are capable of significantly in-
creasing accuracy with respect to the lower bound. This outcome comes
from the incorporation of prototypes, which are reintroduced during
training to strike a balance between the previous and current task
classifiers, effectively alleviating task-recency bias. In the exemplar-
based setting, by incorporating 𝐾 = 500 exemplars, iCaRL and BIC are
the top performing methods reducing the performance gap with Joint
Incremental by half. Note that the relatively high standard deviations
are due to the random ordering of classes, as certain social networks
exhibit similar characteristics.

5.3. Incremental social version classification (ISVC)

In Tables 5 and 6 we report performance for both exemplar-free
and exemplar-based methods on the ISVC scenario for 15 and 4 classes
respectively. In the 15-class setting, each social network platform ver-
sion is treated as a separate class. In the 4-class setting, on the other
hand, examples are only labeled with the originating social platform
without considering the specific version. We emphasize that we did
not train separate models for the 4-class case. Instead, we obtained the
results by performing a posteriori remapping of the network outputs and
disregarding any information pertaining to the version. As expected,
predicting the social network version along its type (ISVC-15 classes)
is a significantly more challenging setting. Indeed, most methods show
a drop of more than 20 points in TAG accuracy with respect to ISVC-4
classes.

Moreover, we highlight that in the ISVC scenario the two prototype-
based exemplar-free methods (FeTrIL and EFC) manage to achieve
superior results when compared to exemplar-based approaches (with
memory size 𝐾 = 500). This outcome underscores the efficacy of
prototypes as a viable solution when it is not possible to store exem-
plars from previous tasks. Notably, EFC emerges as the top-performing
method, reducing the performance gap in image classification with
Joint Incremental by approximately 14%.

5.4. Closing the gap with joint-training

In this section we investigate the impact of memory size 𝐾 on
xemplar-based approaches and compare performance with FeTril and
FC, which are exemplar-free but achieved competitive results in the
SVC scenario. Moreover, we examine how far current continual learn-
ng solutions are from joint incremental training (UB). In Fig. 3, we
ive the performance of all approaches in all the SNI scenarios for 𝐾
anging from 100 to 2000.

Difference in results between ISPC 14-class and ISVC 15-class sce-
arios is to be expected. Indeed, while the number of classes is com-
arable in both scenarios, there is a key distinction. In the first case,
ach class represents an entirely different social network, whereas in
he second case multiple classes represent different versions of the same
latform. Moreover, while ISPC 14-classes only accounts for a single
ataset with fairly homogeneous data, ISVC 15-classes uses a mix of
our different datasets acquired using multiple devices and following
ifferent protocols. iCaRL and BIC consistently outperform the other
pproaches in all the considered scenarios. SS-IL obtains competitive

erformance in ISVC scenario, while it obtains poor results for the
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Table 4
Incremental Social Platform Classification (ISPC) on 14 classes in Average TAG accuracy on patches and images after the last task with and
without exemplars (𝐾 = 500 when using exemplars). We give the results of FeTrIL, EFC, and SS-IL alongside the accuracies initially reported by
Magistri et al. [22]. We highlight the best-performing methods, both exemplar-free and exemplar-based, in bold and underline the second-best
approaches.

Method Accuracy ↑ 14 classes
w/o exemplars

Accuracy ↑ 14 classes
w/ exemplars

Patch Image Patch Image

Finetuning (LB) 23.3 (± 6.4) 22.5 (± 3.3) 49.0 (± 5.2) 52.1 (± 7.8)

EWC [23] 27.3 (± 2.1) 25.3 (± 2.2) 53.3 (± 5.2) 56.0 (± 7.0)
LwF [25] 26.0 (± 6.7) 25.6 (± 7.3) 48.8 (± 5.9) 51.1 (± 8.0)
RWalk [24] 28.2 (± 8.4) 25.8 (± 7.5) 51.3 (± 5.4) 53.9 (± 7.4)
FeTrIL [31] 36.4 (± 3.4) 40.3 (± 5.8) – –
EFC [32] 39.4 (± 3.7) 46.6 (± 6.0) – –

BIC [26] – – 56.4 (± 6.1) 63.3 (± 3.6)
iCaRL [21] – – 54.7 (± 5.8) 62.5 (± 3.1)
IL2M [27] – – 49.4 (± 1.8) 52.0 (± 1.8)
SS-IL [29] – – 46.4 (± 8.3) 52.4 (± 5.2)

Joint Incremental (UB) 67.7 (± 4.8) 73.0 (± 4.2) 67.7 (± 4.8) 73.0 (± 4.2)
Table 5
Incremental Social Version Classification (ISVC) on 15 classes in TAG accuracy on patches and images after the last task with and without
exemplars (𝐾 = 500 when using exemplars). We highlight the best-performing methods, both exemplar-free and exemplar-based, in bold and
underline the second-best approaches.

Method Accuracy ↑ 15 classes
w/o exemplars

Accuracy ↑ 15 classes
w/ exemplars

Patch Image Patch Image

Finetuning (LB) 14.2 (± 3.7) 12.0 (± 3.9) 27.0 (± 1.5) 28.4 (± 2.7)

EWC [23] 20.1 (± 4.2) 14.4 (± 3.7) 22.3 (± 1.5) 25.8 (± 2.9)
LwF [25] 19.5 (± 0.4) 11.2 (± 0.5) 29.4 (± 2.2) 31.9 (± 3.1)
RWalk [24] 18.6 (± 1.5) 12.7 (± 1.6) 24.4 (± 4.6) 26.0 (± 3.2)
FeTrIL [31] 41.0 (± 0.6) 45.5 (± 0.7) – –
EFC [32] 48.5 (± 2.1) 51.9 (± 0.7) – –

BIC [26] – – 40.9 (± 3.5) 44.3 (± 3.5)
iCaRL [21] – – 40.9 (± 2.9) 50.7 (± 2.3)
IL2M [27] – – 24.2 (± 4.4) 27.3 (± 4.4)
SS-IL [29] – – 45.6 (± 1.3) 47.9 (± 2.0)

Joint Incremental (UB) 63.3 (± 1.5) 66.3 (± 0.9) 63.3 (± 1.5) 66.3 (± 0.9)
Table 6
Incremental Social Version Classification (ISVC) on 4 classes in average TAG accuracy on patches and images after the last task with and
without exemplars (𝐾 = 500 when using exemplars). We highlight the best-performing methods, both exemplar-free and exemplar-based, in
bold and underline the second-best approaches.

Method Accuracy ↑ 4 classes
w/o exemplars

Accuracy ↑ 4 classes
w/ exemplars

Patch Image Patch Image

Finetuning (LB) 39.6 (± 7.0) 43.0 (± 6.1) 53.4 (± 1.2) 57.4 (± 1.2)

EWC [23] 41.5 (± 8.4) 45.6 (± 10.1) 47.2 (± 2.1) 53.5 (± 2.6)
LwF [25] 39.3 (± 0.1) 45.2 (± 0.2) 56.3 (± 1.9) 61.3 (± 2.6)
RWalk [24] 35.3 (± 3.1) 37.2 (± 3.4) 49.7 (± 5.0) 54.3 (± 3.9)
FeTrIL [31] 69.3 (± 0.6) 72.9 (± 0.6) – –
EFC [32] 71.4 (± 0.4) 73.7 (± 0.8) – –

BIC [26] – – 70.4 (± 1.8) 72.2 (± 1.5)
iCaRL [21] – – 63.3 (± 1.1) 67.1 (± 1.0)
IL2M [27] – – 49.5 (± 6.8) 55.2 (± 5.6)
SS-IL [29] – – 66.5 (± 1.2) 67.6 (± 1.6)

Joint Incremental (UB) 85.9 (± 0.8) 87.8 (± 0.5) 85.9 (± 0.8) 87.8 (± 0.5)
ISPC scenario. Our conjecture is that this outcome can be attributed
to the task-wise knowledge distillation of SS-IL, which could potentially
necessitate a greater number of exemplar samples for effective learning
in this context.

Results show that exemplar-based approaches are capable of reach-
ing performance comparable to that of Joint Incremental in both the
ISPC 14-class scenario and ISVC 15-class scenario while retaining only a
fraction of the examples (see Tables 4 and 5). However, there is a larger
performance gap observed in the ISVC 4-class scenario compared to the
other scenarios. EFC and FeTrIL perform worse than exemplar-based
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approaches when the memory size increases, however they still achieve
competitive performance in the ISVC 4-class scenario. Finally, it is
worth noting that iCaRL performs exceptionally well when the memory
is limited to storing only 𝐾 = 100 image patches. This highlights the
effectiveness of iCaRL even with a significantly reduced memory size.

6. Conclusions

In this paper, we extended the work of Magistri et al. [22] on the
advantages of applying continual learning approaches to the task of
social network identification. We considered two practical situations

where updating an existing model would be valuable: Incremental
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Fig. 3. Image average accuracy as a function of memory size in the ISPC and ISVC scenarios.
Social Platform Classification, which involves accommodating newly
introduced platforms, and Incremental Social Version Classification,
which entails handling updated versions of existing social networks. To
evaluate the effectiveness of incremental updating, we conducted ex-
tensive experiments with exemplar-free and exemplar-based continual
learning methods to incrementally update a state-of-the-art network.
Remarkably, exemplar-free methods based on prototypes provide a
viable solution when saving previous tasks exemplars is not feasible, for
instance due to privacy concerns. Exemplars-based approaches achieve
the largest improvement over finetuning in all considered scenarios by
retaining only a fraction of the original training patches. Even though
continual learning methods are not yet able to reach the performance
obtained by Joint Incremental Training, the reported results shows that
recent techniques are rapidly closing the gap with the upper bound.
This extensive evaluation serves as an initial benchmark, providing a
foundation for researchers to further explore continual social network
identification in their studies.

As future work, exemplar-based methods could be further improved
by employing a patch selection strategy based on the distribution of
DCT coefficients. Moreover, considering the large gap between joint
incremental and continual learning approaches in the ISVC scenario,
we hypothesize that there exist features shared across different tasks
that are not currently taken into account by exemplar-based methods.
To address this, future research efforts could concentrate on expand-
ing continual learning approaches to identify and incorporate these
inter-task features.
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