
Vol.:(0123456789)

Data Science and Engineering
https://doi.org/10.1007/s41019-024-00264-9

RESEARCH PAPER

A Strategy for Predicting the Performance of Supervised
and Unsupervised Tabular Data Classifiers

Tommaso Zoppi1  · Andrea Ceccarelli1 · Andrea Bondavalli1

Received: 10 April 2024 / Revised: 11 September 2024 / Accepted: 13 September 2024
© The Author(s) 2024

Abstract
Machine Learning algorithms that perform classification are increasingly been adopted in Information and Communication
Technology (ICT) systems and infrastructures due to their capability to profile their expected behavior and detect anomalies
due to ongoing errors or intrusions. Deploying a classifier for a given system requires conducting comparison and sensitivity
analyses that are time-consuming, require domain expertise, and may even not achieve satisfactory classification performance,
resulting in a waste of money and time for practitioners and stakeholders. This paper predicts the expected performance of
classifiers without needing to select, craft, exercise, or compare them, requiring minimal expertise and machinery. Should
classification performance be predicted worse than expectations, the users could focus on improving data quality and
monitoring systems instead of wasting time in exercising classifiers, saving key time and money. The prediction strategy
uses scores of feature rankers, which are processed by regressors to predict metrics such as Matthews Correlation Coefficient
(MCC) and Area Under ROC-Curve (AUC) for quantifying classification performance. We validate our prediction strategy
through a massive experimental analysis using up to 12 feature rankers that process features from 23 public datasets, creating
additional variants in the process and exercising supervised and unsupervised classifiers. Our findings show that it is possible
to predict the value of performance metrics for supervised or unsupervised classifiers with a mean average error (MAE) of
residuals lower than 0.1 for many classification tasks. The predictors are publicly available in a Python library whose usage
is straightforward and does not require domain-specific skill or expertise.

Keywords  Feature ranking · Anomaly detection · Classification performance · Machine learning · Error detection

1 � Introduction

Nowadays the paradigm of Cyber-Physical Systems (CPSs)
[27] guides the definition and design of ICT hardware-soft-
ware systems whose functionalities are partially controlled
or monitored by computer-based sub-systems and/or human
beings. Examples include but are not limited to, Auto-Pilot
Avionics, Autonomous Driving, Smart Manufacturing,
Medical Support Systems, Industrial Control Systems, and
Environmental Monitoring [25, 56, 65],Saied, Guirguis and

Madbouly, 2024). Noticeably, many of those CPSs (systems
from now on) might be intended to deliver critical func-
tionalities, whose malfunction may lead to fatalities, severe
injuries, or major damages to the environment: as a result,
they must be conceptualized, designed, and implemented
to ensure that appropriate safety and/or security require-
ments are met [7, 87]. These critical systems need to embed
error, intrusion, and anomaly detectors that can accurately
and promptly detect the manifestation of faults or attacks
(i.e., anomalies) before subsequent cascading effects could
significantly damage the encompassing system. Detectors
process tabular data points containing values of specific
indicators monitored from the target system (e.g., resource
usage, active threads, application-specific indicators): once
anomalies are detected, they trigger reaction strategies that
break the fault-error-failure chain and ultimately block the
system from failing uncontrollably [7].

 *	 Tommaso Zoppi
	 tommaso.zoppi@unifi.it

	 Andrea Ceccarelli
	 andrea.ceccarelli@unifi.it

	 Andrea Bondavalli
	 bondavalli@unifi.it

1	 Department of Mathematics and Informatics, University
of Florence, Viale Morgagni 65, 50142 Florence, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-024-00264-9&domain=pdf
http://orcid.org/0000-0001-9820-6047

	 T. Zoppi et al.

1.1 � Anomaly‑Based Classifiers

From a general standpoint, anomaly-based classifiers
(classifiers from now on) (Chandola, Banerjee and Kumar,
2009)“identify patterns that do not conform to a well-
defined notion of normal behavior”. During training, those
classifiers learn a model that allows them to output either
a positive or a negative class depending on feature values.
Later, the classifier uses this model to label novel data points
either as negative or positive i.e., corresponding to a normal
state of the system, or hinting to ongoing errors, attacks,
or performance anomalies in general. Their classification
performance is typically expressed using metrics [45] that
combine correct classifications—True Positives (TPs) and
Negatives (TNs) – which represent the desired outcome,
and misclassifications as False Positives (FPs) and False
Negatives (FNs), to be minimized. The classification
problem may include many classes, of which one represents
a normal behavior, and others represent different types of
anomalous behaviors. In this case, classifiers should be able
to distinguish between normal behavior and each specific
class of anomaly: these are referred to as multi-class
classifiers e.g., intrusion detectors that aim at identifying
attacks but also ad distinguishing between different
categories of attacks. With multi-class classification
problems, evaluation metrics have to be adapted to suit the
dimensionality of the problem [17].

Different classifiers may achieve different classification
performance when dealing with the same task in a specific
system. Supervised classifiers [19, 30, 52] were proven to
achieve excellent detection performance in many domains:
they learn their model using data points collected i) during
normal operation of the system, ii) when errors, attacks or
failures activate, and labelled accordingly. ML algorithms
that rely on Decision Trees or tree ensembles (Random
Forests, eXtreme Gradient Boosting) were traditionally used
for classifying tabular data as they build accurate models,
require limited training and test time, and can be explained
fairly easily [32, 60]. Alternatively, unsupervised classifiers
[29, 57, 96] do not require labelled data for training; thus,
they are applicable whenever labels are not available, too
expensive to derive, or when dealing with evolving systems
or unknown threats [73, 94].

1.2 � Engineering Classifiers

Building and deploying a classifier for a given system
requires many steps [6] which include, but are not limited
to feature selection, feature engineering [12], classifier
selection, analyses of hyper-parameters through grid,
random or gradient-descend searches, and comparison
of metric scores achieved by different classifiers. In the

vast majority of cases, the classification performance of
classifiers strictly depends on the number and/or the quality
of monitored system indicators, which constitute the baseline
to create features for training classifiers [83].

Unfortunately, it may happen that even that best classifier
does not achieve satisfactory classification performance for
the problem at hand, ending up having no practical use.
When this happens, the only available option is to rework
the monitoring system or the feature engineering process,
providing classifiers with different—and more informative—
features before starting the selection process from scratch
again. From an engineering or stakeholder standpoint,
this event is highly detrimental: the time, resources, and
expertise that was devoted to creating such a classifier at
the first stage is wasted and represents an economic loss
for the company that was willing to deploy the classifier in
their application.

1.3 � Motivation

It would be very helpful to know in advance if features
– or the monitoring system—are “good enough” to model
classifiers with satisfactory classification performance.
This would open the possibility of assessing the quality of
input data for learning a classification model that applies
to supervised or unsupervised, binary, or multi-class
classification tasks in any domain in which tabular data
is involved. Ideally, this process should be completely
decoupled from the classifier that will be selected at a later
stage, and it should provide fast (i.e., negligible overhead)
feedback to be used in the early stages of the data analysis
task. To accomplish that, the classification performance
prediction strategy should primarily rely on data that is
already available through traditional data analysis, pre-
processing, and feature engineering techniques. Conversely,
implementing the strategy could require researchers or
practitioners to commit a major time and resource overhead
which may be deemed unfeasible.

With the prediction at hand, the researcher or the
practitioner should decide to invest time in building the
classifier only if the predicted classification performance
is satisfactory. Conversely, engineering efforts should be
redirected to improving the quality or number of features
that—at the current state – do not allow for building
adequate classifiers.

1.4 � Technical Contribution

This paper introduces a strategy to predict the expected
classification performance of a task on a given system or
dataset. Our prediction strategy quantifies the goodness of
available features by exercising feature rankers, feeding
their results to a regressor that predicts the numeric

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

value of a classification metric. The regressor is an ML
algorithm that outputs a continuous numeric label instead
of a categorical label (as classifiers do). The output of
the regressor constitutes an easy-to-interpret prediction
of the classification performance that can be expected
from classifiers trained using a specific dataset. For the
sake of brevity, we could not report experimental results
in predicting all metrics available in the literature. We
show that it is possible to predict values of classification
metrics of Area Under ROC Curve (AUC) and Matthews
Correlation Coefficient (MCC) with minimal error and in
a few minutes at most, even when dealing with datasets
containing hundreds of thousands of data points and many
features. Our experimental evaluation mainly focuses on
typical applications of anomaly-based classifiers such as
intrusion detection, error detection, and hardware failure
prediction, but is tested also on datasets belonging to
different domains. The classifiers used therein are those
that are typically recommended when dealing with tabular
data: the supervised tree-based ensembles as Random
Forests, ExtraTrees and boosting algorithms as XGBoost
and LogitBoost, and unsupervised classifiers suggested in
[29, 94], namely G-Means, HBOS, Self-Organizing Maps,
Isolation Forests, ODIN, SDO and FastABOD. Experiments
have been executed using the FRAPPE (Feature RAnkers to
Predict classification PerformancE of classifiers) framework,
which is available as an open-source library on GitHub
(Anonymous, no date) and as PyPI package, and includes all
scripts needed to reproduce our results. Our main technical
findings of the paper, which are discussed throughout the
paper, are as follows.

•	 The prediction strategy applies to any classification
problem and can quantify any existing classification
metrics:

•	 Outputs of feature rankers can be used to predict the
classification performance of supervised or unsupervised
classifiers with low prediction error in a given dataset,
conversely to existing similar studies.

•	 Our prediction strategy can be integrated into existing
data analysis processes requiring little to no modifications
to the existing analysis flow and quantifies the prediction
in a few minutes at most.

•	 The FRAPPE public Python library provides a user-
friendly and easy-to-use interface, requiring minimal
expertise to use the findings of the paper as the library
hides all the implementation details.

•	 The prediction strategy that is available in FRAPPE
can be applied to tabular datasets from any domain,
predicting the performance of unsupervised binary
classifiers and supervised binary and multi-class
classifiers with a mean average error (MAE) of residuals

lower than 0.1 for metrics as MCC and AUC many
classification tasks.

1.5 � Paper Structure

The remainder of the paper is structured as follows.
Section 2 reports terminology, basics, and literature related
to classifiers and feature rankers, while Sect. 3 motivates
the usefulness of our strategy to predict classification
performance, and lists related works. Section 4 presents
our prediction strategy, which is evaluated according to
the experimental methodology in Sect. 5 and discussed in
Sect. 6. Section 7 presents the application of the prediction
strategy to many case studies, letting Sect. 8 conclude the
paper and debate the limitations of this work.

2 � Background and Related Works

We provide an overview of supervised and unsupervised
classifiers for anomaly detection in tabular data. Then,
we review techniques for feature ranking and selection
and finally summarize metrics to quantify classification
performance.

2.1 � Anomaly‑Based Error and Intrusion Detection

Dependability is generally referred to as “the ability to
avoid service failures that are more frequent or severe than
is acceptable” [7]. Attaining dependability requires—but
is not limited to—a prompt detection of the observable
manifestations of faults or attacks, which should trigger
reaction strategies to avoid uncontrolled system failures.
Error [44, 57, 95] and intrusion [38, 66, 67] detectors are
classifiers that aim at detecting all the manifestations of
faults (error detection) or attacks (intrusion detection). They
seek to distinguish between normal behavior and one or
more anomalous categories of anomalous behaviors due to
manifestations of errors or intrusions. These manifestations
usually occur as behavioral anomalies, which are observable
when looking at specific performance indicators. Detectors
may occasionally fail, either by triggering unnecessary alerts
(False Positives, FPs), or when they miss the detection of an
ongoing fault or attack (False Negatives, FNs). Usually, error
and intrusion detectors primarily focus on reducing FNs,
which may have a direct detrimental impact on a system.
On the other hand, a very suspicious detector that has very
low FNs at the price of increasing FPs will likely raise many
false alarms, being of no practical use. Crafting error and
intrusion detectors that output a satisfactorily low amount
of FPs and FNs is not trivial, and heavily depends on two
key tasks: i) precise monitoring of the target system, and ii)
a suitable data analysis strategy.

	 T. Zoppi et al.

2.2 � Monitoring and Tabular Datasets

Over the years, research and practice have devised different
ways to install monitoring probes into a system. Those
probes aim at retrieving the value of several performance
indicators of the target system at a given instant, averaged
over a time frame, or signaled when specific events occur.
The results of monitoring activities constitute a structured
tabular data baseline. Different performance indicators, or
system features, can be targeted depending on the specific
task, ranging from hardware or low-level [65], system-level
[62], environment [25], or application-level monitoring
[28]. Noticeably, features should describe the behavior of
the system without being affected by the specific setup of
an experimental campaign. As a specific case, IP Addresses
should be disregarded when training intrusion detectors,
since we can hardly assume to know the IP address of the
attacker(s).

The resulting tabular dataset has specific properties
compared to other tabular datasets. Particularly, features
can hardly be considered independent as they describe
different viewpoints of the same system or different areas
of the same system. This may become a problem whenever
applying classifiers that are known to perform well
under the assumption of (linear) independence amongst
features. Moreover, anomaly-based error and intrusion
detection datasets for critical systems are usually collected
by exercising a monitoring system over a quite stretched
timespan: thus, they will have many data points but not as
many features, which hardly exceed hundreds. Monitoring
thousands of features every time may be possible, but it will
critically slow down the execution of the regular tasks of
the system, which should not be negatively impacted by
monitoring and logging activities.

2.3 � Classification of Tabular Data

A tabular dataset can be provided to ML algorithms, which
will use it to learn how to classify normal against anomalous
system behavior, and ultimately detect errors or intrusions
through binary or multi-class classification. More formally,
a classifier clf first devises a mathematical model from a
training dataset [13], which contains a given amount of data
points. Each data point dp contains a set of f feature values,
where each feature value is a floating point number dpj with
0 ≤ j < f and describes a specific input of the classification
problem. Once the model is learned, it can be used to predict
the dp_prob probabilities of the data point belonging to each
class of the problem, of which the class with the highest
probability is assigned as dp_label of the new data point,
different from those in the training dataset. The classification
performance is usually computed by applying clf to data
points in a test dataset and computing metrics such as

accuracy [45], i.e., the percentage of correct predictions of
a classifier clf overall predictions.

The vast majority of ML algorithms that have been used
for decades to tackle classification tasks are supervised
classifiers (Le, Patterson and White, 2018; [30, 46, 47]).
Those classifiers require training data for which the label
(also called class) is known. Depending on the way they
learn their model, supervised classifiers are usually
partitioned into tree-based classifiers (mostly Decision Trees
to build ensembles such as Random Forests [16],Geurts,
Ernst and Wehenkel, 2006) or XGBoost [19]), statistical
techniques [39], distance-based learners [48], or neural
networks (DNNs, (Le, Patterson and White, 2018; Souza
et al., 2024)). DNNs are supervised classifiers that contain
multiple hidden layers (deep networks) to learn different
features with multiple levels of abstraction (LeCun,
Bengio and Hinton, 2015). Those classifiers learn complex
representations of features during training, creating a neural
network composed of multiple layers that build upon such
increasingly informative features. This guarantees excellent
performance when classifying unstructured data such as
images, streaming data, or object detection. However, many
studies argue about their performance in classifying tabular
data. For instance, Intel advocates [79] that XGBoost shows
better classification performance than DNNs when dealing
with tabular data. This is confirmed by [32], where authors
justify the supremacy of tree-based classifiers against deep
learners when processing tabular data stating that they adapt
well to specific features of tabular data: irregular patterns
in the target function, uninformative features, and non-
rotationally-invariant data where linear combinations of
features misrepresent the information. Conversely, authors
of [5] present a DNN that is optimized for tabular data
and outperforms tree-based classifiers in some datasets.
Similarly, the authors of Neural Oblivious Decision
Ensembles (Popov, Morozov and Babenko, 2020) claim
that their method is the first successful example of DNN
that substantially outperforms gradient-boosting classifiers
on tabular data. FastAI [35] can efficiently classify tabular
data thanks to a custom pre-processing of features, which
are treated differently whenever they describe categories or
continuous numerical values.

Instead, unsupervised classifiers [29, 57] do not require
any prior knowledge of the labels. This makes them suitable
[94] for the detection of known and unknown errors,
anomalies, and attacks, but only for binary classification
problems where there is a majority class (i.e., normal data)
and a minority class (i.e., anomalies). Over the years, many
unsupervised algorithms have been proposed, studied, and
compared to derive similarities or differences, identifying
families of classifiers as clustering, density-based, angle-
based, statistical, and neural networks.

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

2.4 � Features and Feature Ranking

The baseline upon which classifiers learn how to label a
data point is the features, which are defined as “individual
measurable properties or characteristics of a phenomenon
being observed” [13]. Each data point contains values for
each feature engineered from monitored system indicators.
Additional attributes, called meta-features, can be further
extracted from the corresponding dataset during the process
[70]. Not all features carry the same information content,
whereas some of them may just represent noise. This aspect
is usually quantified thanks to Feature Rankers or Selec-
tors [40]: given a set F of features, a feature ranker fr is a
function value_f = fr(f), f ∈ F, value_f ∈ [0, 1].

The resulting value_f is a number that allows for a relative
ordering of features from the most to the least relevant,
allowing the selection of those that contribute the most to
predict the correct label (i.e., feature selection). Typically,
value_f is a ℝ number, but can be easily normalized in a
[0, 1] range where 0 means “no information” and 1 means
“maximum information”.

There are many options [40] for ranking and selecting
features: embedded feature rankers depend on the classifier
to be used at a later stage, whereas filter-based and wrapper-
based feature rankers assign relevance scores to features
without being specific to any classifier. Our study aims to
predict the classification performance achievable with a
dataset, independently of the classifier to be used afterward.
As such, we will employ filter and wrapper-based feature
rankers, disregarding embedded feature rankers that will
unavoidably tie our prediction strategy to a specific classifier.

2.5 � Filter‑Based Ranking

Many strategies can rank features according to statistical
filters. Statistical filter-based rankers have a common
structure: they aim at computing a correlation between
the feature values and the label to be predicted. As such,
statistical rankers do not account for interactions between
features but only account for statistical correlation or
similarity between individual features and the label.
Examples include but are not limited to Chi-Squared
correlation [20], R-Squared correlation [55], Pearson
correlation [88], ANalysis Of VAriance (ANOVA) rank [64],
Spearman rank [89], Cosine Similarity [86], Information
Gain [91].

2.6 � Relief‑Based Ranking

In addition to statistical rankers, another important family
of filter-based rankers stems from the Relief [84] algorithm.
This strategy for feature selection was developed thirty

years ago to quantify feature relevance in a dataset using
the difference in feature values between similar data points.
The bigger the observed difference in a pair of data points
with the same class, the lower the feature rank; alternatively,
observing a small difference in feature values in similar data
points makes the feature rank grow. The data deluge we
witnessed in recent years combined with the polynomial time
complexity required to compute Relief made this approach
obsolete at least in its original formulation. Nowadays,
Relief is computed on a small subset of the original dataset,
and often according to variants such as Spatially Uniform
RelieF (SURF [31]), MultiSURF [84], or TUned RelieF
(TURF) which slightly speed up the whole feature ranking
and selection process.

2.7 � Wrapper‑Based Ranking

Wrapper rankers demand the ranking workload from an
external classifier. Feature values and labels are used to
make the external classifier learn a model: the relevance
each feature had in building that model is then used as
feature rank. Wrapper-based rankers are usually more
computationally expensive than filter-based counterparts
(especially the statistic ones) as they require training a
classifier. Any classifier can be used to build a wrapper-
based feature ranker: commonly used rankers wrap either
Random Forests [16] or Linear Regressors [23],Behera et al.,
2023). Depending on the characteristics of the classification
problem e.g., linear vs non-linear, the analyst may prefer
going one way or another or wrapping yet another classifier
for ranking.

2.8 � Metrics to Evaluate Classification Performance

The detection performance of binary classifiers is primarily
evaluated through a confusion matrix, thus calculating
TP, TN, FP, and FN. Those four items can be aggregated
into a wide variety of compound metrics [45] as False
Positive Rate (FPR), Precision (P), Recall (R), F-Measure
(F1-Score, or F1), F2-Score (F2), Matthews Coefficient
(MCC), Accuracy (ACC), Area Under ROC Curve (AUC),
which are widely adopted when calculating classification
performance of binary classifiers. Out of all the available
metrics, it is acknowledged [21] that Accuracy should not
be used to evaluate classifiers when datasets are unbalanced,
or rather when there are many normal data points and only a
few anomalies. For example, a classifier that always answers
“normal” will result in 99% accuracy when testing a dataset
where 99% of data points are normal: this does not reflect
how “good” such a classifier is. Conversely, MCC equals 0
in this situation, quantifying the classification performance
of this “silly” classifier as random guessing. Furthermore,
some compound metrics do not account for all 4 classes of

	 T. Zoppi et al.

the confusion matrix. For example, F-Measure and all the
F-Scores do not use TN to compute their score, leaving an
important group of predictions out of the picture.

This is even more important when looking at multi-class
classification, which has many classes that may be more or
less likely depending on the problem. In addition to MCC,
multi-class classifiers are often evaluated through balanced
accuracy [17], which weights scores related to each class
with its posterior distribution, making for an overall fair
evaluation metric, or using the Area Under the ROC curve
(AUC).

2.9 � Quantifying Task Complexity

Previous studies conjectured that when data points
have different labels but feature values that are not
distinguishable, the task becomes very complex and prone
to misclassifications. This was quantified [34, 49, 58]
using c-measures, which were first formulated by Ho and
Basu [34]as follows.

•	 Measures of overlaps in the feature values from different
classes. They measure how features separate examples
of different classes. Measures include the maximum
Fisher’s discriminant ratio (F1), the overlap of the per-
class bounding boxes (F2), the maximum (individual)
feature efficiency (F3), the directional-vector maximum
Fisher’s discriminant ratio (F1v), and the collective
feature efficiency (F4).

•	 Measures of class separability. They estimate to what
extent the classes are separable by examining the class
boundary. This translates into the minimized sum of the
error distance of a linear classifier (L1), the training error
of a linear classifier (L2), the fraction of points on the
class boundary (N1), the ratio of average intra/inter class

nearest neighbor distance (N2), and the leave-1-out error
rate of the 1-nearest neighbor (N3).

•	 Measures of geometry, topology, and density of
manifolds. They provide an indirect characterization of
class separability as nonlinearity of i) a linear classifier
(L3) and ii) one-nearest neighbor classifier (N4), the
fraction of maximum covering spheres (T1), and average
points per dimension (T2).

C-measures are very useful in determining if and how
class boundaries are well-separated, and thus they can be
used to select features [49]. However, they cannot be used
straightforwardly to predict classification performance. This
was motivated in [58], where authors attempted to identify
correlations of c-measures against Accuracy and Area Under
ROC curve (AUC) that resulted from the application of 4
classifiers on different microarray datasets. They conclude
that c-measures and resulting accuracy/AUC values are only
loosely coupled and cannot be used to precisely estimate
metric values.

There are indeed a couple of works that quantify the
complexity of a dataset using means other than c-measures.
In [50], authors propose complexity descriptors to explain
the geometrical distributions of classes in the feature space
and the advantages of adopting artificial data sets synthesized
according to the distribution of classes. Instead, the work
[61] shows how the classification error of ensembles of
k-NN classifiers is linked to the complexity of a dataset,
refining the N2 and N3 c-measures. Unfortunately, neither
[61] nor [50] draft strategies to predict the classification
performance of classifiers or hint at mechanisms to use those
complexity measures for means other than comparing the
structure of different datasets.

System
Monitoring

Feature /
Data

Engineering

Rework

Process to

Improve

Classifier

Deploy
Decision

Deploy Classifier

Performance
Evalua�on and

Comparison

Time
Required

Expertise
Required

Stakeholder,

Domain Expert

Domain Expert

Domain Expert

Stakeholder,

Domain Expert

System
Monitoring

Feature /
Data

Engineering

Rework

Process to

Improve

Classifier

Deploy
Decision

Deploy Classifier

Performance Evalua�on
and Comparison

Time
Required

Expertise
Required

Stakeholder,

Domain Expert

Domain Expert

Domain Expert

Stakeholder,

Domain Expert

Predic�on of Classifica�on
Performance

Good?

Stakeholder,

Domain Expert

Executed only if Classifica�on Performance is predicted to be good enough

Fig. 1   Workflow for deploying an classifier for a system. The typical process, from [6], is on the left (Fig. 1a), while the process we propose,
integrates a strategy to predict classification performance, is on the right (Fig. 1b)

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

Overall, there is a strong need to investigate different
approaches to predict classification performance and
quantify metric values to be achieved by classifiers.

3 � A Workflow for Predicting Classification
Performance

3.1 � The Process for Deploying Classifiers

The process of developing a classifier for conducting a spe-
cific task in a given system typically follows a workflow
composed of different steps [6]. Figure 1a shows a workflow
that stems from research papers but also adds information
about the timing required to complete each step alongside
the expertise required by the system designer. The workflow
is composed of 4 main steps we summarize below.

System Monitoring. The design and development of
learning-based systems usually starts with the acquisition
of a representative dataset. This has to be obtained by the
stakeholder – system owner – by monitoring the target
system during normal operations over a period of time,
collecting performance indicators such as resource usage,
system-level or application-level activity. When planning
monitoring activities, the stakeholder and the data analyst,
or domain expert, should carefully choose the relevant areas,
software, hardware or interfaces to monitor, to maximise
the information content that is being gathered by monitors
during operation. Often, the system gets stress tested while
being monitored, to log how performance indicators react to
anomalies: this provides information that will be extremely
useful when training classifiers. The monitoring strategy is
usually set up by the stakeholder (who owns the system and
most likely already monitors some key components of the
system) alongside the domain expert (e.g., ML expert, data
analyst). Both are also responsible for labelling monitored
data in case labels will be needed for training classifiers.

Feature / Data Engineering. Collected data needs to be
structured, pre-processed, and normalized whenever needed.
This step is critical as most of the datasets had multiple
data points with missing or mistyped values, or even some
observations using different units of measure within the
same feature. The pre-processing activity also aims at
removing those features that are constant, do not carry
information content (e.g., duplicate features with different
names, or features that are a simple linear combination of
existing features), and removing duplicate label columns,
which may negatively affect the overall analysis. Textual or
categorical features – if any—are analysed individually to
understand if they should be discarded (e.g., the ID/Code of a
device), or transformed using strategies as one-hot encoding
or entity embedding [71]. This process could also create
further meta-features to be provided to classifiers alongside

existing features coming from monitoring activities i.e., each
monitored performance indicator provides at least a feature
for detection. r

Performance Evaluation and Comparison. According
to the “free lunch theorem”, there exists no universal
learning algorithm that outperforms all other approaches
in general [85]. As such, it is vital to compare as many
classifiers as possible and choose the one that shows the best
performance on a specific test set. In this step, the domain
expert has to conduct massive work for selecting classifiers,
discovering optimal values for hyper-parameters, training,
testing, and comparing the metric scores they achieve.

Deploy Decision. The results of the previous steps
are used to decide if the system will benefit from the
introduction of the classifier or if the process needs to be
reworked to be useful in practice. The potential improvement
in performance is quantified by the domain expert, which
sends their proposal to the stakeholder, who, in turn, knows
the requirements that shall be met per applicable standards
and deploys the final decision. For example, standards such
as the IEC61508 [11, 80] define that the probability of
failure on demand (Braband, Vom Hövel and Schäbe, 2009)
of some components should not exceed a given threshold.
Should the classifier fail (e.g., false positives, false negatives,
or misclassifications in general) too frequently, we may need
to rework (left of Fig. 1) the whole process that involves all
the previous steps of the workflow, potentially needing to
start again from scratch.

3.2 � On Predicting Classification Performance

Failing to deploy a classifier due to poor classification
performance has a detrimental impact on the whole system
engineering process. In this case, both the stakeholder and
the domain expert have wasted a lot of time, resources, and
thus money to craft a classifier that never had the potential
to be deployed in a real system. It would have been better to
suspect such a decision in advance: this way, the stakeholder
and the domain expert may have been focusing more on
monitoring relevant features or on a more sophisticated
feature engineering process rather than wasting time in
performance evaluation and comparisons, which is the most
demanding step of the whole workflow in Fig. 1a.

Figure 1b shows how a strategy to predict classification
performance could interact with the typical workflow. This
prediction strategy necessarily needs to be fast to execute
and should quantify the performance of classifiers that
will be trained using data obtained from monitoring the
system and after the feature engineering step. Performance
Evaluations and Comparisons will be conducted only if the
prediction satisfies the requirements set by the stakeholder,
or by standards applicable in the domain. Otherwise, the

	 T. Zoppi et al.

stakeholder and the domain expert will focus on improving
data rather than exercising classifiers, saving key time.

4 � Feature Rankers to Predict Classification
Performance

In this section, we present and formalize our strategy to
predict classification performance.

4.1 � Formal Definition of the Prediction Strategy

We provide a more detailed description of the prediction
strategy below. We define:

•	 F, a set containing k dataset features and their values for
each of the data points in the dataset,

•	 FR = {FRi, 1 ≤ i ≤ n}. a set of n feature rankers,
•	 met. the classification metric to be predicted for a dataset,
•	 type ϵ {multi, sup-bin, uns-bin}, the type of classifier

(either supervised or unsupervised, binary of multi-class)
we want for a given task.

F, FR, met, and type are inputs to the prediction of the
classification performance and are shown on the left of
Fig. 2a. From top to bottom in the same figure, we observe
the following.

Each feature ranker FRi calculates the rank for each of the
k features in F. This creates a k-tuple ri as follows.

(1)
ri = FRi(F) =

{

value_f = FRi(f), f ∈ F
}

, 1 ≤ i ≤ n,
with|

|

ri|| = |F| = k

Having n feature rankers FR, a total of n k-tuples are
produced as in Eq. (1). However, our prediction strategy
should apply to any tabular dataset: thus, we need to find
a way to normalize feature rankings into a set of m items
regardless of the amount k of features contained in the
dataset. In any other case, there will be no way to have a
unique predictor of a metric value for any tabular dataset,
as the number of rankings assigned by feature rankers
will vary a lot. In other words, we need one or more
normalization steps NORM = {NORMz, 1 ≤ z ≤ ns}, where
each normalization step NORMz reworks each ri into a
normalized score NSiz ∈ ℝ as in Eq. (2).

This normalization step has to be planned carefully to
avoid loss of information compared to using feature ranks
ri as they are provided by feature rankers. First, we take
rankings ri and sort them from the most relevant to the least
relevant rank. Sorted ranks can then be aggregated into a
wide variety of normalized scores: examples include, but are
not limited to: best rank, average of the best 3/5/10 ranks,
and sum of all ranks. The union of normalized scores NSiz
for each i and z builds Feature Data

FD will constitute the input to a regressor Reg_met@type
that will output a continuous number

which quantifies the predicted value of the metric met for
classifiers for a classification problem of a given type. Many
regressors can be crafted depending on the met and type in

(2)
NSiz = NORMz

(
ri
)
= NORMz

(
FRi(F)

)
, 1 ≤ i ≤ n, 1 ≤ z ≤ ns

(3)FD =
{
NSiz, 1 ≤ i ≤ n, 1 ≤ z ≤ ns

}
, |FD| = n ⋅ ns

(5)pred_met@type = Reg_met@type(FD)

Feature

Rankers FR

Prediction of Classification Performance

Metric met

Features F

Good?

…
r1 r2 rN

FR1 FR2 FRN

NORM1 NORM2 NORMns

FD

Calculating Feature Data

Normaliza�on steps NORM

Type type

pred_met

@type

Regressors

REG

Select

Reg_met@

type

2 Feature

Rankers FR =
{FR1, FR2}

Prediction for D
ataset 2: m

ulti-class (3 classes), w
ith 4 features

Metric MCC Select

Reg_MCC@

multi

Good?

r1 r2
FR1 FR2

FD

Type multi

pred_MCC

@sup-multi

Good?

LabelF4F3F2F1
Normal12325%0.232

a�ack123134%0.223

a�ack231234%0.091

Pr
ed

ic
tio

n
fo

r D
at

as
et

 1
: b

in
ar

y
(2

 c
la

ss
es

),
w

ith
 3

 fe
at

ur
es

2 Norm.

Steps NORM =

{NS1, NS2}

NORM1 NORM2 NORM1 NORM2

Type sup-bin

Select

Reg_MCC@

sup-bin

r1 r2
FR1 FR2

FD

LabelF3F2F1
Normal25%0.232

Anomaly34%0.223

Normal34%0.091

0

NORM1 NORM2 NORM1 NORM2

pred_MCC

@sup-bin

Regressors REG

Fig. 2   Detail of our strategy to predict classification performance. On
the left (Fig. 2a) we depict an high-level view of the strategy, while
on the right(Fig. 2b) we show two examples using datasets with dif-

ferent structure and different problem (binary and multi-class classifi-
cation), targeting MCC as metric to predict

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

Eq. (4), building the REG set of regressors. Details on the
regressors and their instantiation are in the next section.

Let us clarify this formal definition through the examples
in Fig. 2b. The figure shows the flow of data from the
beginning to the end of the prediction strategy using two
datasets: one with 3 features and 2 class labels, another
with 4 features and 3 class labels. In both cases, features
are processed by two generic feature rankers FR1 and FR2,
thus n = 2. Each delivers its rankings for each dataset feature:
thus, the rankers will deliver 3 values each for the first
dataset on the left of Fig. 2b, and 4 values each for the other
dataset. Now, we employ two normalization steps NORM1
“best ranking” and NORM2 “sum of all rankings”, ns = 2.
Regardless of the number of dataset features, NORM1 and
NORM2 will output a single value for each feature ranker,
creating a FD of n*ns = 2*2 = 4 items for both datasets.
Then, we have to choose the regressor that knows how to
predict a specific metric for a specific task. Here, we target
the MCC metric and want to predict the metric value for
supervised classifiers: these will be binary classifiers for
the first dataset, which has two classes (normal, anomaly),
and multi-class for the other dataset, which has 3 classes
(normal, attack1, attack2).

4.2 � Regressors to Predict Classification
Performance

Regression is defined as [23] “a set of statistical processes
for estimating the relationships between an outcome
variable and one or more independent variables” (i.e.,
features). Typically, regression models (regressors) are
implemented as supervised ML algorithms (Behera et al.,
2023) that predict a numeric ordinal label rather than a class.
This perfectly fits the prediction of metric values, which are
always expressed as a numeric value, usually in the range
[0; 1].

Our study aims at predicting the value of a given metric
met that will be achieved by the best classifier to perform
a given dataset or system: this is the classifier that will be
deployed if requirements are met. Therefore, we expect
regressors to predict an estimation of the value achieved
by the best classifier for a given task and a metric met.
Training regressors require a dataset composed of the FD
for many datasets and the associated metric value that has
to be computed and works as the ground truth. This requires
running several ML algorithms, computing metric values,
and comparing them to choose the one that achieved the best
value of a given metric in each dataset. Whereas this process
is tedious, time-consuming, and requires domain-specific
expertise, it is required only for generating training data:
once the regressors are trained, they only need Feature Data
(classifier-agnostic) to predict classification performance for
any tabular dataset.

4.3 � Observations

We conclude this formal definition by pointing out the
following observations.

•	 The size of FD does not depend on the number k of
features contained in F thanks to the normalization
step. Instead, FD always contains n*ns values to be
provided to the regressors, with n being the number
of feature rankers and ns the number of normalization
steps. Once trained, regressors can be applied to datasets
with different amounts of features without requiring any
additional tuning.

•	 The outputs of a regressor for a given task are
independent of the classifier to be used at a later stage
and represent the highest expected metric value for a
given problem. This simulates the deployment of the
best classifier out of a set of candidate classifiers that are
exercised and compared according to metric values.

•	 Feature selection and ranking is of utmost importance in
any feature / data engineering process and are computed
by design in many data analysis processes. The prediction
strategy partially exploits this existing information,
minimizing its overhead compared to the usual analysis
process.

5 � Experimental Campaign

This section describes the experimental campaign to craft
our strategy to predict classification performance, paving the
way for discussions in the next section. The section develops
as follows:

•	 Sect. 5.1 describes the datasets we used in our
experimental study, and details our process for creating
variants of such datasets for the purpose of data
augmentation.

•	 Sect. 5.2 and Sect. 5.3 describe how we implemented
the feature ranking FR and normalization steps NORM
to generate Feature Data.

•	 Sects. 5.4 to Sect. 5.6 elaborate on how we trained
regressors REG to predict classification performance.
Section 5.4 and Sect. 5.5 show how to generate labels
for training the ML algorithms we use as regressors we
list in Sect. 5.6.

•	 Finally, Sect. 5.7 describes the methodology to conduct
experiments, and the machinery we used to implement it.

	 T. Zoppi et al.

5.1 � Error, Attack and Failure Datasets

There are a wide variety of data to be classified to improve
ICT systems, ranging from devices data in Internet-of-
Things (IoT) or Industrial Control Systems (ICS), network
data for intrusion detection, or hardware monitoring data.
Amongst those many alternatives, we consider 23 datasets as
data baseline for this study: 11 datasets of network intrusion
detection, 5 datasets related to hardware monitoring for
failure prediction, and 6 datasets related to error and anomaly
detection in IoT and ICS systems. Table 1 summarizes the
datasets involved in this study, reporting domain, name, year,
number of data points, number of features, and categories
of anomalies, errors or attacks. All datasets are labelled,
in CSV format, and were cropped to 200 000 items for the
feasibility of our study.

Importantly, datasets always have a “normal” class
and at least another class. This allows conducting binary
classification even in datasets with multiple labels: in this
case, the label is converted into a binary label separating the
normal against all other classes (seen as a unique “anomaly”
class).

5.1.1 � Network Intrusion Detection (NIDS)

We selected labelled datasets on network intrusions looking
in surveys [69], Kaggle, UCI, Zenodo, IEEEDataport and
other online portals. Our selection process resulted in the
following datasets: ADFANet [68], AndMal17 [41], BAIoT
Doorbell [54], CICIDS17 [33], CICIDS18 [33], CIDDS
(Sharafaldin, Habibi Lashkari and Ghorbani, 2018), IoT
Network (Kang et al., 2019), ISCX12 [78], NSLKDD [82],
UGR16 [51], UNSW-NB15 [59]. All those datasets report
normal data points and data points collected while the
system is under attack. Features are mostly numeric features
extracted by monitoring network flows and packets (e.g.,
bytes received per second, number of packets).

5.1.2 � Hardware Failure Prediction

Classifiers may also spot anomalies that could potentially
anticipate the failure of hardware components. To include
that, we gathered datasets related to performance monitoring
of hard disks that label each data point as corresponding
to failure if the monitored hard drive was in a fail state or
going to fail thereafter. BackBlaze [8] makes many years of
hard drive data available to the public, reporting labeled data
related to many SMART indicators of hard drives, while

Table 1   Name, release year,
number of attack types, number
of portions, and the amount of
features f of used datasets

Domain Dataset name Year Categories of
anomalies

Features Number of
data points

Network intrusion detection ADFANet 2015 5 3 132 002
AndMal17 2017 4 75 100 522
BAIoT Doorbell 2018 5 115 75 165
CICIDS17 2017 4 75 200 000
CICIDS18 2018 5 75 200 000
CIDDS 2015 4 7 200 000
IoT Network 2019 9 8 210 425
ISCX12 2013 4 6 200 000
NSLKDD 2009 4 37 148 517
UGR16 2016 5 7 207 256
UNSW-NB15 2015 8 38 165 461

HW monitor BackBlaze 2017 2017 1 50 32 678
BackBlaze 2019 2019 1 44 47 525
BackBlaze 2021 2021 1 37 44 950
[8] 2023 1 35 70 512
BAIDU 2017 1 12 186 049

Error / anom. detection Arancino Device 2023 9 119 154 000
HAI Pressure 2019 1 54 200 000
HAI ICS 2023 1 224 54 000
MAFAULDA 2018 1 8 200 000
Mechanical Failure 2018 1 18 7 906
Metro PT 2022 2 20 173 824
Scania Trucks 2016 1 170 76 000

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

another source of hard drive data came from the BAIDU
(Baidu Inc, no date) competition whose input datasets are
still available for download.

5.1.3 � Error/Anomaly Detection

The last group of datasets we consider comes from IoT or
ICS systems: distributed control systems of a power plant
controlling a turbine [76],Shin Hyeok-Ki; Lee and Min,
2023), malfunctions of metros in Portugal [22], railroad
trucks equipped with sensors to monitor brake pressure
(‘APS Failure at Scania Trucks’, 2017), an edge device
monitored for errors (Zoppi et al., 23AD), the mechanical
failure of electrical machinery in power plants [1], and a
simulated multivariate time series acquired by sensors on a
SpectraQuest's Machinery Fault Simulator [53].

5.1.4 � Preprocessing

We transform the tabular datasets into CSV files with a
tabular structure. ISCX12, IoT Network, and UNSWNB15
are available only as a collection of monitored PCAP
network packets, which we convert into CSV format using
tshark. Then, we remove features that are specific to the
setup that was followed to gather data, namely: Timestamp,
ID, and experiment number, if any. Those features should
be disregarded for classification purposes as they carry
information about the experiments to build the dataset:
classifiers using these features may learn how experiments
were made instead of how the system behaves. Lastly, we
zero-filled all blank values in the BackBlaze datasets.

5.1.5 � Data Augmentation: Variants of Datasets

We gathered as many datasets as possible to provide a solid
baseline to set up and train our strategy to predict classifica-
tion performance. Unfortunately, even after such an effort,
we only have 23 datasets from which we can calculate fea-
ture rankings and use them to train and test our predictor.
Therefore, we figured out a way to create variants of each
dataset (depicted in Fig. 3), which we will be considering
as additional datasets.

Particularly, we created variants of each dataset that
contain only a subset of features plus the label. As can
be seen in Fig. 3, the resulting variants contain the same
amount of data points, but only a portion of the features of
the initial dataset. This allows the creation of many variants,
especially if the initial dataset has many features. Noticeably,
creating variants containing only a few features may create
variants where data points contain too little information to
be considered relevant for our analysis. We experimentally
found our sweet spot in creating variants that contain at least
3 features. This means that datasets that have less than 4
features (i.e., ADFANet) will not be used to create variants.

This way, we created 557 variants that, alongside the 23
initial datasets, led the overall number of datasets to be used
to train and test our prediction strategy to 580.

5.2 � Feature Rankers and FRAPPE

We identify 12 feature rankers based on literature reviews.
Unfortunately, there is no available framework that allows
computing scores of such a wide variety of feature rankers
on the same dataset according to a unified methodology.
Therefore we created FRAPPE (Anonymous, no date), a
Python library that exercises Feature RAnkers to Predict
the classification PerformancE of classifiers. FRAPPE wraps
feature rankers from many Python packages, mainly Scikit-
Learn, SciPy, and SKRebate, which are being invoked with
the same input data and are used to collect metric scores
according to a rigorous interface. We introduce each of
these feature rankers, grouping them into statistical (SR),
Relief-based (RR), or wrapper-based (WR) rankers, and
summarize their computational complexity with insights
on their implementation.

5.2.1 � Statistical‑Based Rankers (SR)

	SR1.	R-Squared correlation quantifies the linear correlation
between two arrays or data series. It measures the
proportion of variation in the dependent variable that
can be attributed to the independent variable [55] with
a score ranging from 0 to 1 (max correlation).

	SR2.	Cosine Similarity [86] considers two arrays as vectors
in an inner product space and computes the cosine of

Fig. 3   Data Augmentation used in this work: partitioning features and
creating datasets variants

	 T. Zoppi et al.

the angle between those two arrays, which therefore
ranges from -1 to 1.

	SR3.	Spearman Rank [89] assesses how well the bond
between two variables can be described using a
monotonic function. A perfect Spearman correlation
of + 1 or -1 occurs when each of the variables is a
perfect monotone function of the other.

	SR4.	Chi-Square [20]: performs a statistical test that aims
at verifying an independence hypothesis between two
arrays. Typically, this test has a boolean outcome, but
there are also implementations that quantify the degree
of independence and that therefore can be considered
as a rank.

	SR5.	Pearson Correlation [88] calculates Pearson
correlation between two arrays as the ratio between
the covariance of two arrays and the product of their
standard deviations,in other words, it is a normalized
measurement of covariance in the range [-1; 1].

	SR6.	Information Gain [91] stems from the Kullback–
Leibler divergence and quantifies the amount of
information gained about a variable from observing
another variable. It measures the decrease in entropy
when the feature is given with respect to when it is
discarded.

	SR7.	ANOVA [64]: the ANalysis Of VAriance (ANOVA) is
used to analyze differences in means between groups.
Particularly, ANOVA is designed for situations where
at least one of the two arrays does not comply with a
normal distribution.

5.2.2 � Relief‑Based Rankers (RR)

	RR1.	Relief [84] is known since a long time as an accurate
yet computationally and memory-expensive algorithm
to calculate feature ranking. Original Relief was
limited to only two-class problems, but has since been
extended to multi-class problems and originated a wide
variety of alternative implementations.

	RR2.	SURF (Spatially Uniform ReliefF [31]) is an extension
of Relief that is more effective in quantifying the
correlation of features in noisy datasets.

	RR3.	MultiSURF [84] further extends SURF, performing
better than Relief for identifying pure dependencies
between features, and yields the most reliable feature
selection performance across a wide range of problem
types.

RR rankers are known to be very slow; they cannot
process a whole dataset in a reasonable time. Consequently,
we calculate them on a maximum of 10 000 data points for
each dataset and variant. This motivates the * matched to the
RR1, RR2, and RR3 rankers in 2: computational complexity
in the table uses a variable ds as the size of the dataset,
but this never exceeds ds = 10 000 in our experiments when
using RR Relief-based rankers.

5.2.3 � Wrapper‑Based Rankers (WR)

Wrapper-based rankings rely on an external classifier which
is trained for the sole purpose of deriving feature importance
for building their model. Almost any classifier can be used as
a wrapper-based ranker. For our study, we wrap two differ-
ent classifiers: the tree-based Random Forests (WR1, [16]),

Table 2   Summary and Computational Complexity of Feature Rankers, where ds = “data points (row) in the tabular dataset”, f = “number of fea-
tures” =|F|

Tag Ranker Name Compl. O() Comment to the complexity analysis

SR1 R-Squared f2(ds + f) Uses minimum least squares for linear regression and extract R2

SR2 Cosine ds · f Performs an array to array multiplication, repeated for each feature
SR3 Spearman ds · f Computes two averages and 2ds differences for each feature
SR4 Chi Squared ds · f SKLearn implementation performs Chi-squared in O(ds·f)
SR5 Pearson ds · f Array to array computation, repeated for each feature
SR6 MutualInfo f· ds ·log(ds) SKLearn implementation uses neighbour-based optimization with k = 3
SR7 ANOVAF ds · f SKLearn has a 1-way ANOVA F-test we iterate for each feature
RR1* Relief ds (f + log(ds)) Implementation in skrebate runs constant iterations. It uses a K-D tree to speed-up as much as possible

its computational time
RR2* SURF ds2 · f The skrebate package does not provide optimized implementations as for the base version of Relief,

thus complexity gets slightly higher
RR3* MultiSURF ds2 · f
WR1 Random Forest f· ds ·log(ds) Feature Selector uses nt = 100 in the forest, no depth limit on trees which are built using a tenth of the

overall number of training data points n
WR2 Lin Regression f2(ds + f) Using minimum least squares to compute regression and extract coefficients

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

and the Linear Regressor (WR2, (Behera et al., 2023)).
They follow two completely different learning processes
and thus provide very different viewpoints on feature rank-
ing. The computational complexity of those wrapper-based
feature rankers in 2 has to be interpreted according to three
observations:

•	 Computational complexity in the table refers to the
training phase of wrapped classifiers and regressors,
which is heavier than the test phase for all WR.

•	 Wrapped classifiers and regressors are trained and
tested with a 50–50 split, so the n in Table 2 is half the
size of the dataset. This does not impact computational
complexity but it significantly reduces the actual time
needed to compute WR rankers.

5.3 � Normalization of Ranks

We employ a set of normalized scores NS of 6 items as
follows. The first item s1 is the score assigned to the most
relevant feature in F by a given feature ranker. The second,
third, and fourth items s2, s3, s4 are the average scores of the
3, 5, 10 features in F that are more relevant according to a
feature ranker. Lastly, we compute s5 and s6 as the average
and the sum of all ranks. In other words:

NS = {s1: best feature score, s2: average of the best
3 feature scores, s3: average of the best 5 feature scores,
s4: average of the best 10 feature scores, s5: average of all
feature scores, s6: sum of all feature scores}.

Note that s2, s3, s4 can be calculated even if there are
fewer ordinal features (i.e., |F|< 3 / 5 / 10) than those needed
to calculate averages. In this case, the average is calculated
by using all the available features. Normalization of scores
is already integrated with FRAPPE (Anonymous, no date)
we use to calculate scores of feature rankers.

5.4 � Supervised Classifiers

We select different supervised classifiers to analyze each
dataset and variant for creating labels to train regressors.
We are interested in selecting a subset of classifiers that
are as heterogeneous as possible to avoid exercising many
classifiers which will result in very similar outcomes. We
favor classifiers that require minimal parameter tuning to
avoid conducting random or grid searches which would
add yet another dimension of analysis, and make sure to
include those classifiers that are known to be very good at
classifying tabular data [16, 30, 79], plus other alternatives.
As discussed in Sect. 2.3, we disregard using neural networks
as they are not recommended for classifying tabular data.

Therefore, we selected the statistical Naïve Bayes Linear
Discriminant Analysis and Logistic Regression [36], as well
as the tree-based Extra-Trees, LogitBoost, and Extreme
Gradient Boosting [24],Geurts, Ernst and Wehenkel, 2006;
[19] whose implementations are all made available in the
Scikit-Learn, logitboost and xgboost Python packages.
We did not consider slow classifiers like Support Vector
Machines and K-th Nearest Neighbors (even with the kd-tree
enhanced neighbor search) as the time needed to complete
experiments was already requiring weeks.

5.5 � Unsupervised Classifiers

Then, we need to generate labels for training regressors
that predict the classification performance of unsupervised
classifiers. To do so, we select a set of unsupervised
classifiers that are as heterogeneous as possible and span
across different families of unsupervised classifiers; we
ended up selecting one algorithm for each family in [29, 94],
namely G-Means (clustering family), HBOS (statistical),
SOM (neural-network), Isolation Forests (iForest,
classification), ODIN (neighbour-based), SDO (density-
based), FastABOD (angle-based), autoencoders (neural
networks). We exercise those unsupervised classifiers by
using the library PYOD (Zhao, Nasrullah and Li, 2019).

5.6 � Regressors REG

Once feature data and classification metric values have been
calculated, we can train the regressors REG. Particularly, we
are interested in classifying binary and multi-class datasets,
with supervised and unsupervised classifiers. Thus, we will
have type ∈ {sup-bin, uns-bin, multi}. Also, we will be target-
ing the prediction of metrics that are robust to unbalanced
datasets and fit binary and multi-class classification. From
the discussion in Sect. 2.5, we choose met ∈ {mcc, auc}. The
6 combinations of type and met values result in a total of 6
regressors to be trained:

REG = {Reg_mcc@sup-bin, Reg_auc@sup-bin,
Reg_mcc@uns-bin, Reg_auc@uns-bin,
Reg_mcc@multi, Reg_auc@multi}.
Each of these 6 regressors can be implemented as one of

the supervised ML algorithms available in the literature that
are capable of predicting a numeric label. To select the best
ML algorithm for each of the 6 REG regressors, we train and
compare several supervised regressors with heterogeneous
characteristics:

•	 statistical algorithms [90], Behera et al., 2023) as Linear
Regression, Lasso Regression, Decision Trees,

•	 bagging [16], Geurts, Ernst and Wehenkel, 2006) meta-
learners (Random Forest, Extremely Randomized Trees)
and

	 T. Zoppi et al.

•	 boosting [19] meta-learners (XGBoost).

We apply each of those 6 ML algorithms for each REG
regressor and we compute the Mean Absolute Error (MAE)
and R-Squared correlation to measure their goodness of
approximation to the numeric label. The algorithm with the
lowest MAE will be chosen to implement each regressor
REG and will be used to predict classification performance.

We separated the train and test partition making sure that
datasets or variants were either in the training or in the test
set to avoid “contamination”. Overall, 17 datasets and their
variants were used as train set, letting the other 6 datasets
(with their variants) build the test set for a rough 70–30%
split. The 6 datasets in the test set were chosen as follows: 2
intrusion detection, 2 hardware failure, and 2 error detection
datasets. Then, we cross-validated the train-test process by
changing the datasets used for training and testing, noticing
only negligible changes. Prediction results presented in the
next section use one of the models created within the cross-
validation process, chosen randomly during the process.

5.7 � Methodology to Conduct Experiments

We downloaded the datasets from their repositories and
extracted the variants as described in Sect. 5.1. Then, we
processed all the resulting datasets and variants with the
FRAPPE framework (Anonymous, no date), which cal-
culates the ranks of each feature in datasets and variants
according to the feature rankers in Sect. 5.2; those are 7
statistical filter-based, 3 Relief filter-based, and 2 wrapper-
based rankers. Then, FRAPPE calculates 6 normalized
scores (see Sect. 5.3) for each feature ranker, generating
Feature Data containing 78 items (13 feature rankers * 6
normalized scores) for each of the 580 datasets or variants.
This constitutes the input of the strategy to predict classifica-
tion performance, which also requires labels for training the
regressors REG. We exercise supervised and unsupervised

classifiers in Sect. 5.4 and Sect. 5.5 on each dataset or vari-
ant using a 50–50 train-test split and calculating MCC and
AUC metric scores. Collecting these metrics scores allows
training the REG regressors (see Sect. 5.6) that will predict
classification performance. For completeness of our analy-
sis, we will also repeat the training of regressors using the
SMOGN (Branco, Torgo and Ribeiro, 2017) framework for
data augmentation through Synthetic Minority Over-Sam-
pling of the set used for training regressors. This allowed
doubling the size of the training set: however, this introduces
synthetic data that may alter the behavior of regressors and
as such it is discussed in the next section.

Experiments have been executed on an Intel Core i7-6700
with four 3.40GHz cores, 24GB of RAM, and 1TB of
storage, and required approximately three weeks of 24H
execution. All the scores and files we used in the paper are
available at (Anonymous, no date), folder “scripts”.

6 � Discussion and Implementation
of the Prediction Strategy

Here we present and discuss the prediction strategy
that results from the application of the experimental
campaign in Sect. 5. Section 6.1 elaborates on how well
our strategy predicts MCC and AUC scores of supervised
and unsupervised classifiers, whereas Sect. 6.2 discusses
on feature rankers and how they contribute to building the
prediction strategy. Section 6.3 discusses optimizations,
while Sect. 6.4 provides insights on the implementation and
practical usage of our findings.

Table 3   Mean Absolute Error
(MAE) and R-Squared for
the best regressor to predict
either MCC or AUC for
supervised (Sup-bin, multi)
and unsupervised (Uns-bin)
classifiers

Regressor ML Algorithm Typetype Metricmet SMOGN Usage MAE R-Sq

Reg_MCC@Sup XGBoost sup-bin MCC No 0.069 0.913
Yes 0.089 0.817

Reg_MCC@Unsup XGBoost uns-bin No 0.085 0.854
Yes 0.096 0.825

Reg_MCC@Multi ExtraTrees Multi No 0.071 0.905
Yes Failed

Reg_AUC@Sup Random Forest sup-bin AUC​ No 0.051 0.890
Yes 0.067 0.782

Reg_AUC@Unsup XGBoost uns-bin No 0.053 0.870
Yes 0.060 0.816

Reg_AUC@Multi XGBoost Multi No 0.050 0.892
Yes 0.060 0.808

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

6.1 � Evaluation of Regressors using all Feature
Rankers

We explore the prediction error of our strategy with the aid
of Table 3, which reports the Mean Absolute Error (MAE)
and R-Squared correlation for each of the 6 REG regressors.
For completeness of analysis, we report also scores in which
we trained regressors using the SMOGN data augmentation:
this increases the size of the training set, but has no impact
on the test set. The table immediately suggests three
discussion items.

•	 MAE scores are higher for regressors predicting MCC
(i.e., Reg_MCC@Sup-bin, Reg_MCC@Uns-bin, Reg_
MCC@Multi in the first half of the table) compared

to regressors predicting AUC (bottom of the table).
This may seem to hint at a poor approximation of
MCC compared to AUC: however, the reader should
note that AUC scores mostly fall in the range [0.5 –
1], whereas MCC usually falls in the [0 – 1] interval.
Therefore, having a higher MAE for MCC regressors
does not necessarily mean that they are not as effective
as regressors that predict AUC values. This explanation
is supported by the R-Squared correlation scores, which
hover in the range of 80—90 for all regressors.

•	 Applying SMOGN augmentation for training regressors
did not have a beneficial impact on the regression
task itself. All rows of Table 3 with a “Yes” in the
fourth column show worse scores compared to their
counterparts with “No” data augmentation. This may

Fig. 4   Scatterplots showing calculated against predicted metric scores for the 6 regressors REG. From top-left to bottom right: 4a) Reg_MCC@
Sup-bin, 4b) Reg_AUC@Sup-bin, 4c) Reg_MCC@Uns-bin, 4d) Reg_AUC@Uns-bin, 4e) Reg_MCC@Multi, 4f) Reg_AUC@Multi

	 T. Zoppi et al.

be due to a multitude of reasons: for instance, the
SMOGN algorithm did not have enough data to learn
how to generate novel data belonging to the initial
distribution, with a detrimental effect on the learning
phase of regressors. In one case the library even failed
regardless of all the tries we made (see Reg_MCC@
Multi in Table 3)

•	 For 4 out of 6 regressors, the XGBoost regressor was
the one delivering the lowest MAE and thus chosen as
the best model. From a more general standpoint, among
those exercised as candidate regressors, we observed
how Linear Regression, Lasso Regression, and Decision
Trees ended up having a noticeably higher MAE (worse
predictive capabilities) than XGBoost, Random Forest,
and ExtraTrees.

We further explore the results through the scatterplots in
4. Each of the 6 scatterplots depicts the calculated metric
score against the predicted value of a regressor in REG;
Fig. 4a and Fig. 4b show the behavior of regressors pre-
dicting MCC (the former) and AUC (the latter) scores of
supervised binary classifiers, Fig. 4c and Fig. 4d are related
to regressors predicting classification performance of unsu-
pervised binary classifiers, whereas Fig. 4e and Fig. 4f are
related to regressors predicting classification performance
of multi-class (supervised) classifiers. The diagonal black
line in each scatterplot shows the linear approximation used
to calculate the R-Squared value.

The plot in the top-left of the figure depicts the graphical
representation of the first line of Table 3. Diamonds in the
plot are mostly in the upper-right corner: those correspond
to datasets or variants where the best supervised binary
classifier got a very high MCC score, and at the same time
they were predicted to have a high MCC. On the contrary,
orange diamonds in the bottom-left corner of the plot point
to datasets or variants where no supervised classifier was
able to achieve a high MCC and that were also predicted
to have a poor MCC. Noticeably, there are diamonds in the
plot that fall far away from the black line. Those below the
line correspond to datasets or variants where the predicted
pred_MCC@Sup-bin value was inferior to the calculated
MCC: in this case, our prediction strategy overestimated the
difficulty of the dataset. Diamonds above the black line are
instead those in which the Reg_MCC@Sup-bin regressor
predicted a value that is a lot higher than the calculated
MCC, underestimating the classification performance in
the dataset or variant.

The other plots in Fig. 4 have a trend similar to the plot
we examined before. Another interesting observation is that
blue diamonds and crosses in Fig. 4c and Fig. 4d are overall
closer to the bottom left compared with the first two plots.
This is because supervised classifiers (first two plots) output

a lower amount of misclassifications than unsupervised clas-
sifiers (two plots in the middle), causing their metric scores
to be higher and overall closer to the top right of plots. The
trend for multi-class classifiers in Fig. 4e and Fig. 4f follows
that of the plots above, with no major changes.

6.2 � Contribution of Feature Rankers

Another important discussion item is related to whether
each of the 12 feature rankers in this study contributes to
predicting classification performance. Particularly, we aim
to understand if there are feature rankers that carry little to
no contribution to the prediction strategy and therefore could
be dropped to speed up the process. Table 4 shows two types
of relevance measures for each feature ranker:

•	 Score Correlation, which averages the R-correlation
between normalized scores of a ranker with the metric
value to be predicted,

•	 Feature Importance, or rather the average of relevance
scores assigned by regressors to each feature at the end
of the training process, and

•	 Time (s), the average time (seconds) needed from the
feature ranker to process a dataset or variant and compute
ranks. This varies with the size of the dataset but still
gives an actual indication of the complexity of each
ranker.

We immediately observe that SR1, SR6, RR1, and, to
a lesser extent, WR1, have higher scores for the first two
measures than other feature rankers. Feature Importance

Table 4   Correlation of normalized scores of feature rankers with met-
ric to predict (score correlation), importance as features when train-
ing regressors, and average time needed to calculate rankings

Ranker Tag Ranker Name Score
Correlation

Feature
Importance

Time (s)

SR1 R-Squared 0.142 0.004 0.081
SR2 Cosine 0.011 0.005 0.044
SR3 Spearman 0.045 0.008 0.678
SR4 Chi Squared 0.029 0.004 0.735
SR5 Pearson 0.046 0.003 0.142
SR6 MutualInfo 0.173 0.092 18.591
SR7 ANOVAF 0.009 0.011 0.196
RR1 Relief 0.143 0.011 12.652*
RR2 SURF 0.019 0.006 47.443*
RR3 MultiSURF 0.019 0.013 30.797*
WR1 RandomForest 0.041 0.021 0.318
WR2 Linear

Regression
0.006 0.004 0.224

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

(4th column) highlights that SR6 has a prominent role
when training regressors, whereas other rankers have
only a marginal contribution. Regarding the time needed
to compute scores of feature rankers, it is clear that SR6,
all RR, and WR2 are far slower than other feature rankers.
Moreover, in our experiments, we ran RR rankers using
only a small portion of datasets and variants: that is why
we starred (*) those timings in the table. The normalization
process has no impact on those relevance measures:
normalizing scores takes only a few microseconds of
execution time.

6.3 � Optimizing the Prediction Strategy

This analysis suggests the possibility of refining the
prediction strategy, improving its speed, and maintaining
similar regression performance. According to Table 4,
rankers SR2, SR7, RR2, RR3, and WR2 seem to have a
negligible impact on our strategy and therefore are a
candidate to be removed from the set of feature rankers.
Also, RR2 and RR3 are the most time-consuming rankers
and therefore it would be very beneficial to build a predictor
that does not need those two rankers when building feature
data.

However, dropping feature rankers may impact the good-
ness of predictions of our strategy: we measure it by iterating
training of regressors REG using different subsets of feature
rankers, and plot results in Fig. 5: On the x-axis, we plotted
different combinations of feature rankers used to generate
Feature Data; lines represent the MAE for the 6 regressors
in REG, while triangles show the average time needed to
compute each combination of feature rankers (plotted on the
secondary y-axis, see on the right of the plot in the figure).
We can observe an almost constant decrease in the MAE
from left to right, corresponding to using more and more

feature rankers, up to a point in which all rankers are used (at
the extreme right of the plot, MAEs match those in Table 3).
The second last combination contains all feature rankers but
those that seemed to have negligible impact on the overall
process i.e., SR2, SR7, RR2, RR3, and WR3. These MAEs
are slightly higher than those obtained using all feature rank-
ers, meaning that even the rankers that seemed to contrib-
ute little to the prediction strategy have a role in predicting
metric scores. On the other hand, this has a clear advantage
as it more than halves (57 instead of 136) the time needed
to compute feature rankings and thus predict classification
performance.

As a result, we may predict misclassifications using only
8 feature rankers (i.e., SR1, SR3, SR4, SR5, SR6, RR1,
WR1, WR2). This guarantees a very fast computation time
at a cost of a slightly higher MAE. We refer to this group
of rankers as OPT, whereas predictors using all rankers are
referred to as FULL.

6.4 � Implementing the Prediction Strategy
in FRAPPE

The regressors discussed in the previous sections are
deployed and currently available as part of the FRAPPE
GitHub repository at (Anonymous, no date). Users willing
to predict the classification performance of tabular data
classifiers have to follow the steps in Listing 1.

The FrappeInstance object is the main item for the
prediction strategy. It has to be initialized depending on
the specific task (sup-bin, uns-bin, multi), the metric to be
predicted (mcc, auc) and the specific regressors to be used,
either OPTimized or using the FULL set of rankers. Then,
the dataset has to be loaded using the function provided by
the library or custom functions. The only requirement is to
load the dataset and labels (if any, otherwise labels = None)

0

20

40

60

80

100

120

140

160

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

S
R

6

S
R

6
,

S
R

1

S
R

6
,

R
R

1

S
R

6
,

W
R

1

S
R

6
,
R

R
1
,

W
R

1

S
R

1
,

S
R

6
,

R
R

1
,
W

R
1

S
R

6
,
R

R
1

,

W
R

2
,
S

R
1
,

W
R

1

S
R

1
,

S
R

3
,
S

R
4

,

S
R

5
,

S
R

6
,
R

R
1
,

W
R

1
,
W

R
2

A
ll

 1
2
 F

R

A
vg Tim

e to C
om

pute R
ankers (sec)

M
A

E

Combinations of Feature Rankers

 MAE Reg_MCC @Sup-bin

MAE Reg_MCC @Uns-bin

MAE Reg_MCC @Multi

MAE Reg_AUC @Sup-bin

MAE Reg_AUC @Uns-bin

MAE Reg_AUC @Multi

Avg Time Feature Rank (s)

Fig. 5   Variation of MAE for the 6 REG regressors and time (sec) for different combinations of feature rankers

	 T. Zoppi et al.

as numpy ndarrays or pandas DataFrames. At this point,
we can call the pred_met function. Noticeably, using the
prediction strategy is straightforward and allows also non-
experts to use it in their research and industrial case studies.

The FRAPPE library offers a wide variety of
alternative setups to exercise feature rankers and predict
the classification performance of datasets. Also, it allows
re-training of regressors for learning to predict other
metrics or using different datasets as train baselines. Further
information can be found in the repository.

7 � Application: Predicting Classification
Performance for Different Case Studies

We predict the classification performance of datasets
belonging to different domains, even far from anomaly-
based detectors to show the generalization capabilities of
our strategy. We will be predicting MCC and AUC scores
for the following datasets:

•	 A dataset (https://​www.​kaggle.​com/​datas​ets/​jsphyg/​
weath​er-​datas​et-​rattle-​packa​ge) that contains features
from environmental monitoring in Australia and aims at
predicting is the next day will be a rainy day or not.

•	 The Titanic survival dataset (https://​www.​kaggle.​com/c/​
titan​ic), where features allow us to predict if a passenger
survived the accident or not.

•	 Airplane Satisfaction (https://​www.​kaggle.​com/​datas​ets/​
teejm​ahal20/​airli​ne-​passe​nger-​satis​facti​on), a dataset that
contains information about flights and is used to predict
if passengers will be satisfied by the flight or not.

•	 The hotel booking dataset (Antonio, de Almeida and
Nunes, 2019), in which we aim to predict if users will
cancel a booking before finalizing the booking to the
hotel or B&B.

•	 The ICU admission dataset (https://​www.​kaggle.​com/​
datas​ets/​mitis​haaga​rwal/​patie​nt), which contains data
from patients admitted in US ICUs and is used to learn
if a patient will survive or die in the ICU.

•	 The RT-IoT2022 dataset [75], yet another example of
anomaly-based intrusion detection in an IoT environment.

Throughout the process, we measured the time needed to
calculate those predictions and log the predicted MCC and
AUC scores. During the process, we also exercised classifi-
ers, sensitivity analyses, and connected activities to simulate
an effective deployment of these classifiers, measuring the
same metric scores and required time. Note that the time
that will be required in practice is usually longer than this
estimation since the process has to be set up by a domain
expert, who should also check results and monitor the pro-
cess to spot potential errors or misinterpretations of data.

Table 5   Predictions and MAE of our strategy to predict misclassifications on the 6 datasets in this section

Dataset Task type True Values Predictions Error

Name # Points # Feat Time (s) MCC AUC​ Time (s) MCC AUC​ MCC AUC​

AirplaneSatisfaction 103,904 18 bin-sup 695.2 0.894 0.945 7.9 0.813 0.907 0.081 0.038
bin-uns 456.6 0.314 0.716 7.8 0.379 0.737 0.065 0.021
multi 701.9 0.894 0.945 8.0 0.867 0.863 0.017 0.077

HotelBooking 119,390 19 bin-sup 835.4 0.657 0.810 9.0 0.790 0.894 0.132 0.084
bin-uns 480.2 0.212 0.625 9.1 0.353 0.698 0.141 0.073
multi 827.1 0.657 0.810 9.0 0.698 0.738 0.076 0.057

ICUSurvival 91,712 74 bin-sup 794.7 0.628 0.667 19.8 0.715 0.760 0.087 0.093
bin-uns 360.8 0.208 0.688 20.1 0.291 0.719 0.083 0.030
multi 790.1 0.628 0.667 20.0 0.777 0.890 0.041 0.030

RTIoT22 123,120 81 bin-sup 1342.1 0.989 0.993 30.1 0.992 0.984 0.003 0.009
bin-uns 1002.2 0.386 0.817 29.6 0.485 0.775 0.099 0.042
multi 1476.1 0.992 1.000 29.9 0.974 1.005 0.018 0.005

Titanic 890 9 bin-sup 4.3 0.659 0.814 0.4 0.757 0.895 0.099 0.081
bin-uns 2.7 0.268 0.662 0.3 0.305 0.712 0.037 0.050
multi 4.4 0.659 0.814 0.4 0.728 0.817 0.105 0.028

WeatherAUS 145,460 21 bin-sup 741.0 0.734 0.767 9.3 0.756 0.848 0.022 0.081
bin-uns 461.4 0.203 0.626 9.1 0.346 0.694 0.143 0.068
multi 760.0 0.734 0.767 9.3 0.696 0.781 0.180 0.062

MAE 0.075 0.050

https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic
https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction
https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction
https://www.kaggle.com/datasets/mitishaagarwal/patient
https://www.kaggle.com/datasets/mitishaagarwal/patient

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

Results show calculated (True Values in Table 5) and pre-
dicted (Predictions in the table) MCC and AUC scores using
classifiers for bin-sup, bin-uns, and multi tasks. For each
dataset, the table reports its size, the number of features, the
time needed to find the best classifier and the MCC/AUC it
gets, the time needed to predict classification performance,
and the MCC/AUC it predicts, plus the prediction error of
MCC/AUC on the right of each table. True values computed
for multi and bin-sup tasks are often the same: this happens
when the dataset represents a binary classification problem
(all datasets but RT_IoT22). Predicted values are instead
different as they use different regressors. We identify two
discussion items to explore.

MAE Analysis. First, we want to understand if
predictions of classification performance are close to the
actual classification performance of classifiers we exercised.
In Table 5, this is measured by the last two columns on the
right, one for MCC and the other one for AUC. On the
bottom right of the table, we computed the average of these
prediction errors (MAEs). The MAE for predictions is 0.075
/ 0.050 for MCC / AUC, which is similar to the MAEs we
presented in Table 3 and discussed in Sect. 6.1.

This is a very important observation as it shows how
well the prediction strategy generalizes to any classification
problem, even if it is not related to anomaly detection. Out
of the 6 datasets in the table, only the RT_IoT22 dataset is
closely related to the domain we used to train and validate
our predictors, but the goodness of prediction of our strategy
is still the same. Overall, our predictors are robust to domain
shifts.

Time to Predict. The time needed to exercise classifiers
(5th column of Table 5) is at least one – and sometimes
two—order of magnitude more than that needed to predict
classification performance (see 8th column of the tables).
This includes only the “experimentation time”, and leaves
out all the time needed by the domain expert to plan,
monitor, and analyze experiments and their results, which
are going to make this difference even more noticeable. This
difference is very small when dealing with small datasets
(i.e., the Titanic Disaster) but grows a lot the more data
points are contained in the dataset. Therefore, we expect the
prediction strategy to provide results faster than conducting
regular analyses especially when dealing with big datasets,
which is a de-facto standard for many applications nowadays.

Interestingly, the ICU Survival dataset has fewer data
points than Weather AUS, but the prediction strategy takes
more time when processing the ICU dataset. This may
seem counter-intuitive: however, the reader should notice
that the ICU dataset contains 74 features, while the Weather
AUS contains only 21 features. This may suggest that our
prediction strategy performs slower when processing
datasets with many features and a limited number of data
points i.e., microarray datasets. However, those datasets are

not as common as those containing far more data points
than features: therefore we do not investigate this behavior
any further.

8 � Concluding Remarks

To conclude the paper, we summarize in this section the
conclusions and achievements of our work, limitations to
the validity of our study, and future directions.

8.1 � Lessons Learned and Achievements

We summarize the findings of this paper as follows.

•	 Feature rankers allow to predict the classification
performance of classifiers when performing supervised
or unsupervised classification with low prediction error
in a given dataset. This is an important contribution as
previous studies using other techniques (i.e., c-measures)
seemed to deny this opportunity.

•	 Prediction errors, measured as MAE are small, but
not absent. As such, the prediction of classification
performance cannot be trusted in scenarios where even a
small change in metric values can make a big difference.
Instead, it should be used as a preliminary analysis for
evaluating the complexity of a dataset quantified as
classification metrics such as MCC or AUC.

•	 Our strategy to predict classification performance can be
integrated into existing data analysis processes requiring
little to no modifications to the existing analysis flow, and
quantifies the prediction in a few minutes at most. This is
due to the FRAPPE library providing user-friendly and
easy-to-use support to the analyst, which has to provide
a few inputs and can get the predicted classification
performance as desired. No expertise is required of the
user nor knowledge about feature rankers, as interfaces of
the FRAPPE library hide all the implementation details.

•	 The prediction strategy applies to different tabular
datasets, even if not related to the error and intrusion
detection domain, predicting the performance of
unsupervised binary classifiers and supervised binary
and multi-class classifiers with a stable prediction error.

8.2 � Limitations of this Study

We report here possible limitations to the validity and the
applicability of our study. These are not to be intended as
showstoppers when considering the conclusions of this
paper. Instead, they should be interpreted as boundaries or
possible future implications that may impact the validity of
this study.

	 T. Zoppi et al.

8.2.1 � Usage of Public Data.

The usage of public datasets and open-source tools was a
pre-requisite of our analysis as it allows reproducibility and
relies on proven-in-use data. However, the heterogeneity of
data sources and their potential lack of documentation may
limit the understandability of data. In addition, such datasets
are not under our control: therefore, possible actions such as
changing the way data is generated are out of consideration.
For example, we were forced to process datasets that have
only a few features e.g., ADFANet (3) as they are.

Additionally, the reader may argue that even our massive
effort in processing 23 different public datasets and creating
variants resulted only in several hundreds of data points to
train, validate, and test the prediction strategy. As already
discussed throughout the paper, generating a data point for
the regressors requires finding a public dataset, learning its
structure, connecting it to FRAPPE, calculating feature data,
and exercising supervised and unsupervised classifiers to
compute metric scores that will serve as labels for training
regressors. We are aware that using only hundreds to a few
thousand (using SMOTE data augmentation) data points
may open the problem of the robustness of our predictor.
However, the tests in Sect. 7 show that the metric predictions
for brand-new datasets are within the range estimated during
our experimental evaluation.

8.2.2 � Parameters of Classifiers.

Each classifier relies on its parameters. Finding the optimal
values of parameters is a substantial process that requires
sensitive analyses and is directly linked with the scenario in
which the classifier is going to be exercised. When applying
supervised and unsupervised classifiers to different datasets
it is not always possible to precisely tune these parameters.
Predicted metric values could turn out to be slightly different
from the theoretical optimum due to a more or less optimal
tuning of the classifier. The impact on our prediction strategy
is considered negligible, as it is obtained on top of extensive
experiments using many datasets and many classifiers
– ranging from requiring extensive parametrization to none
–, smoothing down possible performance degradation due
to this event.

8.2.3 � Predicting Performance of Regressors.

Our strategy can be adapted with minor modifications to
predict the classification performance of regressors. To do
that, we may need to reconsider the feature rankers we used
in this paper as some of them require a categorical label
and may not translate well when the target of the machine

learning algorithm is a continuous quantity, as it happens
with regressors. However, the general approach still holds.

Acknowledgements  No additional acknowledgements aside from the
funding already specified above.

Author Contributions  First author managed most of the technical work,
including data curation, conceptualization, experiments planning and
execution. The second author and the third author helped with funding
acquisition and in reviewing the paper at different stages. The initial
drafts were written by the first author.

Funding  This work was supported in part by the B53D23012930006
PRIN 2022 project FLEGREA, the 202297YF75 PRIN 2022
project S2, and by the project P2022K7ERB PRIN PNRR 2022
BREADCRUMBS funded by the Italian MUR and by the European
Union under NextGenerationEU. by the project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by the
European Union – NextGenerationEU, and by the RDS—PTR22-
24 P2.1 Cybersecurity project funded within the Ricerca di Sistema
Elettrico, Piano Triennale 22–24.

 Data availability  Data used in the paper is publicly available at the
websites of their owners, as referred in the paper (see Sect. 5.1 and
Sect. 7). Code developed for this work is available on the public
GitHub, which was anonymized at https://​github.​com/​tommy​ippoz/​
FRAPPE).

Declarations 

Conflict of interests  Authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

	 1.	 Agarwal, A. (2018) ‘Machine Failure Prediction’. Kaggle. https://​
kaggle.​com/​compe​titio​ns/​machi​ne-​failu​re-​predi​ction.

	 2.	 Zoppi T (2024) FRAPPE GitHub Repository. https://​github.​
com/​tommy​ippoz/​FRAPPE

	 3.	 Antonio N, de Almeida A, Nunes L (2019) Hotel booking
demand datasets. Data in Brief 22:41–49. https://​doi.​org/​10.​
1016/j.​dib.​2018.​11.​126

	 4.	 ‘APS Failure at Scania Trucks’ (2017).
	 5.	 Arik SÖ, Pfister T (2021) TabNet: Attentive Interpretable Tabu-

lar Learning. Proc AAAI Conf Artif Intell 35(8):6679–6687.
https://​doi.​org/​10.​1609/​aaai.​v35i8.​16826

	 6.	 Arp, D. et al. (2022) ‘Dos and Donts of Machine Learning
in Computer Security’, in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, pp.

https://github.com/tommyippoz/FRAPPE
https://github.com/tommyippoz/FRAPPE
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://kaggle.com/competitions/machine-failure-prediction
https://kaggle.com/competitions/machine-failure-prediction
https://github.com/tommyippoz/FRAPPE
https://github.com/tommyippoz/FRAPPE
https://doi.org/10.1016/j.dib.2018.11.126
https://doi.org/10.1016/j.dib.2018.11.126
https://doi.org/10.1609/aaai.v35i8.16826

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

3971–3988. https://​www.​usenix.​org/​confe​rence/​useni​xsecu​
rity22/​prese​ntati​on/​arp.

	 7.	 Avizienis A et al (2004) Basic concepts and taxonomy of
dependable and secure computing. IEEE Transact Dependable
Secure Comput 1(1):11–33. https://​doi.​org/​10.​1109/​TDSC.​
2004.2

	 8.	 BackBlaze (2023) BackBlaze HDD Data, https://​www.​backb​laze.​
com/​cloud-​stora​ge/​resou​rces/​hard-​drive-​test-​data.

	 9.	 Baidu Inc (no date) Baidu HDD - Baidu SMART Dataset for Sea-
gate ST31000524NS drive model, https://​www.​kaggle.​com/​datas​
ets/​drtyc​oon/​hdds-​datas​et-​baidu-​inc.

	10.	 Behera J et al (2023) Prediction based mean-value-at-risk portfolio
optimization using machine learning regression algorithms for
multi-national stock markets. Eng Appl Artif Intell 120:105843.
https://​doi.​org/​10.​1016/j.​engap​pai.​2023.​105843

	11.	 Bell, R. (2006) ‘Introduction to IEC 61508’, in Proceedings of the
10th Australian workshop on Safety critical systems and software-
Volume 55, pp. 3–12.

	12.	 Bi X, Wang H (2019) An enhanced high-order Boltzmann
machine for feature engineering. Eng Appl Artif Intell 78:37–52.
https://​doi.​org/​10.​1016/j.​engap​pai.​2018.​10.​011

	13.	 Bishop, C. and Nasrabadi, N. (2006) Pattern Recognition and
Machine Learning. 4th edn. Springer.

	14.	 Braband, J., Vom Hövel, R. and Schäbe, H. (2009) ‘Probabil-
ity of failure on demand–the why and the how’, in Computer
Safety, Reliability, and Security: 28th International Conference,
SAFECOMP 2009, Hamburg, Germany, September 15–18, 2009.
Proceedings 28, pp. 46–54.

	15.	 Branco, P., Torgo, L. and Ribeiro, R.P. (2017) ‘SMOGN: a Pre-
processing Approach for Imbalanced Regression’, in P.B. Luís
Torgo and N. Moniz (eds) Proceedings of the First International
Workshop on Learning with Imbalanced Domains: Theory
and Applications. PMLR (Proceedings of Machine Learning
Research), pp. 36–50. https://​proce​edings.​mlr.​press/​v74/​branc​
o17a.​html.

	16.	 Breiman L (2001) Random Forests. Machine Learning 45(1):5–
32. https://​doi.​org/​10.​1023/A:​10109​33404​324

	17.	 Brodersen, K.H. et al. (2010) ‘The Balanced Accuracy and Its
Posterior Distribution’, in 2010 20th International Conference
on Pattern Recognition. IEEE, pp. 3121–3124. https://​doi.​org/​
10.​1109/​ICPR.​2010.​764.

	18.	 Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a
Survey. ACM Comput Surv 41(3):1–58. https://​doi.​org/​10.​1145/​
15418​80.​15418​82

	19.	 Chen, T. and Guestrin, C. (2016) ‘XGBoost: A Scalable Tree
Boosting System’, in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing. New York, NY, USA: ACM, pp. 785–794. https://​doi.​org/​10.​
1145/​29396​72.​29397​85.

	20.	 Chen, Y. et al. (2006) ‘Survey and taxonomy of feature selection
algorithms in intrusion detection system’, in Information Security
and Cryptology: Second SKLOIS Conference, Inscrypt 2006, Bei-
jing, China, November 29-December 1, 2006. Proceedings 2, pp.
153–167.

	21.	 Chicco D, Jurman G (2020) The advantages of the Matthews cor-
relation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation. BMC Genomics 21(1):6. https://​doi.​org/​
10.​1186/​s12864-​019-​6413-7

	22.	 Davari, N. et al. (2021) ‘Predictive maintenance based on anomaly
detection using deep learning for air production unit in the railway
industry’, in 2021 IEEE 8th International Conference on Data
Science and Advanced Analytics (DSAA). IEEE, pp. 1–10. https://​
doi.​org/​10.​1109/​DSAA5​3316.​2021.​95641​81.

	23.	 Fahrmeir L et al (2013) Regression models. Springer

	24.	 Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regres-
sion: a statistical view of boosting (With discussion and a rejoin-
der by the authors). annals stat 28(2):337–407r

	25.	 Garces H, Sbarbaro D (2011) Outliers detection in environmen-
tal monitoring databases. Eng Appl Artif Intell 24(2):341–349.
https://​doi.​org/​10.​1016/j.​engap​pai.​2010.​10.​018

	26.	 Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized
trees. Mach Learn 63(1):3–42. https://​doi.​org/​10.​1007/​
s10994-​006-​6226-1

	27.	 Gil M et al (2019) Designing human-in-the-loop autonomous
Cyber-Physical Systems. Int J Human-Comput Stud 130:21–39.
https://​doi.​org/​10.​1016/j.​ijhcs.​2019.​04.​006

	28.	 De Giovanni E et al (2021) Real-Time Personalized Atrial Fibril-
lation Prediction on Multi-Core Wearable Sensors. IEEE Transact
Emerg Topics Comput 9(4):1654–1666. https://​doi.​org/​10.​1109/​
TETC.​2020.​30148​47

	29.	 Goldstein M, Uchida S (2016) A Comparative Evaluation of
Unsupervised Anomaly Detection Algorithms for Multivariate
Data. PLOS ONE 11(4):e0152173. https://​doi.​org/​10.​1371/​journ​
al.​pone.​01521​73

	30.	 González S et al (2020) A practical tutorial on bagging and boost-
ing based ensembles for machine learning: Algorithms, software
tools, performance study, practical perspectives and opportunities.
Inf Fusion 64:205–237. https://​doi.​org/​10.​1016/j.​inffus.​2020.​07.​
007

	31.	 Greene CS et al (2009) Spatially uniform relieff (SURF) for com-
putationally-efficient filtering of gene-gene interactions. BioData
mining 2:1–9

	32.	 Grinsztajn L, Oyallon E, Varoquaux G (2022) Why do tree-based
models still outperform deep learning on typical tabular data? Adv
Neural Inf Process Syst 35:507–520

	33.	 Haider W et al (2017) Generating realistic intrusion detection sys-
tem dataset based on fuzzy qualitative modeling. J Netw Comput
Appl 87:185–192. https://​doi.​org/​10.​1016/j.​jnca.​2017.​03.​018

	34.	 Ho TK, Basu M (2002) Complexity measures of supervised
classification problems. IEEE Trans Pattern Anal Mach Intell
24(3):289–300

	35.	 Howard J, Gugger S (2020) Fastai: A Layered API for Deep
Learning. Inf 11(2):108. https://​doi.​org/​10.​3390/​info1​10201​08

	36.	 Huang Y, Guan Y (2015) On the linear discriminant analysis for
large number of classes. Eng Appl Artif Intell 43:15–26. https://​
doi.​org/​10.​1016/j.​engap​pai.​2015.​03.​006

	37.	 Kang, H. et al. (2019) ‘IoT network intrusion dataset’. IEEE Data-
port. https://​doi.​org/​10.​21227/​q70p-​q449.

	38.	 Khraisat A et al (2019) Survey of intrusion detection systems:
techniques, datasets and challenges. Cybersecurity 2(1):20.
https://​doi.​org/​10.​1186/​s42400-​019-​0038-7

	39.	 Krzanowski WJ et al (2006) Confidence in Classification: A
Bayesian Approach. J Classif 23(2):199–220. https://​doi.​org/​10.​
1007/​s00357-​006-​0013-3

	40.	 Kuhn, M. and Johnson, K. (2019) Feature engineering and selec-
tion: A practical approach for predictive models. Chapman and
Hall/CRC.

	41.	 Lashkari, A.H. et al. (2018) ‘Toward Developing a Systematic
Approach to Generate Benchmark Android Malware Datasets
and Classification’, in 2018 International Carnahan Conference
on Security Technology (ICCST). IEEE, pp. 1–7. https://​doi.​org/​
10.​1109/​CCST.​2018.​85855​60.

	42.	 Le, L., Patterson, A. and White, M. (2018) ‘Supervised autoen-
coders: Improving generalization performance with unsuper-
vised regularizers’, in S. Bengio et al. (eds) Advances in Neural
Information Processing Systems. Curran Associates, Inc. https://​
proce​edings.​neuri​ps.​cc/​paper_​files/​paper/​2018/​file/​2a38a​4a931​
6c49e​5a833​517c4​5d310​70-​Paper.​pdf.

	43.	 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436–444. https://​doi.​org/​10.​1038/​natur​e14539

https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data
https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data
https://www.kaggle.com/datasets/drtycoon/hdds-dataset-baidu-inc
https://www.kaggle.com/datasets/drtycoon/hdds-dataset-baidu-inc
https://doi.org/10.1016/j.engappai.2023.105843
https://doi.org/10.1016/j.engappai.2018.10.011
https://proceedings.mlr.press/v74/branco17a.html
https://proceedings.mlr.press/v74/branco17a.html
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1109/DSAA53316.2021.9564181
https://doi.org/10.1109/DSAA53316.2021.9564181
https://doi.org/10.1016/j.engappai.2010.10.018
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1016/j.ijhcs.2019.04.006
https://doi.org/10.1109/TETC.2020.3014847
https://doi.org/10.1109/TETC.2020.3014847
https://doi.org/10.1371/journal.pone.0152173
https://doi.org/10.1371/journal.pone.0152173
https://doi.org/10.1016/j.inffus.2020.07.007
https://doi.org/10.1016/j.inffus.2020.07.007
https://doi.org/10.1016/j.jnca.2017.03.018
https://doi.org/10.3390/info11020108
https://doi.org/10.1016/j.engappai.2015.03.006
https://doi.org/10.1016/j.engappai.2015.03.006
https://doi.org/10.21227/q70p-q449
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1007/s00357-006-0013-3
https://doi.org/10.1007/s00357-006-0013-3
https://doi.org/10.1109/CCST.2018.8585560
https://doi.org/10.1109/CCST.2018.8585560
https://proceedings.neurips.cc/paper_files/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://doi.org/10.1038/nature14539

	 T. Zoppi et al.

	44.	 Leroux S, Simoens P (2023) Sparse random neural networks
for online anomaly detection on sensor nodes. Future Genera-
tion Comput Syst 144:327–343. https://​doi.​org/​10.​1016/j.​future.​
2022.​12.​028

	45.	 Lever, J. (2016) ‘Classification evaluation: it is important to
understand both what a classification metric expresses and what
it hides’, Nature Methods, 13, p. 603+. https://​link.​gale.​com/​
apps/​doc/​A4595​07798/​HRCA?u=​anon~f3322​8a3&​sid=​googl​
eScho​lar&​xid=​ceaf5​104.

	46.	 Li G, Jung JJ (2023) Deep learning for anomaly detection in
multivariate time series: Approaches, applications, and chal-
lenges. Inf Fusion 91:93–102. https://​doi.​org/​10.​1016/j.​inffus.​
2022.​10.​008

	47.	 Li Z et al (2022) SySeVR: A Framework for Using Deep Learning
to Detect Software Vulnerabilities. IEEE Transact Dependable
Secure Comput 19(4):2244–2258. https://​doi.​org/​10.​1109/​TDSC.​
2021.​30515​25

	48.	 Liao Y, Vemuri VR (2002) Use of K-Nearest Neighbor classifier
for intrusion detection. Comput Secur 21(5):439–448. https://​doi.​
org/​10.​1016/​S0167-​4048(02)​00514-X

	49.	 Lorena AC et al (2019) How complex is your classification prob-
lem? a survey on measuring classification complexity. ACM Com-
put Surv (CSUR) 52(5):1–34

	50.	 Macià N et al (2013) Learner excellence biased by data set selec-
tion: A case for data characterisation and artificial data sets. Pat-
tern Recogn 46(3):1054–1066

	51.	 Maciá-Fernández G et al (2018) UGR‘16: A new dataset for the
evaluation of cyclostationarity-based network IDSs. Comput
Secur 73:411–424. https://​doi.​org/​10.​1016/j.​cose.​2017.​11.​004

	52.	 Mao X et al (2019) Extractive summarization using supervised
and unsupervised learning. Expert Syst Appl 133:173–181.
https://​doi.​org/​10.​1016/j.​eswa.​2019.​05.​011

	53.	 Marins MA et al (2018) Improved similarity-based modeling
for the classification of rotating-machine failures. J Frankl Inst
355(4):1913–1930. https://​doi.​org/​10.​1016/j.​jfran​klin.​2017.​07.​
038

	54.	 Meidan Yair, B.M.M.Y.M.Y.B.D.A. and Shabtai, A. (2018)
‘detection_of_IoT_botnet_attacks_N_BaIoT’.

	55.	 Miles, J. (2005) ‘R-squared, adjusted R-squared’, Encyclopedia
of statistics in behavioral science [Preprint].

	56.	 Min, H. et al. (2024) ‘Toward interpretable anomaly detection
for autonomous vehicles with denoising variational transformer’,
Engineering Applications of Artificial Intelligence, p. 107601.
https://​doi.​org/​10.​1016/j.​engap​pai.​2023.​107601.

	57.	 Molan M et al (2023) RUAD: Unsupervised anomaly detection
in HPC systems. Future Generation Comput Syst 141:542–554.
https://​doi.​org/​10.​1016/j.​future.​2022.​12.​001

	58.	 Morán-Fernández L, Bolón-Canedo V, Alonso-Betanzos A (2017)
‘Can classification performance be predicted by complexity meas-
ures? A study using microarray data’, Knowledge and Information
Systems 51:1067–1090

	59.	 Moustafa, N. and Slay, J. (2015) ‘UNSW-NB15: a comprehensive
data set for network intrusion detection systems (UNSW-NB15
network data set)’, in 2015 Military Communications and Infor-
mation Systems Conference (MilCIS). IEEE, pp. 1–6. https://​doi.​
org/​10.​1109/​MilCIS.​2015.​73489​42.

	60.	 Nguyen D-T, Le K-H (2023) The robust scheme for intru-
sion detection system in Internet of Things. Internet of Things
24:100999. https://​doi.​org/​10.​1016/j.​iot.​2023.​100999

	61.	 Okun O, Priisalu H (2009) Dataset complexity in gene expression
based cancer classification using ensembles of k-nearest neigh-
bors. Artif Intell Med 45(2–3):151–162

	62.	 Pham, C. et al. (2014) ‘Reliability and Security Monitoring of Vir-
tual Machines Using Hardware Architectural Invariants’, in 2014
44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks. IEEE, pp. 13–24. https://​doi.​org/​10.​1109/​
DSN.​2014.​19.

	63.	 Popov, S., Morozov, S. and Babenko, A. (2020) ‘Neural Oblivi-
ous Decision Ensembles for Deep Learning on Tabular Data’, in
International Conference on Learning Representations. https://​
openr​eview.​net/​forum?​id=​r1eiu​2VtwH.

	64.	 Potvin PJ, Schutz RW (2000) Statistical power for the two-factor
repeated measures ANOVA. Behav Res Methods Instrum Comput
32(2):347–356

	65.	 Rachmawati SM et al (2023) Digital twin-enabled 3D printer fault
detection for smart additive manufacturing. Eng Appl Artif Intell
124:106430. https://​doi.​org/​10.​1016/j.​engap​pai.​2023.​106430

	66.	 Rajadurai H, Gandhi UD (2022) A stacked ensemble learn-
ing model for intrusion detection in wireless network. Neural
Comput Appl 34(18):15387–15395. https://​doi.​org/​10.​1007/​
s00521-​020-​04986-5

	67.	 Randhawa RH et al (2024) Deep reinforcement learning based
Evasion Generative Adversarial Network for botnet detection.
Future Generation Comput Syst 150:294–302. https://​doi.​org/​10.​
1016/j.​future.​2023.​09.​011

	68.	 Ring M, Wunderlich S, Grüdl D, Landes D, Hotho A (2017) Flow-
based benchmark data sets for intrusion detection. In: Proceedings
of the 16th European conference on cyber warfare and security.
ACPI, pp 361–369

	69.	 Ring M et al (2019) A survey of network-based intrusion detection
data sets. Comput Secur 86:147–167. https://​doi.​org/​10.​1016/j.​
cose.​2019.​06.​005

	70.	 Rivolli A et al (2022) Meta-features for meta-learning. Knowl-
Based Syst 240:108101

	71.	 Rodríguez P et al (2018) Beyond one-hot encoding: Lower dimen-
sional target embedding. Image Vision Comput 75:21–31. https://​
doi.​org/​10.​1016/j.​imavis.​2018.​04.​004

	72.	 Saied M, Guirguis S, Madbouly M (2024) Review of artificial
intelligence for enhancing intrusion detection in the internet of
things. Eng Appl Artif Intell 127:107231. https://​doi.​org/​10.​
1016/j.​engap​pai.​2023.​107231

	73.	 Sathya, R. and Abraham, A. (2013) ‘Comparison of Supervised
and Unsupervised Learning Algorithms for Pattern Classification’,
International Journal of Advanced Research in Artificial Intel-
ligence, 2(2). https://​doi.​org/​10.​14569/​IJARAI.​2013.​020206.

	74.	 Sharafaldin, I., Habibi Lashkari, A. and Ghorbani, A.A. (2018)
‘Toward Generating a New Intrusion Detection Dataset and Intru-
sion Traffic Characterization’, in Proceedings of the 4th Inter-
national Conference on Information Systems Security and Pri-
vacy. SCITEPRESS - Science and Technology Publications, pp.
108–116. https://​doi.​org/​10.​5220/​00066​39801​080116.

	75.	 Sharmila BS, Nagapadma R (2023) Quantized autoencoder (QAE)
intrusion detection system for anomaly detection in resource-
constrained IoT devices using RT-IoT2022 dataset. Cybersecurity
6(1):41. https://​doi.​org/​10.​1186/​s42400-​023-​00178-5

	76.	 Shin, H.-K. et al. (2020) ‘HAI 1.0: HIL-based Augmented ICS
Security Dataset’, in 13th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 20). USENIX Association.
https://​www.​usenix.​org/​confe​rence/​cset20/​prese​ntati​on/​shin.

	77.	 Shin Hyeok-Ki; Lee, W.C.S.Y.J.-H. and Min, B.-G. (2023) ‘HAI
security datasets’. https://​github.​com/​icsda​taset/​hai.

	78.	 Shiravi A et al (2012) Toward developing a systematic approach
to generate benchmark datasets for intrusion detection. Comput
Secur 31(3):357–374. https://​doi.​org/​10.​1016/j.​cose.​2011.​12.​012

	79.	 Shwartz-Ziv R, Armon A (2022) Tabular data: deep learning is
not all you need. Inf Fusion 81:84–90. https://​doi.​org/​10.​1016/j.​
inffus.​2021.​11.​011

	80.	 Smith DJ, Simpson KGL (2020) The safety critical systems hand-
book: a straightforward guide to functional safety: IEC 61508
(2010 Edition), IEC 61511 (2015 edition) and related guidance.
Butterworth-Heinemann

https://doi.org/10.1016/j.future.2022.12.028
https://doi.org/10.1016/j.future.2022.12.028
https://link.gale.com/apps/doc/A459507798/HRCA?u=anon~f33228a3&sid=googleScholar&xid=ceaf5104
https://link.gale.com/apps/doc/A459507798/HRCA?u=anon~f33228a3&sid=googleScholar&xid=ceaf5104
https://link.gale.com/apps/doc/A459507798/HRCA?u=anon~f33228a3&sid=googleScholar&xid=ceaf5104
https://doi.org/10.1016/j.inffus.2022.10.008
https://doi.org/10.1016/j.inffus.2022.10.008
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1016/j.cose.2017.11.004
https://doi.org/10.1016/j.eswa.2019.05.011
https://doi.org/10.1016/j.jfranklin.2017.07.038
https://doi.org/10.1016/j.jfranklin.2017.07.038
https://doi.org/10.1016/j.engappai.2023.107601
https://doi.org/10.1016/j.future.2022.12.001
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1016/j.iot.2023.100999
https://doi.org/10.1109/DSN.2014.19
https://doi.org/10.1109/DSN.2014.19
https://openreview.net/forum?id=r1eiu2VtwH
https://openreview.net/forum?id=r1eiu2VtwH
https://doi.org/10.1016/j.engappai.2023.106430
https://doi.org/10.1007/s00521-020-04986-5
https://doi.org/10.1007/s00521-020-04986-5
https://doi.org/10.1016/j.future.2023.09.011
https://doi.org/10.1016/j.future.2023.09.011
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1016/j.imavis.2018.04.004
https://doi.org/10.1016/j.imavis.2018.04.004
https://doi.org/10.1016/j.engappai.2023.107231
https://doi.org/10.1016/j.engappai.2023.107231
https://doi.org/10.14569/IJARAI.2013.020206
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1186/s42400-023-00178-5
https://www.usenix.org/conference/cset20/presentation/shin
https://github.com/icsdataset/hai
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1016/j.inffus.2021.11.011

A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data…

	81.	 Souza, M.A. et al. (2024) ‘A dynamic multiple classifier system
using graph neural network for high dimensional overlapped data’,
Information Fusion, 103, p. 102145. https://​doi.​org/​10.​1016/j.​inf-
fus.​2023.​102145.

	82.	 Tavallaee, M. et al. (2009) ‘A detailed analysis of the KDD CUP
99 data set’, in 2009 IEEE Symposium on Computational Intel-
ligence for Security and Defense Applications. IEEE, pp. 1–6.
https://​doi.​org/​10.​1109/​CISDA.​2009.​53565​28.

	83.	 Tsai C-F, Sung Y-T (2020) Ensemble feature selection in high
dimension, low sample size datasets: parallel and serial combina-
tion approaches. Knowledge-Based Systems 203:106097. https://​
doi.​org/​10.​1016/j.​knosys.​2020.​106097

	84.	 Urbanowicz RJ et al (2018) Benchmarking relief-based feature
selection methods for bioinformatics data mining. J Biomed
Inform 85:168–188

	85.	 Wolpert DH (1996) The lack of a priori distinctions between
learning algorithms. Neural Comput 8(7):1341–1390

	86.	 Xia P, Zhang L, Li F (2015) Learning similarity with cosine simi-
larity ensemble. Inf Sci 307:39–52

	87.	 Xu Z, Saleh JH (2021) Machine learning for reliability engineer-
ing and safety applications: Review of current status and future
opportunities. Reliab Eng Syst Saf 211:107530. https://​doi.​org/​
10.​1016/j.​ress.​2021.​107530

	88.	 Yu, L. and Liu, H. (2003) ‘Feature selection for high-dimensional
data: A fast correlation-based filter solution’, in Proceedings of the
20th international conference on machine learning (ICML-03),
pp. 856–863.

	89.	 Zar JH (1972) Significance testing of the Spearman rank correla-
tion coefficient. J Am Stat Assoc 67(339):578–580

	90.	 Zhang S et al (2021) A temporal LASSO regression model for
the emergency forecasting of the suspended sediment concentra-
tions in coastal oceans: accuracy and interpretability. Eng Appl
Artif Intell 100:104206. https://​doi.​org/​10.​1016/j.​engap​pai.​2021.​
104206

	91.	 Zhao X et al (2015) A two-stage feature selection method with its
application. Comput Electr Eng 47:114–125

	92.	 Zhao, Y., Nasrullah, Z. and Li, Z. (2019) ‘PyOD: A Python Tool-
box for Scalable Outlier Detection’, Journal of Machine Learning
Research, 20(96), pp. 1–7. http://​jmlr.​org/​papers/​v20/​19-​011.​html.

	93.	 Zoppi, T., et al. (23AD) ‘Anomaly Detectors for Self-Aware Edge
and IoT Devices’, in 2023 IEEE International Conference on Soft-
ware Quality, Reliability and Security (QRS). IEEE.

	94.	 Zoppi T, Ceccarelli A, Puccetti T, Bondavalli A (2023) Which
algorithm can detect unknown attacks? Comparison of supervised,
unsupervised and meta-learning algorithms for intrusion detec-
tion. Comput Secur 127:103107

	95.	 Zoppi T, Ceccarelli A, Bondavalli A (2019) MADneSs: a multi-
layer anomaly detection framework for complex dynamic sys-
tems. IEEE Transactions on Dependable and Secure computing.
18(2):796–809

	96.	 Zoppi T, Ceccarelli A, Bondavalli A (2021) Unsupervised algo-
rithms to detect zero-day attacks: strategy and application. IEEE
Access 9:90603–15

https://doi.org/10.1016/j.inffus.2023.102145
https://doi.org/10.1016/j.inffus.2023.102145
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1016/j.knosys.2020.106097
https://doi.org/10.1016/j.knosys.2020.106097
https://doi.org/10.1016/j.ress.2021.107530
https://doi.org/10.1016/j.ress.2021.107530
https://doi.org/10.1016/j.engappai.2021.104206
https://doi.org/10.1016/j.engappai.2021.104206
http://jmlr.org/papers/v20/19-011.html

	A Strategy for Predicting the Performance of Supervised and Unsupervised Tabular Data Classifiers
	Abstract
	1 Introduction
	1.1 Anomaly-Based Classifiers
	1.2 Engineering Classifiers
	1.3 Motivation
	1.4 Technical Contribution
	1.5 Paper Structure

	2 Background and Related Works
	2.1 Anomaly-Based Error and Intrusion Detection
	2.2 Monitoring and Tabular Datasets
	2.3 Classification of Tabular Data
	2.4 Features and Feature Ranking
	2.5 Filter-Based Ranking
	2.6 Relief-Based Ranking
	2.7 Wrapper-Based Ranking
	2.8 Metrics to Evaluate Classification Performance
	2.9 Quantifying Task Complexity

	3 A Workflow for Predicting Classification Performance
	3.1 The Process for Deploying Classifiers
	3.2 On Predicting Classification Performance

	4 Feature Rankers to Predict Classification Performance
	4.1 Formal Definition of the Prediction Strategy
	4.2 Regressors to Predict Classification Performance
	4.3 Observations

	5 Experimental Campaign
	5.1 Error, Attack and Failure Datasets
	5.1.1 Network Intrusion Detection (NIDS)
	5.1.2 Hardware Failure Prediction
	5.1.3 ErrorAnomaly Detection
	5.1.4 Preprocessing
	5.1.5 Data Augmentation: Variants of Datasets

	5.2 Feature Rankers and FRAPPE
	5.2.1 Statistical-Based Rankers (SR)
	5.2.2 Relief-Based Rankers (RR)
	5.2.3 Wrapper-Based Rankers (WR)

	5.3 Normalization of Ranks
	5.4 Supervised Classifiers
	5.5 Unsupervised Classifiers
	5.6 Regressors REG
	5.7 Methodology to Conduct Experiments

	6 Discussion and Implementation of the Prediction Strategy
	6.1 Evaluation of Regressors using all Feature Rankers
	6.2 Contribution of Feature Rankers
	6.3 Optimizing the Prediction Strategy
	6.4 Implementing the Prediction Strategy in FRAPPE

	7 Application: Predicting Classification Performance for Different Case Studies
	8 Concluding Remarks
	8.1 Lessons Learned and Achievements
	8.2 Limitations of this Study
	8.2.1 Usage of Public Data.
	8.2.2 Parameters of Classifiers.
	8.2.3 Predicting Performance of Regressors.

	Acknowledgements
	References

