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Abstract
Machine Learning algorithms that perform classification are increasingly been adopted in Information and Communication 
Technology (ICT) systems and infrastructures due to their capability to profile their expected behavior and detect anomalies 
due to ongoing errors or intrusions. Deploying a classifier for a given system requires conducting comparison and sensitivity 
analyses that are time-consuming, require domain expertise, and may even not achieve satisfactory classification performance, 
resulting in a waste of money and time for practitioners and stakeholders. This paper predicts the expected performance of 
classifiers without needing to select, craft, exercise, or compare them, requiring minimal expertise and machinery. Should 
classification performance be predicted worse than expectations, the users could focus on improving data quality and 
monitoring systems instead of wasting time in exercising classifiers, saving key time and money. The prediction strategy 
uses scores of feature rankers, which are processed by regressors to predict metrics such as Matthews Correlation Coefficient 
(MCC) and Area Under ROC-Curve (AUC) for quantifying classification performance. We validate our prediction strategy 
through a massive experimental analysis using up to 12 feature rankers that process features from 23 public datasets, creating 
additional variants in the process and exercising supervised and unsupervised classifiers. Our findings show that it is possible 
to predict the value of performance metrics for supervised or unsupervised classifiers with a mean average error (MAE) of 
residuals lower than 0.1 for many classification tasks. The predictors are publicly available in a Python library whose usage 
is straightforward and does not require domain-specific skill or expertise.
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1   Introduction

Nowadays the paradigm of Cyber-Physical Systems (CPSs) 
[27] guides the definition and design of ICT hardware-soft-
ware systems whose functionalities are partially controlled 
or monitored by computer-based sub-systems and/or human 
beings. Examples include but are not limited to, Auto-Pilot 
Avionics, Autonomous Driving, Smart Manufacturing, 
Medical Support Systems, Industrial Control Systems, and 
Environmental Monitoring [25, 56, 65],Saied, Guirguis and 

Madbouly, 2024). Noticeably, many of those CPSs (systems 
from now on) might be intended to deliver critical func-
tionalities, whose malfunction may lead to fatalities, severe 
injuries, or major damages to the environment: as a result, 
they must be conceptualized, designed, and implemented 
to ensure that appropriate safety and/or security require-
ments are met [7, 87]. These critical systems need to embed 
error, intrusion, and anomaly detectors that can accurately 
and promptly detect the manifestation of faults or attacks 
(i.e., anomalies) before subsequent cascading effects could 
significantly damage the encompassing system. Detectors 
process tabular data points containing values of specific 
indicators monitored from the target system (e.g., resource 
usage, active threads, application-specific indicators): once 
anomalies are detected, they trigger reaction strategies that 
break the fault-error-failure chain and ultimately block the 
system from failing uncontrollably [7].

 * Tommaso Zoppi 
 tommaso.zoppi@unifi.it

 Andrea Ceccarelli 
 andrea.ceccarelli@unifi.it

 Andrea Bondavalli 
 bondavalli@unifi.it

1 Department of Mathematics and Informatics, University 
of Florence, Viale Morgagni 65, 50142 Florence, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-024-00264-9&domain=pdf
http://orcid.org/0000-0001-9820-6047


 T. Zoppi et al.

1.1  Anomaly‑Based Classifiers

From a general standpoint, anomaly-based classifiers 
(classifiers from now on) (Chandola, Banerjee and Kumar, 
2009)“identify patterns that do not conform to a well-
defined notion of normal behavior”. During training, those 
classifiers learn a model that allows them to output either 
a positive or a negative class depending on feature values. 
Later, the classifier uses this model to label novel data points 
either as negative or positive i.e., corresponding to a normal 
state of the system, or hinting to ongoing errors, attacks, 
or performance anomalies in general. Their classification 
performance is typically expressed using metrics [45] that 
combine correct classifications—True Positives (TPs) and 
Negatives (TNs) – which represent the desired outcome, 
and misclassifications as False Positives (FPs) and False 
Negatives (FNs), to be minimized. The classification 
problem may include many classes, of which one represents 
a normal behavior, and others represent different types of 
anomalous behaviors. In this case, classifiers should be able 
to distinguish between normal behavior and each specific 
class of anomaly: these are referred to as multi-class 
classifiers e.g., intrusion detectors that aim at identifying 
attacks but also ad distinguishing between different 
categories of attacks. With multi-class classification 
problems, evaluation metrics have to be adapted to suit the 
dimensionality of the problem [17].

Different classifiers may achieve different classification 
performance when dealing with the same task in a specific 
system. Supervised classifiers [19, 30, 52] were proven to 
achieve excellent detection performance in many domains: 
they learn their model using data points collected i) during 
normal operation of the system, ii) when errors, attacks or 
failures activate, and labelled accordingly. ML algorithms 
that rely on Decision Trees or tree ensembles (Random 
Forests, eXtreme Gradient Boosting) were traditionally used 
for classifying tabular data as they build accurate models, 
require limited training and test time, and can be explained 
fairly easily [32, 60]. Alternatively, unsupervised classifiers 
[29, 57, 96] do not require labelled data for training; thus, 
they are applicable whenever labels are not available, too 
expensive to derive, or when dealing with evolving systems 
or unknown threats [73, 94].

1.2  Engineering Classifiers

Building and deploying a classifier for a given system 
requires many steps [6] which include, but are not limited 
to feature selection, feature engineering [12], classifier 
selection, analyses of hyper-parameters through grid, 
random or gradient-descend searches, and comparison 
of metric scores achieved by different classifiers. In the 

vast majority of cases, the classification performance of 
classifiers strictly depends on the number and/or the quality 
of monitored system indicators, which constitute the baseline 
to create features for training classifiers [83].

Unfortunately, it may happen that even that best classifier 
does not achieve satisfactory classification performance for 
the problem at hand, ending up having no practical use. 
When this happens, the only available option is to rework 
the monitoring system or the feature engineering process, 
providing classifiers with different—and more informative—
features before starting the selection process from scratch 
again. From an engineering or stakeholder standpoint, 
this event is highly detrimental: the time, resources, and 
expertise that was devoted to creating such a classifier at 
the first stage is wasted and represents an economic loss 
for the company that was willing to deploy the classifier in 
their application.

1.3  Motivation

It would be very helpful to know in advance if features 
– or the monitoring system—are “good enough” to model 
classifiers with satisfactory classification performance. 
This would open the possibility of assessing the quality of 
input data for learning a classification model that applies 
to supervised or unsupervised, binary, or multi-class 
classification tasks in any domain in which tabular data 
is involved. Ideally, this process should be completely 
decoupled from the classifier that will be selected at a later 
stage, and it should provide fast (i.e., negligible overhead) 
feedback to be used in the early stages of the data analysis 
task. To accomplish that, the classification performance 
prediction strategy should primarily rely on data that is 
already available through traditional data analysis, pre-
processing, and feature engineering techniques. Conversely, 
implementing the strategy could require researchers or 
practitioners to commit a major time and resource overhead 
which may be deemed unfeasible.

With the prediction at hand, the researcher or the 
practitioner should decide to invest time in building the 
classifier only if the predicted classification performance 
is satisfactory. Conversely, engineering efforts should be 
redirected to improving the quality or number of features 
that—at the current state – do not allow for building 
adequate classifiers.

1.4  Technical Contribution

This paper introduces a strategy to predict the expected 
classification performance of a task on a given system or 
dataset. Our prediction strategy quantifies the goodness of 
available features by exercising feature rankers, feeding 
their results to a regressor that predicts the numeric 
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value of a classification metric. The regressor is an ML 
algorithm that outputs a continuous numeric label instead 
of a categorical label (as classifiers do). The output of 
the regressor constitutes an easy-to-interpret prediction 
of the classification performance that can be expected 
from classifiers trained using a specific dataset. For the 
sake of brevity, we could not report experimental results 
in predicting all metrics available in the literature. We 
show that it is possible to predict values of classification 
metrics of Area Under ROC Curve (AUC) and Matthews 
Correlation Coefficient (MCC) with minimal error and in 
a few minutes at most, even when dealing with datasets 
containing hundreds of thousands of data points and many 
features. Our experimental evaluation mainly focuses on 
typical applications of anomaly-based classifiers such as 
intrusion detection, error detection, and hardware failure 
prediction, but is tested also on datasets belonging to 
different domains. The classifiers used therein are those 
that are typically recommended when dealing with tabular 
data: the supervised tree-based ensembles as Random 
Forests, ExtraTrees and boosting algorithms as XGBoost 
and LogitBoost, and unsupervised classifiers suggested in 
[29, 94], namely G-Means, HBOS, Self-Organizing Maps, 
Isolation Forests, ODIN, SDO and FastABOD. Experiments 
have been executed using the FRAPPE (Feature RAnkers to 
Predict classification PerformancE of classifiers) framework, 
which is available as an open-source library on GitHub 
(Anonymous, no date) and as PyPI package, and includes all 
scripts needed to reproduce our results. Our main technical 
findings of the paper, which are discussed throughout the 
paper, are as follows.

• The prediction strategy applies to any classification 
problem and can quantify any existing classification 
metrics:

• Outputs of feature rankers can be used to predict the 
classification performance of supervised or unsupervised 
classifiers with low prediction error in a given dataset, 
conversely to existing similar studies.

• Our prediction strategy can be integrated into existing 
data analysis processes requiring little to no modifications 
to the existing analysis flow and quantifies the prediction 
in a few minutes at most.

• The FRAPPE public Python library provides a user-
friendly and easy-to-use interface, requiring minimal 
expertise to use the findings of the paper as the library 
hides all the implementation details.

• The prediction strategy that is available in FRAPPE 
can be applied to tabular datasets from any domain, 
predicting the performance of unsupervised binary 
classifiers and supervised binary and multi-class 
classifiers with a mean average error (MAE) of residuals 

lower than 0.1 for metrics as MCC and AUC many 
classification tasks.

1.5  Paper Structure

The remainder of the paper is structured as follows. 
Section 2 reports terminology, basics, and literature related 
to classifiers and feature rankers, while Sect. 3 motivates 
the usefulness of our strategy to predict classification 
performance, and lists related works. Section 4 presents 
our prediction strategy, which is evaluated according to 
the experimental methodology in Sect. 5 and discussed in 
Sect. 6. Section 7 presents the application of the prediction 
strategy to many case studies, letting Sect. 8 conclude the 
paper and debate the limitations of this work.

2  Background and Related Works

We provide an overview of supervised and unsupervised 
classifiers for anomaly detection in tabular data. Then, 
we review techniques for feature ranking and selection 
and finally summarize metrics to quantify classification 
performance.

2.1  Anomaly‑Based Error and Intrusion Detection

Dependability is generally referred to as “the ability to 
avoid service failures that are more frequent or severe than 
is acceptable” [7]. Attaining dependability requires—but 
is not limited to—a prompt detection of the observable 
manifestations of faults or attacks, which should trigger 
reaction strategies to avoid uncontrolled system failures. 
Error [44, 57, 95] and intrusion [38, 66, 67] detectors are 
classifiers that aim at detecting all the manifestations of 
faults (error detection) or attacks (intrusion detection). They 
seek to distinguish between normal behavior and one or 
more anomalous categories of anomalous behaviors due to 
manifestations of errors or intrusions. These manifestations 
usually occur as behavioral anomalies, which are observable 
when looking at specific performance indicators. Detectors 
may occasionally fail, either by triggering unnecessary alerts 
(False Positives, FPs), or when they miss the detection of an 
ongoing fault or attack (False Negatives, FNs). Usually, error 
and intrusion detectors primarily focus on reducing FNs, 
which may have a direct detrimental impact on a system. 
On the other hand, a very suspicious detector that has very 
low FNs at the price of increasing FPs will likely raise many 
false alarms, being of no practical use. Crafting error and 
intrusion detectors that output a satisfactorily low amount 
of FPs and FNs is not trivial, and heavily depends on two 
key tasks: i) precise monitoring of the target system, and ii) 
a suitable data analysis strategy.



 T. Zoppi et al.

2.2   Monitoring and Tabular Datasets

Over the years, research and practice have devised different 
ways to install monitoring probes into a system. Those 
probes aim at retrieving the value of several performance 
indicators of the target system at a given instant, averaged 
over a time frame, or signaled when specific events occur. 
The results of monitoring activities constitute a structured 
tabular data baseline. Different performance indicators, or 
system features, can be targeted depending on the specific 
task, ranging from hardware or low-level [65], system-level 
[62], environment [25], or application-level monitoring 
[28]. Noticeably, features should describe the behavior of 
the system without being affected by the specific setup of 
an experimental campaign. As a specific case, IP Addresses 
should be disregarded when training intrusion detectors, 
since we can hardly assume to know the IP address of the 
attacker(s).

The resulting tabular dataset has specific properties 
compared to other tabular datasets. Particularly, features 
can hardly be considered independent as they describe 
different viewpoints of the same system or different areas 
of the same system. This may become a problem whenever 
applying classifiers that are known to perform well 
under the assumption of (linear) independence amongst 
features. Moreover, anomaly-based error and intrusion 
detection datasets for critical systems are usually collected 
by exercising a monitoring system over a quite stretched 
timespan: thus, they will have many data points but not as 
many features, which hardly exceed hundreds. Monitoring 
thousands of features every time may be possible, but it will 
critically slow down the execution of the regular tasks of 
the system, which should not be negatively impacted by 
monitoring and logging activities.

2.3  Classification of Tabular Data

A tabular dataset can be provided to ML algorithms, which 
will use it to learn how to classify normal against anomalous 
system behavior, and ultimately detect errors or intrusions 
through binary or multi-class classification. More formally, 
a classifier clf first devises a mathematical model from a 
training dataset [13], which contains a given amount of data 
points. Each data point dp contains a set of f feature values, 
where each feature value is a floating point number dpj with 
0 ≤ j < f and describes a specific input of the classification 
problem. Once the model is learned, it can be used to predict 
the dp_prob probabilities of the data point belonging to each 
class of the problem, of which the class with the highest 
probability is assigned as dp_label of the new data point, 
different from those in the training dataset. The classification 
performance is usually computed by applying clf to data 
points in a test dataset and computing metrics such as 

accuracy [45], i.e., the percentage of correct predictions of 
a classifier clf overall predictions.

The vast majority of ML algorithms that have been used 
for decades to tackle classification tasks are supervised 
classifiers (Le, Patterson and White, 2018; [30, 46, 47]). 
Those classifiers require training data for which the label 
(also called class) is known. Depending on the way they 
learn their model, supervised classifiers are usually 
partitioned into tree-based classifiers (mostly Decision Trees 
to build ensembles such as Random Forests [16],Geurts, 
Ernst and Wehenkel, 2006) or XGBoost [19]), statistical 
techniques [39], distance-based learners [48], or neural 
networks (DNNs, (Le, Patterson and White, 2018; Souza 
et al., 2024)). DNNs are supervised classifiers that contain 
multiple hidden layers (deep networks) to learn different 
features with multiple levels of abstraction (LeCun, 
Bengio and Hinton, 2015). Those classifiers learn complex 
representations of features during training, creating a neural 
network composed of multiple layers that build upon such 
increasingly informative features. This guarantees excellent 
performance when classifying unstructured data such as 
images, streaming data, or object detection. However, many 
studies argue about their performance in classifying tabular 
data. For instance, Intel advocates [79] that XGBoost shows 
better classification performance than DNNs when dealing 
with tabular data. This is confirmed by [32], where authors 
justify the supremacy of tree-based classifiers against deep 
learners when processing tabular data stating that they adapt 
well to specific features of tabular data: irregular patterns 
in the target function, uninformative features, and non-
rotationally-invariant data where linear combinations of 
features misrepresent the information. Conversely, authors 
of [5] present a DNN that is optimized for tabular data 
and outperforms tree-based classifiers in some datasets. 
Similarly, the authors of Neural Oblivious Decision 
Ensembles (Popov, Morozov and Babenko, 2020) claim 
that their method is the first successful example of DNN 
that substantially outperforms gradient-boosting classifiers 
on tabular data. FastAI [35] can efficiently classify tabular 
data thanks to a custom pre-processing of features, which 
are treated differently whenever they describe categories or 
continuous numerical values.

Instead, unsupervised classifiers [29, 57] do not require 
any prior knowledge of the labels. This makes them suitable 
[94] for the detection of known and unknown errors, 
anomalies, and attacks, but only for binary classification 
problems where there is a majority class (i.e., normal data) 
and a minority class (i.e., anomalies). Over the years, many 
unsupervised algorithms have been proposed, studied, and 
compared to derive similarities or differences, identifying 
families of classifiers as clustering, density-based, angle-
based, statistical, and neural networks.
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2.4  Features and Feature Ranking

The baseline upon which classifiers learn how to label a 
data point is the features, which are defined as “individual 
measurable properties or characteristics of a phenomenon 
being observed” [13]. Each data point contains values for 
each feature engineered from monitored system indicators. 
Additional attributes, called meta-features, can be further 
extracted from the corresponding dataset during the process 
[70]. Not all features carry the same information content, 
whereas some of them may just represent noise. This aspect 
is usually quantified thanks to Feature Rankers or Selec-
tors [40]: given a set F of features, a feature ranker fr is a 
function value_f = fr(f), f ∈ F, value_f ∈ [0, 1].

The resulting value_f is a number that allows for a relative 
ordering of features from the most to the least relevant, 
allowing the selection of those that contribute the most to 
predict the correct label (i.e., feature selection). Typically, 
value_f is a ℝ number, but can be easily normalized in a 
[0, 1] range where 0 means “no information” and 1 means 
“maximum information”.

There are many options [40] for ranking and selecting 
features: embedded feature rankers depend on the classifier 
to be used at a later stage, whereas filter-based and wrapper-
based feature rankers assign relevance scores to features 
without being specific to any classifier. Our study aims to 
predict the classification performance achievable with a 
dataset, independently of the classifier to be used afterward. 
As such, we will employ filter and wrapper-based feature 
rankers, disregarding embedded feature rankers that will 
unavoidably tie our prediction strategy to a specific classifier.

2.5  Filter‑Based Ranking

Many strategies can rank features according to statistical 
filters. Statistical filter-based rankers have a common 
structure: they aim at computing a correlation between 
the feature values and the label to be predicted. As such, 
statistical rankers do not account for interactions between 
features but only account for statistical correlation or 
similarity between individual features and the label. 
Examples include but are not limited to Chi-Squared 
correlation [20], R-Squared correlation [55], Pearson 
correlation [88], ANalysis Of VAriance (ANOVA) rank [64], 
Spearman rank [89], Cosine Similarity [86], Information 
Gain [91].

2.6  Relief‑Based Ranking

In addition to statistical rankers, another important family 
of filter-based rankers stems from the Relief [84] algorithm. 
This strategy for feature selection was developed thirty 

years ago to quantify feature relevance in a dataset using 
the difference in feature values between similar data points. 
The bigger the observed difference in a pair of data points 
with the same class, the lower the feature rank; alternatively, 
observing a small difference in feature values in similar data 
points makes the feature rank grow. The data deluge we 
witnessed in recent years combined with the polynomial time 
complexity required to compute Relief made this approach 
obsolete at least in its original formulation. Nowadays, 
Relief is computed on a small subset of the original dataset, 
and often according to variants such as Spatially Uniform 
RelieF (SURF [31]), MultiSURF [84], or TUned RelieF 
(TURF) which slightly speed up the whole feature ranking 
and selection process.

2.7  Wrapper‑Based Ranking

Wrapper rankers demand the ranking workload from an 
external classifier. Feature values and labels are used to 
make the external classifier learn a model: the relevance 
each feature had in building that model is then used as 
feature rank. Wrapper-based rankers are usually more 
computationally expensive than filter-based counterparts 
(especially the statistic ones) as they require training a 
classifier. Any classifier can be used to build a wrapper-
based feature ranker: commonly used rankers wrap either 
Random Forests [16] or Linear Regressors [23],Behera et al., 
2023). Depending on the characteristics of the classification 
problem e.g., linear vs non-linear, the analyst may prefer 
going one way or another or wrapping yet another classifier 
for ranking.

2.8  Metrics to Evaluate Classification Performance

The detection performance of binary classifiers is primarily 
evaluated through a confusion matrix, thus calculating 
TP, TN, FP, and FN. Those four items can be aggregated 
into a wide variety of compound metrics [45] as False 
Positive Rate (FPR), Precision (P), Recall (R), F-Measure 
(F1-Score, or F1), F2-Score (F2), Matthews Coefficient 
(MCC), Accuracy (ACC), Area Under ROC Curve (AUC), 
which are widely adopted when calculating classification 
performance of binary classifiers. Out of all the available 
metrics, it is acknowledged [21] that Accuracy should not 
be used to evaluate classifiers when datasets are unbalanced, 
or rather when there are many normal data points and only a 
few anomalies. For example, a classifier that always answers 
“normal” will result in 99% accuracy when testing a dataset 
where 99% of data points are normal: this does not reflect 
how “good” such a classifier is. Conversely, MCC equals 0 
in this situation, quantifying the classification performance 
of this “silly” classifier as random guessing. Furthermore, 
some compound metrics do not account for all 4 classes of 



 T. Zoppi et al.

the confusion matrix. For example, F-Measure and all the 
F-Scores do not use TN to compute their score, leaving an 
important group of predictions out of the picture.

This is even more important when looking at multi-class 
classification, which has many classes that may be more or 
less likely depending on the problem. In addition to MCC, 
multi-class classifiers are often evaluated through balanced 
accuracy [17], which weights scores related to each class 
with its posterior distribution, making for an overall fair 
evaluation metric, or using the Area Under the ROC curve 
(AUC).

2.9  Quantifying Task Complexity

Previous studies conjectured that when data points 
have different labels but feature values that are not 
distinguishable, the task becomes very complex and prone 
to misclassifications. This was quantified [34, 49, 58] 
using c-measures, which were first formulated by Ho and 
Basu [34]as follows.

• Measures of overlaps in the feature values from different 
classes. They measure how features separate examples 
of different classes. Measures include the maximum 
Fisher’s discriminant ratio  (F1), the overlap of the per-
class bounding boxes  (F2), the maximum (individual) 
feature efficiency  (F3), the directional-vector maximum 
Fisher’s discriminant ratio  (F1v), and the collective 
feature efficiency  (F4).

• Measures of class separability. They estimate to what 
extent the classes are separable by examining the class 
boundary. This translates into the minimized sum of the 
error distance of a linear classifier  (L1), the training error 
of a linear classifier  (L2), the fraction of points on the 
class boundary  (N1), the ratio of average intra/inter class 

nearest neighbor distance  (N2), and the leave-1-out error 
rate of the 1-nearest neighbor  (N3).

• Measures of geometry, topology, and density of 
manifolds. They provide an indirect characterization of 
class separability as nonlinearity of i) a linear classifier 
 (L3) and ii) one-nearest neighbor classifier  (N4), the 
fraction of maximum covering spheres  (T1), and average 
points per dimension  (T2).

C-measures are very useful in determining if and how 
class boundaries are well-separated, and thus they can be 
used to select features [49]. However, they cannot be used 
straightforwardly to predict classification performance. This 
was motivated in [58], where authors attempted to identify 
correlations of c-measures against Accuracy and Area Under 
ROC curve (AUC) that resulted from the application of 4 
classifiers on different microarray datasets. They conclude 
that c-measures and resulting accuracy/AUC values are only 
loosely coupled and cannot be used to precisely estimate 
metric values.

There are indeed a couple of works that quantify the 
complexity of a dataset using means other than c-measures. 
In [50], authors propose complexity descriptors to explain 
the geometrical distributions of classes in the feature space 
and the advantages of adopting artificial data sets synthesized 
according to the distribution of classes. Instead, the work 
[61] shows how the classification error of ensembles of 
k-NN classifiers is linked to the complexity of a dataset, 
refining the  N2 and  N3 c-measures. Unfortunately, neither 
[61] nor [50] draft strategies to predict the classification 
performance of classifiers or hint at mechanisms to use those 
complexity measures for means other than comparing the 
structure of different datasets.
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Overall, there is a strong need to investigate different 
approaches to predict classification performance and 
quantify metric values to be achieved by classifiers.

3   A Workflow for Predicting Classification 
Performance

3.1  The Process for Deploying Classifiers

The process of developing a classifier for conducting a spe-
cific task in a given system typically follows a workflow 
composed of different steps [6]. Figure 1a shows a workflow 
that stems from research papers but also adds information 
about the timing required to complete each step alongside 
the expertise required by the system designer. The workflow 
is composed of 4 main steps we summarize below.

System Monitoring. The design and development of 
learning-based systems usually starts with the acquisition 
of a representative dataset. This has to be obtained by the 
stakeholder – system owner – by monitoring the target 
system during normal operations over a period of time, 
collecting performance indicators such as resource usage, 
system-level or application-level activity. When planning 
monitoring activities, the stakeholder and the data analyst, 
or domain expert, should carefully choose the relevant areas, 
software, hardware or interfaces to monitor, to maximise 
the information content that is being gathered by monitors 
during operation. Often, the system gets stress tested while 
being monitored, to log how performance indicators react to 
anomalies: this provides information that will be extremely 
useful when training classifiers. The monitoring strategy is 
usually set up by the stakeholder (who owns the system and 
most likely already monitors some key components of the 
system) alongside the domain expert (e.g., ML expert, data 
analyst). Both are also responsible for labelling monitored 
data in case labels will be needed for training classifiers.

Feature / Data Engineering. Collected data needs to be 
structured, pre-processed, and normalized whenever needed. 
This step is critical as most of the datasets had multiple 
data points with missing or mistyped values, or even some 
observations using different units of measure within the 
same feature. The pre-processing activity also aims at 
removing those features that are constant, do not carry 
information content (e.g., duplicate features with different 
names, or features that are a simple linear combination of 
existing features), and removing duplicate label columns, 
which may negatively affect the overall analysis. Textual or 
categorical features – if any—are analysed individually to 
understand if they should be discarded (e.g., the ID/Code of a 
device), or transformed using strategies as one-hot encoding 
or entity embedding [71]. This process could also create 
further meta-features to be provided to classifiers alongside 

existing features coming from monitoring activities i.e., each 
monitored performance indicator provides at least a feature 
for detection. r

Performance Evaluation and Comparison. According 
to the “free lunch theorem”, there exists no universal 
learning algorithm that outperforms all other approaches 
in general [85]. As such, it is vital to compare as many 
classifiers as possible and choose the one that shows the best 
performance on a specific test set. In this step, the domain 
expert has to conduct massive work for selecting classifiers, 
discovering optimal values for hyper-parameters, training, 
testing, and comparing the metric scores they achieve.

Deploy Decision. The results of the previous steps 
are used to decide if the system will benefit from the 
introduction of the classifier or if the process needs to be 
reworked to be useful in practice. The potential improvement 
in performance is quantified by the domain expert, which 
sends their proposal to the stakeholder, who, in turn, knows 
the requirements that shall be met per applicable standards 
and deploys the final decision. For example, standards such 
as the IEC61508 [11, 80] define that the probability of 
failure on demand (Braband, Vom Hövel and Schäbe, 2009) 
of some components should not exceed a given threshold. 
Should the classifier fail (e.g., false positives, false negatives, 
or misclassifications in general) too frequently, we may need 
to rework (left of Fig. 1) the whole process that involves all 
the previous steps of the workflow, potentially needing to 
start again from scratch.

3.2  On Predicting Classification Performance

Failing to deploy a classifier due to poor classification 
performance has a detrimental impact on the whole system 
engineering process. In this case, both the stakeholder and 
the domain expert have wasted a lot of time, resources, and 
thus money to craft a classifier that never had the potential 
to be deployed in a real system. It would have been better to 
suspect such a decision in advance: this way, the stakeholder 
and the domain expert may have been focusing more on 
monitoring relevant features or on a more sophisticated 
feature engineering process rather than wasting time in 
performance evaluation and comparisons, which is the most 
demanding step of the whole workflow in Fig. 1a.

Figure 1b shows how a strategy to predict classification 
performance could interact with the typical workflow. This 
prediction strategy necessarily needs to be fast to execute 
and should quantify the performance of classifiers that 
will be trained using data obtained from monitoring the 
system and after the feature engineering step. Performance 
Evaluations and Comparisons will be conducted only if the 
prediction satisfies the requirements set by the stakeholder, 
or by standards applicable in the domain. Otherwise, the 
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stakeholder and the domain expert will focus on improving 
data rather than exercising classifiers, saving key time.

4  Feature Rankers to Predict Classification 
Performance

In this section, we present and formalize our strategy to 
predict classification performance.

4.1  Formal Definition of the Prediction Strategy

We provide a more detailed description of the prediction 
strategy below. We define:

• F, a set containing k dataset features and their values for 
each of the data points in the dataset,

• FR = {FRi, 1 ≤ i ≤ n}. a set of n feature rankers,
• met. the classification metric to be predicted for a dataset,
• type ϵ {multi, sup-bin, uns-bin}, the type of classifier 

(either supervised or unsupervised, binary of multi-class) 
we want for a given task.

F, FR, met, and type are inputs to the prediction of the 
classification performance and are shown on the left of 
Fig. 2a. From top to bottom in the same figure, we observe 
the following.

Each feature ranker FRi calculates the rank for each of the 
k features in F. This creates a k-tuple ri as follows.

(1)
ri = FRi(F) =

{

value_f = FRi(f ), f ∈ F
}

, 1 ≤ i ≤ n,
with|

|

ri|| = |F| = k

Having n feature rankers FR, a total of n k-tuples are 
produced as in Eq. (1). However, our prediction strategy 
should apply to any tabular dataset: thus, we need to find 
a way to normalize feature rankings into a set of m items 
regardless of the amount k of features contained in the 
dataset. In any other case, there will be no way to have a 
unique predictor of a metric value for any tabular dataset, 
as the number of rankings assigned by feature rankers 
will vary a lot. In other words, we need one or more 
normalization steps NORM = {NORMz, 1 ≤ z ≤ ns}, where 
each normalization step NORMz reworks each ri into a 
normalized score  NSiz ∈ ℝ as in Eq. (2).

This normalization step has to be planned carefully to 
avoid loss of information compared to using feature ranks 
ri as they are provided by feature rankers. First, we take 
rankings ri and sort them from the most relevant to the least 
relevant rank. Sorted ranks can then be aggregated into a 
wide variety of normalized scores: examples include, but are 
not limited to: best rank, average of the best 3/5/10 ranks, 
and sum of all ranks. The union of normalized scores  NSiz 
for each i and z builds Feature Data

FD will constitute the input to a regressor Reg_met@type 
that will output a continuous number

which quantifies the predicted value of the metric met for 
classifiers for a classification problem of a given type. Many 
regressors can be crafted depending on the met and type in 

(2)
NSiz = NORMz

(
ri
)
= NORMz

(
FRi(F)

)
, 1 ≤ i ≤ n, 1 ≤ z ≤ ns

(3)FD =
{
NSiz, 1 ≤ i ≤ n, 1 ≤ z ≤ ns

}
, |FD| = n ⋅ ns

(5)pred_met@type = Reg_met@type(FD)
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Fig. 2  Detail of our strategy to predict classification performance. On 
the left (Fig. 2a) we depict an high-level view of the strategy, while 
on the right(Fig. 2b) we show two examples using datasets with dif-

ferent structure and different problem (binary and multi-class classifi-
cation), targeting MCC as metric to predict
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Eq. (4), building the REG set of regressors. Details on the 
regressors and their instantiation are in the next section.

Let us clarify this formal definition through the examples 
in Fig. 2b. The figure shows the flow of data from the 
beginning to the end of the prediction strategy using two 
datasets: one with 3 features and 2 class labels, another 
with 4 features and 3 class labels. In both cases, features 
are processed by two generic feature rankers FR1 and FR2, 
thus n = 2. Each delivers its rankings for each dataset feature: 
thus, the rankers will deliver 3 values each for the first 
dataset on the left of Fig. 2b, and 4 values each for the other 
dataset. Now, we employ two normalization steps  NORM1 
“best ranking” and  NORM2 “sum of all rankings”, ns = 2. 
Regardless of the number of dataset features,  NORM1 and 
 NORM2 will output a single value for each feature ranker, 
creating a FD of n*ns = 2*2 = 4 items for both datasets. 
Then, we have to choose the regressor that knows how to 
predict a specific metric for a specific task. Here, we target 
the MCC metric and want to predict the metric value for 
supervised classifiers: these will be binary classifiers for 
the first dataset, which has two classes (normal, anomaly), 
and multi-class for the other dataset, which has 3 classes 
(normal, attack1, attack2).

4.2  Regressors to Predict Classification 
Performance

Regression is defined as [23] “a set of statistical processes 
for estimating the relationships between an outcome 
variable and one or more independent variables” (i.e., 
features). Typically, regression models (regressors) are 
implemented as supervised ML algorithms (Behera et al., 
2023) that predict a numeric ordinal label rather than a class. 
This perfectly fits the prediction of metric values, which are 
always expressed as a numeric value, usually in the range 
[0; 1].

Our study aims at predicting the value of a given metric 
met that will be achieved by the best classifier to perform 
a given dataset or system: this is the classifier that will be 
deployed if requirements are met. Therefore, we expect 
regressors to predict an estimation of the value achieved 
by the best classifier for a given task and a metric met. 
Training regressors require a dataset composed of the FD 
for many datasets and the associated metric value that has 
to be computed and works as the ground truth. This requires 
running several ML algorithms, computing metric values, 
and comparing them to choose the one that achieved the best 
value of a given metric in each dataset. Whereas this process 
is tedious, time-consuming, and requires domain-specific 
expertise, it is required only for generating training data: 
once the regressors are trained, they only need Feature Data 
(classifier-agnostic) to predict classification performance for 
any tabular dataset.

4.3  Observations

We conclude this formal definition by pointing out the 
following observations.

• The size of FD does not depend on the number k of 
features contained in F thanks to the normalization 
step. Instead, FD always contains n*ns values to be 
provided to the regressors, with n being the number 
of feature rankers and ns the number of normalization 
steps. Once trained, regressors can be applied to datasets 
with different amounts of features without requiring any 
additional tuning.

• The outputs of a regressor for a given task are 
independent of the classifier to be used at a later stage 
and represent the highest expected metric value for a 
given problem. This simulates the deployment of the 
best classifier out of a set of candidate classifiers that are 
exercised and compared according to metric values.

• Feature selection and ranking is of utmost importance in 
any feature / data engineering process and are computed 
by design in many data analysis processes. The prediction 
strategy partially exploits this existing information, 
minimizing its overhead compared to the usual analysis 
process.

5  Experimental Campaign

This section describes the experimental campaign to craft 
our strategy to predict classification performance, paving the 
way for discussions in the next section. The section develops 
as follows:

• Sect.  5.1 describes the datasets we used in our 
experimental study, and details our process for creating 
variants of such datasets for the purpose of data 
augmentation.

• Sect. 5.2 and Sect. 5.3 describe how we implemented 
the feature ranking FR and normalization steps NORM 
to generate Feature Data.

• Sects.  5.4 to Sect.  5.6 elaborate on how we trained 
regressors REG to predict classification performance. 
Section 5.4 and Sect. 5.5 show how to generate labels 
for training the ML algorithms we use as regressors we 
list in Sect. 5.6.

• Finally, Sect. 5.7 describes the methodology to conduct 
experiments, and the machinery we used to implement it.
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5.1  Error, Attack and Failure Datasets

There are a wide variety of data to be classified to improve 
ICT systems, ranging from devices data in Internet-of-
Things (IoT) or Industrial Control Systems (ICS), network 
data for intrusion detection, or hardware monitoring data. 
Amongst those many alternatives, we consider 23 datasets as 
data baseline for this study: 11 datasets of network intrusion 
detection, 5 datasets related to hardware monitoring for 
failure prediction, and 6 datasets related to error and anomaly 
detection in IoT and ICS systems. Table 1 summarizes the 
datasets involved in this study, reporting domain, name, year, 
number of data points, number of features, and categories 
of anomalies, errors or attacks. All datasets are labelled, 
in CSV format, and were cropped to 200 000 items for the 
feasibility of our study.

Importantly, datasets always have a “normal” class 
and at least another class. This allows conducting binary 
classification even in datasets with multiple labels: in this 
case, the label is converted into a binary label separating the 
normal against all other classes (seen as a unique “anomaly” 
class).

5.1.1  Network Intrusion Detection (NIDS)

We selected labelled datasets on network intrusions looking 
in surveys [69], Kaggle, UCI, Zenodo, IEEEDataport and 
other online portals. Our selection process resulted in the 
following datasets: ADFANet [68], AndMal17 [41], BAIoT 
Doorbell [54], CICIDS17 [33], CICIDS18 [33], CIDDS 
(Sharafaldin, Habibi Lashkari and Ghorbani, 2018), IoT 
Network (Kang et al., 2019), ISCX12 [78], NSLKDD [82], 
UGR16 [51], UNSW-NB15 [59]. All those datasets report 
normal data points and data points collected while the 
system is under attack. Features are mostly numeric features 
extracted by monitoring network flows and packets (e.g., 
bytes received per second, number of packets).

5.1.2  Hardware Failure Prediction

Classifiers may also spot anomalies that could potentially 
anticipate the failure of hardware components. To include 
that, we gathered datasets related to performance monitoring 
of hard disks that label each data point as corresponding 
to failure if the monitored hard drive was in a fail state or 
going to fail thereafter. BackBlaze [8] makes many years of 
hard drive data available to the public, reporting labeled data 
related to many SMART indicators of hard drives, while 

Table 1  Name, release year, 
number of attack types, number 
of portions, and the amount of 
features f of used datasets

Domain Dataset name Year Categories of 
anomalies

# Features Number of 
data points

Network intrusion detection ADFANet 2015 5 3 132 002
AndMal17 2017 4 75 100 522
BAIoT Doorbell 2018 5 115 75 165
CICIDS17 2017 4 75 200 000
CICIDS18 2018 5 75 200 000
CIDDS 2015 4 7 200 000
IoT Network 2019 9 8 210 425
ISCX12 2013 4 6 200 000
NSLKDD 2009 4 37 148 517
UGR16 2016 5 7 207 256
UNSW-NB15 2015 8 38 165 461

HW monitor BackBlaze 2017 2017 1 50 32 678
BackBlaze 2019 2019 1 44 47 525
BackBlaze 2021 2021 1 37 44 950
[8] 2023 1 35 70 512
BAIDU 2017 1 12 186 049

Error / anom. detection Arancino Device 2023 9 119 154 000
HAI Pressure 2019 1 54 200 000
HAI ICS 2023 1 224 54 000
MAFAULDA 2018 1 8 200 000
Mechanical Failure 2018 1 18 7 906
Metro PT 2022 2 20 173 824
Scania Trucks 2016 1 170 76 000
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another source of hard drive data came from the BAIDU 
(Baidu Inc, no date) competition whose input datasets are 
still available for download.

5.1.3  Error/Anomaly Detection

The last group of datasets we consider comes from IoT or 
ICS systems: distributed control systems of a power plant 
controlling a turbine [76],Shin Hyeok-Ki; Lee and Min, 
2023), malfunctions of metros in Portugal [22], railroad 
trucks equipped with sensors to monitor brake pressure 
(‘APS Failure at Scania Trucks’, 2017), an edge device 
monitored for errors (Zoppi et al., 23AD), the mechanical 
failure of electrical machinery in power plants [1], and a 
simulated multivariate time series acquired by sensors on a 
SpectraQuest's Machinery Fault Simulator [53].

5.1.4  Preprocessing

We transform the tabular datasets into CSV files with a 
tabular structure. ISCX12, IoT Network, and UNSWNB15 
are available only as a collection of monitored PCAP 
network packets, which we convert into CSV format using 
tshark. Then, we remove features that are specific to the 
setup that was followed to gather data, namely: Timestamp, 
ID, and experiment number, if any. Those features should 
be disregarded for classification purposes as they carry 
information about the experiments to build the dataset: 
classifiers using these features may learn how experiments 
were made instead of how the system behaves. Lastly, we 
zero-filled all blank values in the BackBlaze datasets.

5.1.5  Data Augmentation: Variants of Datasets

We gathered as many datasets as possible to provide a solid 
baseline to set up and train our strategy to predict classifica-
tion performance. Unfortunately, even after such an effort, 
we only have 23 datasets from which we can calculate fea-
ture rankings and use them to train and test our predictor. 
Therefore, we figured out a way to create variants of each 
dataset (depicted in Fig. 3), which we will be considering 
as additional datasets.

Particularly, we created variants of each dataset that 
contain only a subset of features plus the label. As can 
be seen in Fig. 3, the resulting variants contain the same 
amount of data points, but only a portion of the features of 
the initial dataset. This allows the creation of many variants, 
especially if the initial dataset has many features. Noticeably, 
creating variants containing only a few features may create 
variants where data points contain too little information to 
be considered relevant for our analysis. We experimentally 
found our sweet spot in creating variants that contain at least 
3 features. This means that datasets that have less than 4 
features (i.e., ADFANet) will not be used to create variants.

This way, we created 557 variants that, alongside the 23 
initial datasets, led the overall number of datasets to be used 
to train and test our prediction strategy to 580.

5.2  Feature Rankers and FRAPPE

We identify 12 feature rankers based on literature reviews. 
Unfortunately, there is no available framework that allows 
computing scores of such a wide variety of feature rankers 
on the same dataset according to a unified methodology. 
Therefore we created FRAPPE (Anonymous, no date), a 
Python library that exercises Feature RAnkers to Predict 
the classification PerformancE of classifiers. FRAPPE wraps 
feature rankers from many Python packages, mainly Scikit-
Learn, SciPy, and SKRebate, which are being invoked with 
the same input data and are used to collect metric scores 
according to a rigorous interface. We introduce each of 
these feature rankers, grouping them into statistical (SR), 
Relief-based (RR), or wrapper-based (WR) rankers, and 
summarize their computational complexity with insights 
on their implementation.

5.2.1  Statistical‑Based Rankers (SR)

 SR1. R-Squared correlation quantifies the linear correlation 
between two arrays or data series. It measures the 
proportion of variation in the dependent variable that 
can be attributed to the independent variable [55] with 
a score ranging from 0 to 1 (max correlation).

 SR2. Cosine Similarity [86] considers two arrays as vectors 
in an inner product space and computes the cosine of 

Fig. 3  Data Augmentation used in this work: partitioning features and 
creating datasets variants



 T. Zoppi et al.

the angle between those two arrays, which therefore 
ranges from -1 to 1.

 SR3. Spearman Rank [89] assesses how well the bond 
between two variables can be described using a 
monotonic function. A perfect Spearman correlation 
of + 1 or -1 occurs when each of the variables is a 
perfect monotone function of the other.

 SR4. Chi-Square [20]: performs a statistical test that aims 
at verifying an independence hypothesis between two 
arrays. Typically, this test has a boolean outcome, but 
there are also implementations that quantify the degree 
of independence and that therefore can be considered 
as a rank.

 SR5. Pearson Correlation  [88] calculates Pearson 
correlation between two arrays as the ratio between 
the covariance of two arrays and the product of their 
standard deviations,in other words, it is a normalized 
measurement of covariance in the range [-1; 1].

 SR6. Information Gain  [91] stems from the Kullback–
Leibler divergence and quantifies the amount of 
information gained about a variable from observing 
another variable. It measures the decrease in entropy 
when the feature is given with respect to when it is 
discarded.

 SR7. ANOVA [64]: the ANalysis Of VAriance (ANOVA) is 
used to analyze differences in means between groups. 
Particularly, ANOVA is designed for situations where 
at least one of the two arrays does not comply with a 
normal distribution.

5.2.2  Relief‑Based Rankers (RR)

 RR1. Relief [84] is known since a long time as an accurate 
yet computationally and memory-expensive algorithm 
to calculate feature ranking. Original Relief was 
limited to only two-class problems, but has since been 
extended to multi-class problems and originated a wide 
variety of alternative implementations.

 RR2. SURF (Spatially Uniform ReliefF [31]) is an extension 
of Relief that is more effective in quantifying the 
correlation of features in noisy datasets.

 RR3. MultiSURF [84] further extends SURF, performing 
better than Relief for identifying pure dependencies 
between features, and yields the most reliable feature 
selection performance across a wide range of problem 
types.

RR rankers are known to be very slow; they cannot 
process a whole dataset in a reasonable time. Consequently, 
we calculate them on a maximum of 10 000 data points for 
each dataset and variant. This motivates the * matched to the 
RR1, RR2, and RR3 rankers in 2: computational complexity 
in the table uses a variable ds as the size of the dataset, 
but this never exceeds ds = 10 000 in our experiments when 
using RR Relief-based rankers.

5.2.3  Wrapper‑Based Rankers (WR)

Wrapper-based rankings rely on an external classifier which 
is trained for the sole purpose of deriving feature importance 
for building their model. Almost any classifier can be used as 
a wrapper-based ranker. For our study, we wrap two differ-
ent classifiers: the tree-based Random Forests (WR1, [16]), 

Table 2  Summary and Computational Complexity of Feature Rankers, where ds = “data points (row) in the tabular dataset”, f = “number of fea-
tures” =|F|

Tag Ranker Name Compl. O() Comment to the complexity analysis

SR1 R-Squared f2(ds + f) Uses minimum least squares for linear regression and extract  R2

SR2 Cosine ds · f Performs an array to array multiplication, repeated for each feature
SR3 Spearman ds · f Computes two averages and 2ds differences for each feature
SR4 Chi Squared ds · f SKLearn implementation performs Chi-squared in O(ds·f)
SR5 Pearson ds · f Array to array computation, repeated for each feature
SR6 MutualInfo f· ds ·log(ds) SKLearn implementation uses neighbour-based optimization with k = 3
SR7 ANOVAF ds · f SKLearn has a 1-way ANOVA F-test we iterate for each feature
RR1* Relief ds (f + log(ds)) Implementation in skrebate runs constant iterations. It uses a K-D tree to speed-up as much as possible 

its computational time
RR2* SURF ds2 · f The skrebate package does not provide optimized implementations as for the base version of Relief, 

thus complexity gets slightly higher
RR3* MultiSURF ds2 · f
WR1 Random Forest f· ds ·log(ds) Feature Selector uses nt = 100 in the forest, no depth limit on trees which are built using a tenth of the 

overall number of training data points n
WR2 Lin Regression f2(ds + f) Using minimum least squares to compute regression and extract coefficients
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and the Linear Regressor (WR2, (Behera et al., 2023)). 
They follow two completely different learning processes 
and thus provide very different viewpoints on feature rank-
ing. The computational complexity of those wrapper-based 
feature rankers in 2 has to be interpreted according to three 
observations:

• Computational complexity in the table refers to the 
training phase of wrapped classifiers and regressors, 
which is heavier than the test phase for all WR.

• Wrapped classifiers and regressors are trained and 
tested with a 50–50 split, so the n in Table 2 is half the 
size of the dataset. This does not impact computational 
complexity but it significantly reduces the actual time 
needed to compute WR rankers.

5.3  Normalization of Ranks

We employ a set of normalized scores NS of 6 items as 
follows. The first item  s1 is the score assigned to the most 
relevant feature in F by a given feature ranker. The second, 
third, and fourth items  s2,  s3,  s4 are the average scores of the 
3, 5, 10 features in F that are more relevant according to a 
feature ranker. Lastly, we compute  s5 and  s6 as the average 
and the sum of all ranks. In other words:

NS = {s1: best feature score, s2: average of the best 
3 feature scores, s3: average of the best 5 feature scores, 
s4: average of the best 10 feature scores, s5: average of all 
feature scores, s6: sum of all feature scores}.

Note that  s2,  s3,  s4 can be calculated even if there are 
fewer ordinal features (i.e., |F|< 3 / 5 / 10) than those needed 
to calculate averages. In this case, the average is calculated 
by using all the available features. Normalization of scores 
is already integrated with FRAPPE (Anonymous, no date) 
we use to calculate scores of feature rankers.

5.4  Supervised Classifiers

We select different supervised classifiers to analyze each 
dataset and variant for creating labels to train regressors. 
We are interested in selecting a subset of classifiers that 
are as heterogeneous as possible to avoid exercising many 
classifiers which will result in very similar outcomes. We 
favor classifiers that require minimal parameter tuning to 
avoid conducting random or grid searches which would 
add yet another dimension of analysis, and make sure to 
include those classifiers that are known to be very good at 
classifying tabular data [16, 30, 79], plus other alternatives. 
As discussed in Sect. 2.3, we disregard using neural networks 
as they are not recommended for classifying tabular data.

Therefore, we selected the statistical Naïve Bayes Linear 
Discriminant Analysis and Logistic Regression [36], as well 
as the tree-based Extra-Trees, LogitBoost, and Extreme 
Gradient Boosting [24],Geurts, Ernst and Wehenkel, 2006; 
[19] whose implementations are all made available in the 
Scikit-Learn, logitboost and xgboost Python packages. 
We did not consider slow classifiers like Support Vector 
Machines and K-th Nearest Neighbors (even with the kd-tree 
enhanced neighbor search) as the time needed to complete 
experiments was already requiring weeks.

5.5  Unsupervised Classifiers

Then, we need to generate labels for training regressors 
that predict the classification performance of unsupervised 
classifiers. To do so, we select a set of unsupervised 
classifiers that are as heterogeneous as possible and span 
across different families of unsupervised classifiers; we 
ended up selecting one algorithm for each family in [29, 94], 
namely G-Means (clustering family), HBOS (statistical), 
SOM (neural-network), Isolation Forests (iForest, 
classification), ODIN (neighbour-based), SDO (density-
based), FastABOD (angle-based), autoencoders (neural 
networks). We exercise those unsupervised classifiers by 
using the library PYOD (Zhao, Nasrullah and Li, 2019).

5.6  Regressors REG

Once feature data and classification metric values have been 
calculated, we can train the regressors REG. Particularly, we 
are interested in classifying binary and multi-class datasets, 
with supervised and unsupervised classifiers. Thus, we will 
have type ∈ {sup-bin, uns-bin, multi}. Also, we will be target-
ing the prediction of metrics that are robust to unbalanced 
datasets and fit binary and multi-class classification. From 
the discussion in Sect. 2.5, we choose met ∈ {mcc, auc}. The 
6 combinations of type and met values result in a total of 6 
regressors to be trained:

REG = {Reg_mcc@sup-bin, Reg_auc@sup-bin,
Reg_mcc@uns-bin, Reg_auc@uns-bin,
Reg_mcc@multi, Reg_auc@multi}.
Each of these 6 regressors can be implemented as one of 

the supervised ML algorithms available in the literature that 
are capable of predicting a numeric label. To select the best 
ML algorithm for each of the 6 REG regressors, we train and 
compare several supervised regressors with heterogeneous 
characteristics:

• statistical algorithms [90], Behera et al., 2023) as Linear 
Regression, Lasso Regression, Decision Trees,

• bagging [16], Geurts, Ernst and Wehenkel, 2006) meta-
learners (Random Forest, Extremely Randomized Trees) 
and



 T. Zoppi et al.

• boosting [19] meta-learners (XGBoost).

We apply each of those 6 ML algorithms for each REG 
regressor and we compute the Mean Absolute Error (MAE) 
and R-Squared correlation to measure their goodness of 
approximation to the numeric label. The algorithm with the 
lowest MAE will be chosen to implement each regressor 
REG and will be used to predict classification performance.

We separated the train and test partition making sure that 
datasets or variants were either in the training or in the test 
set to avoid “contamination”. Overall, 17 datasets and their 
variants were used as train set, letting the other 6 datasets 
(with their variants) build the test set for a rough 70–30% 
split. The 6 datasets in the test set were chosen as follows: 2 
intrusion detection, 2 hardware failure, and 2 error detection 
datasets. Then, we cross-validated the train-test process by 
changing the datasets used for training and testing, noticing 
only negligible changes. Prediction results presented in the 
next section use one of the models created within the cross-
validation process, chosen randomly during the process.

5.7  Methodology to Conduct Experiments

We downloaded the datasets from their repositories and 
extracted the variants as described in Sect. 5.1. Then, we 
processed all the resulting datasets and variants with the 
FRAPPE framework (Anonymous, no date), which cal-
culates the ranks of each feature in datasets and variants 
according to the feature rankers in Sect. 5.2; those are 7 
statistical filter-based, 3 Relief filter-based, and 2 wrapper-
based rankers. Then, FRAPPE calculates 6 normalized 
scores (see Sect. 5.3) for each feature ranker, generating 
Feature Data containing 78 items (13 feature rankers * 6 
normalized scores) for each of the 580 datasets or variants. 
This constitutes the input of the strategy to predict classifica-
tion performance, which also requires labels for training the 
regressors REG. We exercise supervised and unsupervised 

classifiers in Sect. 5.4 and Sect. 5.5 on each dataset or vari-
ant using a 50–50 train-test split and calculating MCC and 
AUC metric scores. Collecting these metrics scores allows 
training the REG regressors (see Sect. 5.6) that will predict 
classification performance. For completeness of our analy-
sis, we will also repeat the training of regressors using the 
SMOGN (Branco, Torgo and Ribeiro, 2017) framework for 
data augmentation through Synthetic Minority Over-Sam-
pling of the set used for training regressors. This allowed 
doubling the size of the training set: however, this introduces 
synthetic data that may alter the behavior of regressors and 
as such it is discussed in the next section.

Experiments have been executed on an Intel Core i7-6700 
with four 3.40GHz cores, 24GB of RAM, and 1TB of 
storage, and required approximately three weeks of 24H 
execution. All the scores and files we used in the paper are 
available at (Anonymous, no date), folder “scripts”.

6  Discussion and Implementation 
of the Prediction Strategy

Here we present and discuss the prediction strategy 
that results from the application of the experimental 
campaign in Sect. 5. Section 6.1 elaborates on how well 
our strategy predicts MCC and AUC scores of supervised 
and unsupervised classifiers, whereas Sect. 6.2 discusses 
on feature rankers and how they contribute to building the 
prediction strategy. Section 6.3 discusses optimizations, 
while Sect. 6.4 provides insights on the implementation and 
practical usage of our findings.

Table 3  Mean Absolute Error 
(MAE) and R-Squared for 
the best regressor to predict 
either MCC or AUC for 
supervised (Sup-bin, multi) 
and unsupervised (Uns-bin) 
classifiers

Regressor ML Algorithm Typetype Metricmet SMOGN Usage MAE R-Sq

Reg_MCC@Sup XGBoost sup-bin MCC No 0.069 0.913
Yes 0.089 0.817

Reg_MCC@Unsup XGBoost uns-bin No 0.085 0.854
Yes 0.096 0.825

Reg_MCC@Multi ExtraTrees Multi No 0.071 0.905
Yes Failed

Reg_AUC@Sup Random Forest sup-bin AUC No 0.051 0.890
Yes 0.067 0.782

Reg_AUC@Unsup XGBoost uns-bin No 0.053 0.870
Yes 0.060 0.816

Reg_AUC@Multi XGBoost Multi No 0.050 0.892
Yes 0.060 0.808
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6.1   Evaluation of Regressors using all Feature 
Rankers

We explore the prediction error of our strategy with the aid 
of Table 3, which reports the Mean Absolute Error (MAE) 
and R-Squared correlation for each of the 6 REG regressors. 
For completeness of analysis, we report also scores in which 
we trained regressors using the SMOGN data augmentation: 
this increases the size of the training set, but has no impact 
on the test set. The table immediately suggests three 
discussion items.

• MAE scores are higher for regressors predicting MCC 
(i.e., Reg_MCC@Sup-bin, Reg_MCC@Uns-bin, Reg_
MCC@Multi in the first half of the table) compared 

to regressors predicting AUC (bottom of the table). 
This may seem to hint at a poor approximation of 
MCC compared to AUC: however, the reader should 
note that AUC scores mostly fall in the range [0.5 – 
1], whereas MCC usually falls in the [0 – 1] interval. 
Therefore, having a higher MAE for MCC regressors 
does not necessarily mean that they are not as effective 
as regressors that predict AUC values. This explanation 
is supported by the R-Squared correlation scores, which 
hover in the range of 80—90 for all regressors.

• Applying SMOGN augmentation for training regressors 
did not have a beneficial impact on the regression 
task itself. All rows of Table 3 with a “Yes” in the 
fourth column show worse scores compared to their 
counterparts with “No” data augmentation. This may 

Fig. 4  Scatterplots showing calculated against predicted metric scores for the 6 regressors REG. From top-left to bottom right: 4a) Reg_MCC@
Sup-bin, 4b) Reg_AUC@Sup-bin, 4c) Reg_MCC@Uns-bin, 4d) Reg_AUC@Uns-bin, 4e) Reg_MCC@Multi, 4f) Reg_AUC@Multi
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be due to a multitude of reasons: for instance, the 
SMOGN algorithm did not have enough data to learn 
how to generate novel data belonging to the initial 
distribution, with a detrimental effect on the learning 
phase of regressors. In one case the library even failed 
regardless of all the tries we made (see Reg_MCC@
Multi in Table 3)

• For 4 out of 6 regressors, the XGBoost regressor was 
the one delivering the lowest MAE and thus chosen as 
the best model. From a more general standpoint, among 
those exercised as candidate regressors, we observed 
how Linear Regression, Lasso Regression, and Decision 
Trees ended up having a noticeably higher MAE (worse 
predictive capabilities) than XGBoost, Random Forest, 
and ExtraTrees.

We further explore the results through the scatterplots in 
4. Each of the 6 scatterplots depicts the calculated metric 
score against the predicted value of a regressor in REG; 
Fig. 4a and Fig. 4b show the behavior of regressors pre-
dicting MCC (the former) and AUC (the latter) scores of 
supervised binary classifiers, Fig. 4c and Fig. 4d are related 
to regressors predicting classification performance of unsu-
pervised binary classifiers, whereas Fig. 4e and Fig. 4f are 
related to regressors predicting classification performance 
of multi-class (supervised) classifiers. The diagonal black 
line in each scatterplot shows the linear approximation used 
to calculate the R-Squared value.

The plot in the top-left of the figure depicts the graphical 
representation of the first line of Table 3. Diamonds in the 
plot are mostly in the upper-right corner: those correspond 
to datasets or variants where the best supervised binary 
classifier got a very high MCC score, and at the same time 
they were predicted to have a high MCC. On the contrary, 
orange diamonds in the bottom-left corner of the plot point 
to datasets or variants where no supervised classifier was 
able to achieve a high MCC and that were also predicted 
to have a poor MCC. Noticeably, there are diamonds in the 
plot that fall far away from the black line. Those below the 
line correspond to datasets or variants where the predicted 
pred_MCC@Sup-bin value was inferior to the calculated 
MCC: in this case, our prediction strategy overestimated the 
difficulty of the dataset. Diamonds above the black line are 
instead those in which the Reg_MCC@Sup-bin regressor 
predicted a value that is a lot higher than the calculated 
MCC, underestimating the classification performance in 
the dataset or variant.

The other plots in Fig. 4 have a trend similar to the plot 
we examined before. Another interesting observation is that 
blue diamonds and crosses in Fig. 4c and Fig. 4d are overall 
closer to the bottom left compared with the first two plots. 
This is because supervised classifiers (first two plots) output 

a lower amount of misclassifications than unsupervised clas-
sifiers (two plots in the middle), causing their metric scores 
to be higher and overall closer to the top right of plots. The 
trend for multi-class classifiers in Fig. 4e and Fig. 4f follows 
that of the plots above, with no major changes.

6.2  Contribution of Feature Rankers

Another important discussion item is related to whether 
each of the 12 feature rankers in this study contributes to 
predicting classification performance. Particularly, we aim 
to understand if there are feature rankers that carry little to 
no contribution to the prediction strategy and therefore could 
be dropped to speed up the process. Table 4 shows two types 
of relevance measures for each feature ranker:

• Score Correlation, which averages the R-correlation 
between normalized scores of a ranker with the metric 
value to be predicted,

• Feature Importance, or rather the average of relevance 
scores assigned by regressors to each feature at the end 
of the training process, and

• Time (s), the average time (seconds) needed from the 
feature ranker to process a dataset or variant and compute 
ranks. This varies with the size of the dataset but still 
gives an actual indication of the complexity of each 
ranker.

We immediately observe that SR1, SR6, RR1, and, to 
a lesser extent, WR1, have higher scores for the first two 
measures than other feature rankers. Feature Importance 

Table 4  Correlation of normalized scores of feature rankers with met-
ric to predict (score correlation), importance as features when train-
ing regressors, and average time needed to calculate rankings

Ranker Tag Ranker Name Score 
Correlation

Feature 
Importance

Time (s)

SR1 R-Squared 0.142 0.004 0.081
SR2 Cosine 0.011 0.005 0.044
SR3 Spearman 0.045 0.008 0.678
SR4 Chi Squared 0.029 0.004 0.735
SR5 Pearson 0.046 0.003 0.142
SR6 MutualInfo 0.173 0.092 18.591
SR7 ANOVAF 0.009 0.011 0.196
RR1 Relief 0.143 0.011 12.652*
RR2 SURF 0.019 0.006 47.443*
RR3 MultiSURF 0.019 0.013 30.797*
WR1 RandomForest 0.041 0.021 0.318
WR2 Linear 

Regression
0.006 0.004 0.224
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(4th column) highlights that SR6 has a prominent role 
when training regressors, whereas other rankers have 
only a marginal contribution. Regarding the time needed 
to compute scores of feature rankers, it is clear that SR6, 
all RR, and WR2 are far slower than other feature rankers. 
Moreover, in our experiments, we ran RR rankers using 
only a small portion of datasets and variants: that is why 
we starred (*) those timings in the table. The normalization 
process has no impact on those relevance measures: 
normalizing scores takes only a few microseconds of 
execution time.

6.3  Optimizing the Prediction Strategy

This analysis suggests the possibility of refining the 
prediction strategy, improving its speed, and maintaining 
similar regression performance. According to Table  4, 
rankers SR2, SR7, RR2, RR3, and WR2 seem to have a 
negligible impact on our strategy and therefore are a 
candidate to be removed from the set of feature rankers. 
Also, RR2 and RR3 are the most time-consuming rankers 
and therefore it would be very beneficial to build a predictor 
that does not need those two rankers when building feature 
data.

However, dropping feature rankers may impact the good-
ness of predictions of our strategy: we measure it by iterating 
training of regressors REG using different subsets of feature 
rankers, and plot results in Fig. 5: On the x-axis, we plotted 
different combinations of feature rankers used to generate 
Feature Data; lines represent the MAE for the 6 regressors 
in REG, while triangles show the average time needed to 
compute each combination of feature rankers (plotted on the 
secondary y-axis, see on the right of the plot in the figure). 
We can observe an almost constant decrease in the MAE 
from left to right, corresponding to using more and more 

feature rankers, up to a point in which all rankers are used (at 
the extreme right of the plot, MAEs match those in Table 3). 
The second last combination contains all feature rankers but 
those that seemed to have negligible impact on the overall 
process i.e., SR2, SR7, RR2, RR3, and WR3. These MAEs 
are slightly higher than those obtained using all feature rank-
ers, meaning that even the rankers that seemed to contrib-
ute little to the prediction strategy have a role in predicting 
metric scores. On the other hand, this has a clear advantage 
as it more than halves (57 instead of 136) the time needed 
to compute feature rankings and thus predict classification 
performance.

As a result, we may predict misclassifications using only 
8 feature rankers (i.e., SR1, SR3, SR4, SR5, SR6, RR1, 
WR1, WR2). This guarantees a very fast computation time 
at a cost of a slightly higher MAE. We refer to this group 
of rankers as OPT, whereas predictors using all rankers are 
referred to as FULL.

6.4  Implementing the Prediction Strategy 
in FRAPPE

The regressors discussed in the previous sections are 
deployed and currently available as part of the FRAPPE 
GitHub repository at (Anonymous, no date). Users willing 
to predict the classification performance of tabular data 
classifiers have to follow the steps in Listing 1.

The FrappeInstance object is the main item for the 
prediction strategy. It has to be initialized depending on 
the specific task (sup-bin, uns-bin, multi), the metric to be 
predicted (mcc, auc) and the specific regressors to be used, 
either OPTimized or using the FULL set of rankers. Then, 
the dataset has to be loaded using the function provided by 
the library or custom functions. The only requirement is to 
load the dataset and labels (if any, otherwise labels = None) 
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as numpy ndarrays or pandas DataFrames. At this point, 
we can call the pred_met function. Noticeably, using the 
prediction strategy is straightforward and allows also non-
experts to use it in their research and industrial case studies.

The FRAPPE library offers a wide variety of 
alternative setups to exercise feature rankers and predict 
the classification performance of datasets. Also, it allows 
re-training of regressors for learning to predict other 
metrics or using different datasets as train baselines. Further 
information can be found in the repository.

7  Application: Predicting Classification 
Performance for Different Case Studies

We predict the classification performance of datasets 
belonging to different domains, even far from anomaly-
based detectors to show the generalization capabilities of 
our strategy. We will be predicting MCC and AUC scores 
for the following datasets:

• A dataset (https:// www. kaggle. com/ datas ets/ jsphyg/ 
weath er- datas et- rattle- packa ge) that contains features 
from environmental monitoring in Australia and aims at 
predicting is the next day will be a rainy day or not.

• The Titanic survival dataset (https:// www. kaggle. com/c/ 
titan ic), where features allow us to predict if a passenger 
survived the accident or not.

• Airplane Satisfaction (https:// www. kaggle. com/ datas ets/ 
teejm ahal20/ airli ne- passe nger- satis facti on), a dataset that 
contains information about flights and is used to predict 
if passengers will be satisfied by the flight or not.

• The hotel booking dataset (Antonio, de Almeida and 
Nunes, 2019), in which we aim to predict if users will 
cancel a booking before finalizing the booking to the 
hotel or B&B.

• The ICU admission dataset (https:// www. kaggle. com/ 
datas ets/ mitis haaga rwal/ patie nt), which contains data 
from patients admitted in US ICUs and is used to learn 
if a patient will survive or die in the ICU.

• The RT-IoT2022 dataset [75], yet another example of 
anomaly-based intrusion detection in an IoT environment.

Throughout the process, we measured the time needed to 
calculate those predictions and log the predicted MCC and 
AUC scores. During the process, we also exercised classifi-
ers, sensitivity analyses, and connected activities to simulate 
an effective deployment of these classifiers, measuring the 
same metric scores and required time. Note that the time 
that will be required in practice is usually longer than this 
estimation since the process has to be set up by a domain 
expert, who should also check results and monitor the pro-
cess to spot potential errors or misinterpretations of data. 

Table 5  Predictions and MAE of our strategy to predict misclassifications on the 6 datasets in this section

Dataset Task type True Values Predictions Error

Name # Points # Feat Time (s) MCC AUC Time (s) MCC AUC MCC AUC 

AirplaneSatisfaction 103,904 18 bin-sup 695.2 0.894 0.945 7.9 0.813 0.907 0.081 0.038
bin-uns 456.6 0.314 0.716 7.8 0.379 0.737 0.065 0.021
multi 701.9 0.894 0.945 8.0 0.867 0.863 0.017 0.077

HotelBooking 119,390 19 bin-sup 835.4 0.657 0.810 9.0 0.790 0.894 0.132 0.084
bin-uns 480.2 0.212 0.625 9.1 0.353 0.698 0.141 0.073
multi 827.1 0.657 0.810 9.0 0.698 0.738 0.076 0.057

ICUSurvival 91,712 74 bin-sup 794.7 0.628 0.667 19.8 0.715 0.760 0.087 0.093
bin-uns 360.8 0.208 0.688 20.1 0.291 0.719 0.083 0.030
multi 790.1 0.628 0.667 20.0 0.777 0.890 0.041 0.030

RTIoT22 123,120 81 bin-sup 1342.1 0.989 0.993 30.1 0.992 0.984 0.003 0.009
bin-uns 1002.2 0.386 0.817 29.6 0.485 0.775 0.099 0.042
multi 1476.1 0.992 1.000 29.9 0.974 1.005 0.018 0.005

Titanic 890 9 bin-sup 4.3 0.659 0.814 0.4 0.757 0.895 0.099 0.081
bin-uns 2.7 0.268 0.662 0.3 0.305 0.712 0.037 0.050
multi 4.4 0.659 0.814 0.4 0.728 0.817 0.105 0.028

WeatherAUS 145,460 21 bin-sup 741.0 0.734 0.767 9.3 0.756 0.848 0.022 0.081
bin-uns 461.4 0.203 0.626 9.1 0.346 0.694 0.143 0.068
multi 760.0 0.734 0.767 9.3 0.696 0.781 0.180 0.062

MAE 0.075 0.050

https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic
https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction
https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction
https://www.kaggle.com/datasets/mitishaagarwal/patient
https://www.kaggle.com/datasets/mitishaagarwal/patient
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Results show calculated (True Values in Table 5) and pre-
dicted (Predictions in the table) MCC and AUC scores using 
classifiers for bin-sup, bin-uns, and multi tasks. For each 
dataset, the table reports its size, the number of features, the 
time needed to find the best classifier and the MCC/AUC it 
gets, the time needed to predict classification performance, 
and the MCC/AUC it predicts, plus the prediction error of 
MCC/AUC on the right of each table. True values computed 
for multi and bin-sup tasks are often the same: this happens 
when the dataset represents a binary classification problem 
(all datasets but RT_IoT22). Predicted values are instead 
different as they use different regressors. We identify two 
discussion items to explore.

MAE Analysis. First, we want to understand if 
predictions of classification performance are close to the 
actual classification performance of classifiers we exercised. 
In Table 5, this is measured by the last two columns on the 
right, one for MCC and the other one for AUC. On the 
bottom right of the table, we computed the average of these 
prediction errors (MAEs). The MAE for predictions is 0.075 
/ 0.050 for MCC / AUC, which is similar to the MAEs we 
presented in Table 3 and discussed in Sect. 6.1.

This is a very important observation as it shows how 
well the prediction strategy generalizes to any classification 
problem, even if it is not related to anomaly detection. Out 
of the 6 datasets in the table, only the RT_IoT22 dataset is 
closely related to the domain we used to train and validate 
our predictors, but the goodness of prediction of our strategy 
is still the same. Overall, our predictors are robust to domain 
shifts.

Time to Predict. The time needed to exercise classifiers 
(5th column of Table 5) is at least one – and sometimes 
two—order of magnitude more than that needed to predict 
classification performance (see 8th column of the tables). 
This includes only the “experimentation time”, and leaves 
out all the time needed by the domain expert to plan, 
monitor, and analyze experiments and their results, which 
are going to make this difference even more noticeable. This 
difference is very small when dealing with small datasets 
(i.e., the Titanic Disaster) but grows a lot the more data 
points are contained in the dataset. Therefore, we expect the 
prediction strategy to provide results faster than conducting 
regular analyses especially when dealing with big datasets, 
which is a de-facto standard for many applications nowadays.

Interestingly, the ICU Survival dataset has fewer data 
points than Weather AUS, but the prediction strategy takes 
more time when processing the ICU dataset. This may 
seem counter-intuitive: however, the reader should notice 
that the ICU dataset contains 74 features, while the Weather 
AUS contains only 21 features. This may suggest that our 
prediction strategy performs slower when processing 
datasets with many features and a limited number of data 
points i.e., microarray datasets. However, those datasets are 

not as common as those containing far more data points 
than features: therefore we do not investigate this behavior 
any further.

8  Concluding Remarks

To conclude the paper, we summarize in this section the 
conclusions and achievements of our work, limitations to 
the validity of our study, and future directions.

8.1   Lessons Learned and Achievements

We summarize the findings of this paper as follows.

• Feature rankers allow to predict the classification 
performance of classifiers when performing supervised 
or unsupervised classification with low prediction error 
in a given dataset. This is an important contribution as 
previous studies using other techniques (i.e., c-measures) 
seemed to deny this opportunity.

• Prediction errors, measured as MAE are small, but 
not absent. As such, the prediction of classification 
performance cannot be trusted in scenarios where even a 
small change in metric values can make a big difference. 
Instead, it should be used as a preliminary analysis for 
evaluating the complexity of a dataset quantified as 
classification metrics such as MCC or AUC.

• Our strategy to predict classification performance can be 
integrated into existing data analysis processes requiring 
little to no modifications to the existing analysis flow, and 
quantifies the prediction in a few minutes at most. This is 
due to the FRAPPE library providing user-friendly and 
easy-to-use support to the analyst, which has to provide 
a few inputs and can get the predicted classification 
performance as desired. No expertise is required of the 
user nor knowledge about feature rankers, as interfaces of 
the FRAPPE library hide all the implementation details.

• The prediction strategy applies to different tabular 
datasets, even if not related to the error and intrusion 
detection domain, predicting the performance of 
unsupervised binary classifiers and supervised binary 
and multi-class classifiers with a stable prediction error.

8.2  Limitations of this Study

We report here possible limitations to the validity and the 
applicability of our study. These are not to be intended as 
showstoppers when considering the conclusions of this 
paper. Instead, they should be interpreted as boundaries or 
possible future implications that may impact the validity of 
this study.
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8.2.1  Usage of Public Data.

The usage of public datasets and open-source tools was a 
pre-requisite of our analysis as it allows reproducibility and 
relies on proven-in-use data. However, the heterogeneity of 
data sources and their potential lack of documentation may 
limit the understandability of data. In addition, such datasets 
are not under our control: therefore, possible actions such as 
changing the way data is generated are out of consideration. 
For example, we were forced to process datasets that have 
only a few features e.g., ADFANet (3) as they are.

Additionally, the reader may argue that even our massive 
effort in processing 23 different public datasets and creating 
variants resulted only in several hundreds of data points to 
train, validate, and test the prediction strategy. As already 
discussed throughout the paper, generating a data point for 
the regressors requires finding a public dataset, learning its 
structure, connecting it to FRAPPE, calculating feature data, 
and exercising supervised and unsupervised classifiers to 
compute metric scores that will serve as labels for training 
regressors. We are aware that using only hundreds to a few 
thousand (using SMOTE data augmentation) data points 
may open the problem of the robustness of our predictor. 
However, the tests in Sect. 7 show that the metric predictions 
for brand-new datasets are within the range estimated during 
our experimental evaluation.

8.2.2  Parameters of Classifiers.

Each classifier relies on its parameters. Finding the optimal 
values of parameters is a substantial process that requires 
sensitive analyses and is directly linked with the scenario in 
which the classifier is going to be exercised. When applying 
supervised and unsupervised classifiers to different datasets 
it is not always possible to precisely tune these parameters. 
Predicted metric values could turn out to be slightly different 
from the theoretical optimum due to a more or less optimal 
tuning of the classifier. The impact on our prediction strategy 
is considered negligible, as it is obtained on top of extensive 
experiments using many datasets and many classifiers 
– ranging from requiring extensive parametrization to none 
–, smoothing down possible performance degradation due 
to this event.

8.2.3  Predicting Performance of Regressors.

Our strategy can be adapted with minor modifications to 
predict the classification performance of regressors. To do 
that, we may need to reconsider the feature rankers we used 
in this paper as some of them require a categorical label 
and may not translate well when the target of the machine 

learning algorithm is a continuous quantity, as it happens 
with regressors. However, the general approach still holds.
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