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A B S T R A C T

We unify different modeling structures for neuron state evolution showing how they can be derived from an
invariance requirement imposed to a dissipation inequality under diffeomorphism-based changes of observer
in the physical space. This is a completely non-standard way of using the second law of thermodynamics,
although in isothermal setting, a law otherwise commonly used for determining constitutive restrictions and
admissibility conditions as those pertaining to shock waves. In this setting, we also consider a time-varying
neuronal connectivity and derive the consistent structure of its evolution equation from the same invariance
principle. In the case of Parkinson, the connectivity depends also on the distribution of calcium channels
that bring dopamine excess. Under special conditions, we show how the connectivity probability distribution
changes in time and is influenced by the one of calcium channels. We account for memory effects in the
cortical matter, namely dependence on firing and connectivity histories.
1. Introduction

1.1. A view on modeling brain state variations

Connections between neighboring neurons through electrical im-
pulses and neurotransmitters – amino-acids, precisely glutamate, 𝛾-
aminobutyric acid, glycine; monoamines, namely serotonin, histamine,
dopamine, epinephrine, norepinephrine; peptides, namely endorphins;
acetylcholine – released by each axon terminal from synaptic vesicles,
determine what we commonly call a neuronal firing.

A common measure of the firing state is the excess body potential
or the inter-membrane one and possibly identified with a firing rate per
unit time, generically indicated by 𝑣𝑘, with the subscript referring to the
𝑘th neuron. It depends on the neuronal connectivity, which ranges from
1 mm to the whole brain [1]. With reference to a spatial scale at which
we may model neurons and their interconnections as elements of a
discrete lattice, by analogy to electrical circuits, neuron firing suggested
input–output membrane voltage models, from Hodgkin–Huxley’s clas-
sical scheme [2] on. A modeling example for describing the evolution
of 𝑣𝑘 is

𝑣̇𝑘(𝑡) = − 1
𝜏𝑘

𝑣𝑘 +
∑

ℎ
𝜑̄(𝜔𝑘ℎ, 𝑣ℎ(𝑡 − 𝜏𝑘ℎ), 𝑏ℎ(𝑡)) , (1)

where 𝜏𝑘 is an average delay in the neurotransmission occurring to-
wards the 𝑘th neuron, 𝜔ℎ𝑘 the effective strength between 𝑘th and ℎth
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neurons, so that the summation over ℎ is extended to all neurons
connected with the 𝑘th one, with peculiar transmission delay 𝜏𝑘ℎ, 𝑏𝑘 is
an external input, 𝜑̄ ∶ R ⟶ R+a function such that 𝜑̄(𝑦) = 0 whenever
𝑦 ≤ 0. A specific choice is

𝑣̇𝑘(𝑡) = − 1
𝜏𝑘

𝑣𝑘 + 𝜑̄(𝜔𝑘ℎ𝑣ℎ(𝑡 − 𝜏𝑘ℎ) + 𝑏ℎ(𝑡)) (2)

(where summation over repeated indices is adopted here and through-
out the paper) [3–6]; another specific choice to which we can reduce
Eq. (1) is the Kuramoto-type scheme discussed in Ref. [7]. Further
specific variants have been analyzed even considering an inherent
stochastic feature in the neuronal behavior, from Fitzhugh–Nagumo’s
model on (see [7–10]).

If we look at a coarse spatial scale and refer to a window in space of
diameter 𝛿, the excess potential 𝑣 can be considered as an average over
a neuron population in the window pertaining to 𝑥, its mass center. So,
we may thus write 𝑣 = 𝑣̃(𝑥, 𝑡), by referring to 𝑥 homogenized (mean-
field) firing properties of neurons in the pertinent spatial window. In
this view, instead of 𝑣 alone, we can consider as an alternative the
fraction (density) 𝑐 = 𝑐(𝑥, 𝑡) of neurons firing beyond a certain threshold
within the window considered.

Neurotransmitters can determine excitatory or inhibitory neuron
behavior or may have a role of modulators with respect to chemical
or electrical external agents. By distinguishing between excitatory and
vailable online 25 November 2023
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inhibitory neuron populations with densities 𝑐(𝑒) and 𝑐(𝑖), respectively,
nd taking into account the delay in neuronal transmittance, H. R.
ilson and J. D. Cowan suggested evolution equations of integral type
ith delay [11], namely

(𝑒)(𝑡−𝜏1) =
(

1−∫

𝑡

𝑡−𝜏1
𝑐(𝑒)(𝑠) d𝑠

)

𝑆𝑒

(

∫

𝑡

−∞
k(𝑡−𝑠)(𝑎̄1𝑐(𝑒)−𝑎̄2𝑐(𝑖)+𝑝̄(𝑒)(𝑠)) d𝑠

)

,

𝑐(𝑖)(𝑡−𝜏2) =
(

1−∫

𝑡

𝑡−𝜏2
𝑐(𝑖)(𝑠) d𝑠

)

𝑆𝑖

(

∫

𝑡

−∞
k(𝑡−𝑠)(𝑎̄3𝑐(𝑖)− 𝑎̄4𝑐

(𝑖)+ 𝑝̄(𝑖)(𝑠)) d𝑠
)

,

where 0 < 𝜏1, 𝜏2 < 𝑡, 𝑆𝑒 and 𝑆𝑖 are sigmoid functions, 𝑎̄𝑘, with
𝑘 = 1, 2, 3, 4, connection weights, while 𝑝(𝑒) and 𝑝(𝑖) are external inputs;
k(𝑡−𝑠) is a memory kernel. Wilson–Cowan’s model stimulated a number
of subsequent analyses (see for example [12,13] but also the review
papers [14,15], and references therein). In such model, the densities
𝑐(𝑒) and 𝑐(𝑖) can be referred to a given space window of size smaller
than the brain diameter, or to the whole brain.

Write generically 𝑢 ∶= 𝑢̃(𝑥, 𝑡) for the pair (𝑐(𝑒), 𝑐(𝑖)) or for 𝑣, or
something else such as the fraction 𝑐(𝑝) of prions, proteinaceous in-
fectious agents that are misfolded proteins behaving as corruptive
sources for misfolding diffusion, which are phenomena associated with
neurodegenerative disorders.

In short, 𝑢 refers here to the state of neurons (about the notion of
neuronal state see also [16]), considered in terms of mean-field for a
population of neurons in a space window of size 𝛿. By varying 𝛿, we
can reduce the window as long as it contains a single neuron; in this
case we have a discrete network modeling, as indicated by Eq. (1), or
we can widen the window to include the whole brain.

Rewriting the Wilson–Cowan model in terms of 𝑢 is straightforward.
For example, a version is in Ref. [13]; it reads

𝜏 d𝑢
d𝑡

= −𝑢 +
(

1 − 1
𝑅 ∫

𝑡

𝑡−𝑅
𝑢(𝑠) d𝑠

)

𝑓 (𝑢) ,

where 𝑓 is a monotonically increasing function that takes values be-
tween 0 and 1, while 𝑅 is the refractory period.

Basic assumptions pertinent to Wilson–Cowan’s model [11] are as
follows:

• All cells receive the same number of excitatory and inhibitory
afferents.

• The total number of afferents reaching a cell is sufficiently large
to be represented by the convolution integral above.

The scheme does not account directly for the spatial variability of 𝑢.
To overcome this aspect, S. Amari suggested a functional form for the
evolution of 𝑢 that, to within memory terms, reads as

𝜏 𝜕𝑢
𝜕𝑡

= −𝛼𝑢 + ∫𝛺
𝜉(𝑥, 𝑦)𝑔â(𝑢̃(𝑦, 𝑡)) d𝑦 + 𝛽(𝑥, 𝑡) , (3)

where 𝛼 is a decaying rate, 𝜉 the connectivity, 𝑔â a non-centered
sigmoid function, possibly referred only to a specific family â of neurons
in the region 𝛺 ⊆ , with  the region occupied by the whole brain,
and 𝛽 an external input [17,18]. The connectivity 𝜉(𝑥, 𝑦) is isotropic
when it is of the type 𝜉(𝑦 − 𝑥). It can be referred to only one type
of neurons or it can include the connection with other families, so it
may refer to all possible connections pertaining to the â-type neurons.
Furthermore, we can consider the external input to be stochastic so that
the above equation becomes

𝜏 𝜕𝑢
𝜕𝑡

= −𝛼𝑢 + ∫
𝜉(𝑥, 𝑦)𝑔â(𝑢̃(𝑦, 𝑡)) d𝑦 + 𝜖d𝑊𝑡 , (4)

with  the cortical region, 𝜖 ≥ 0 and 𝑊 = 𝑊̃ (𝑥, 𝑡) a spatially correlated
and additive noise. Let 𝑈 be a random variable with realizations 𝑢. The
previous equation can be rewritten in fully stochastic form as

d𝑈𝑡 = [−𝛼𝑈𝑡 +𝐾𝐹𝑡]d𝑡 + 𝜖𝐵d𝑊𝑡 , (5)

where, with ℎ a square integrable function over , 𝐹 (ℎ)(𝑥) = 𝑔â(ℎ(𝑥)) is
2

the Nemytskii operator for 𝑔â ∶ R ⟶ (0,+∞), assumed to be globally
Lipschitz continuous, as a sigmoid is, so that 𝐹 ∶ 𝐿2() ⟶ 𝐿2() is a
nonlinear Lipschitz continuous operator; 𝐾 is a convolution endowed
with non-negative, symmetric, continuous and square integrable kernel;
finally, 𝐵 is the covariance operator for the noise, assumed to be
Hilbert–Schmidt, non-negative, and symmetric; it is also such that
𝐵𝑊𝑡 = ∫ 𝑡

0 𝐵d𝑊𝑠. Eq. (5) admits a gradient-type representation (see the
roof in Ref. [19]).

In the scheme of Eq. (3), 𝑔â can be substituted, more generally,
y a non-negative non-decreasing gain function, which involves the
eaviside distribution, and the spatial connectivity 𝜉 can be chosen in

he Mexican Hat class, as in Ref. [20].
Spatial non-locality can be coupled with memory, which corre-

ponds essentially to neuron refraction. The combination of time and
pace non-locality implies schemes like

𝜕𝑢
𝜕𝑡

= −𝛼𝑢 + ∫𝛺×(−∞,𝑡]
𝜉(𝑥, 𝑡; 𝑦, 𝑡′)𝑔â(𝑢̃(𝑦, 𝑡′)) d𝑦 d𝑡′ + 𝛽(𝑥, 𝑡) , (6)

where 𝜉(𝑥, 𝑡; 𝑦, ⋅), considered as a function defined on the real line is
assumed to satisfy a requirement of causality: 𝜉(𝑥, 𝑡; 𝑦, 𝑡′) = 0 for every
𝑡′ > 𝑡. For a specific choice of 𝑢, such a scheme has been adopted in
Refs. [1,21,22].

In non-local integral models, when 𝑥 is close to the boundary of
, we have a number of alternatives in cutting the kernel at the
boundary, and the solution depends on the pertinent choice, in the
absence of a clear physical principle suggesting how to cut 𝜉 at the brain
boundary. A way to overcome such possible difficulties is to consider
weak non-locality, that is one of gradient type. In fact, by adapting B.
D. Coleman’s and W. Noll’s results [23,24] on the approximation of
memory functionals to space non-locality, thus considering expansion
of the space integral in terms of a series based on Fréchet’s derivatives,
Eq. (6) reduces to the first order approximation to a structure of the
type

𝜏 𝜕𝑢
𝜕𝑡

= −𝛼𝑢 + divh(𝑥,∇𝑢, 𝜉, 𝑢𝑡, (∇𝑢)𝑡, 𝜉𝑡) + 𝛽(𝑥, 𝑡) , (7)

here 𝜉 is the counterpart of 𝜉 after a Frechét’s type expansion of the
ntegral over 𝛺 while h is a vector function depending on the present
alues of 𝑢, ∇𝑢, and 𝜉, and their histories indicated in short by 𝑢𝑡,
∇𝑢)𝑡, and 𝜉𝑡. When the connectivity 𝜉 is constant and h depends only
n the present values of 𝑢 and ∇𝑢, the scheme reduces to structures
ike those analyzed in Refs. [25–27], without including the histories
nd with different choices for 𝑢. Here, to account for possible (and
easonably occurring) anisotropy in the spatial distribution of synaptic
inks, we consider here 𝜉 as a second-rank tensor, namely 𝜉 = 𝜉𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 ,
here 𝐞𝑖 is the 𝑖th vector of a basis in R3 and 𝐞𝑗 the 𝑗th element of the
ual basis defined to be such that 𝐞𝑗 ⋅ 𝐞𝑖 = 𝛿𝑖𝑗 , where the dot indicates

a duality pairing, which coincides with the scalar product when the
spatial metric is flat; finally, 𝛿𝑖𝑗 is Kronecker’s delta.

The brain connectivity varies in time along neurodegeneration. This
is described by considering the history 𝜉𝑡 of 𝜉, or 𝜔 in the discrete
schemes, and taking an evolution equation for it (see different proposals
in [28–31]).

In the case of Parkinson’s disease the strength of brain connectivity
depends also on the distribution (represented by some its moment
𝜆) of calcium channels bringing dopamine excess. Precisely, 𝜆 may
be constant in some interval of time or it can vary according to
biophysical–chemical conditions. In the latter case it should satisfy an
appropriate evolution equation.

1.2. Problems tackled in the present analysis

Schemes described above are intended essentially on phenomeno-
logical ground, and they are of increasing complexity: from discrete
schemes to continuous ones in time, to spatial non-locality reduced
then to account for weak (gradient-type) non-local effects. A natural

question is thus whether we can deduce them from first principles,
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such as requirements of invariance applied to entities including rather
general “objects’’ such as energy and interactions.

A pertinent path should take into account that neurodegeneration
and related plasticity is a dissipative process. An appropriate version
of the second law should then be called upon; also, interactions among
neighboring neurons should be involved in its expression.

With this program in mind, what we do in this paper is as follows:

• We derive a functional form leading to Eq. (7) from the covari-
ance principle of the second law of thermodynamics introduced
in Ref. [32] and later refined [33]

• From the same principle we obtain at the same time an evolution
equation for the connectivity 𝜉 when neurodegeneration occurs

• The proof allows us to extend the technique pertaining to the
covariance principle to the presence of memory functionals

• Lastly, we show how imperfect knowledge of 𝜆 affects the distri-
bution of 𝜉.

This last item deserves a more detailed specification. It goes as
ollows: The values of 𝜉(𝑥, 𝑡), which describe the distribution of neu-
onal connection strength in a neighborhood of 𝑥 at the time 𝑡, as it is

implicit in Eq. (7), are not known exactly. We have, in fact, just an
estimate for 𝜉. In other words, we can consider 𝜉 as the realization
of a random variable 𝑋, characterized by a certain distribution. If we
presume to know the one of 𝜉(0) = 𝑥, its form at 𝑡 ≠ 0 pertains to a
andom variable 𝑌 that is the push-forward at 𝑡 of 𝑋 induced by the
iffeomorphism solving an evolution equation pertaining to 𝜉 in a time
nterval, when such equation admits a strong solution in that interval
nd such a solution is a diffeomorphism.

This is the case of an equation like

̇ (𝑡) = 𝑔
(

𝑡, 𝜉(𝑡),∫

𝑡

−∞
𝛾𝑏𝑎 (𝑇 − 𝜏)𝜑(𝜉(𝜏)) d𝜏, 𝜆

)

, (8)

here memory is ruled by a kernel given by the gamma probability
istribution

𝑏
𝑎 (𝑠) =

𝑎𝑠𝑠𝑏−1e−𝑎𝑠
(𝑎 − 1)!

for 𝑠 ≥ 0, 𝛾𝑏𝑎 (𝑠) = 0 for 𝑠 < 0 ,

with 𝑎, 𝑏 > 0, and 𝓁 is a Lipschitz function. Here, 𝜆 ∈ R𝑘 collects
parameters that characterize the calcium channel distribution. In the
present case, we derive only an estimate from below for the marginal
probability density function of 𝑌 when 𝜉(𝑡) = 𝑦, with 𝑦 into an
appropriate linear space.

We specify later the conditions under which Eq. (8) is justified.

Remark 1.1. The choice to focus attention on Eq. (7), instead of the
strongly non-local version (6) rests on the awareness that Eq. (7) is a
structure that avoids problems connected with the way we have to cut
the kernel when we are close to the brain boundary, and is, on the other
side, sufficiently rich to describe a wide number of brain behaviors.

2. State of firing and changes of observers in the physical space

The region occupied by the brain has been indicated by  above.
Precisely,  ⊂ R3 is assumed to be an arcwise connected bounded
region endowed with surface-type boundary oriented by the outward
unit normal 𝑛 to within a (possibly empty) finite set of corners and
edges.

We have also adopted the notation 𝑢 ∶= 𝑢̃(𝑥, 𝑡) (𝑥 ∈ , 𝑡 in some time
interval) to indicate what describes the firing state of neurons at 𝑥 in the
continuum scale representation. Having in mind a neuron network, that
is considering a microscopic scale, we interpret 𝑢 as the average over
a population of neurons in a space window of small diameter 𝛿, with
mass center at 𝑥.

We have already mentioned various characterization of the state.
They can be summarized as follows:
3

• 𝑢 can be a scalar or a pseudo-scalar — for example the excess of
body potential or the inter-membrane one, as already mentioned,
or the density of prions.

• 𝑢 can be a list in R𝑘 — for example, when 𝑘 = 2, 𝑢 can be
identified with the pair (𝑐(𝑒), 𝑐(𝑖)) in Wilson–Cowan’s model, as
already mentioned above. Being a list means that, although 𝑢
belongs to R𝑘, it does not change as a vector when we rotate the
basis in R𝑘; in short, it is insensitive with respect to the action of
𝑆𝑂(𝑘) over R𝑘, as in the scalar case.

Of course,

• 𝑢 can be considered as a (true) vector in R𝑘 or, more generally,
• an element of a finite-dimensional Riemannian manifold  with

dimension greater than 1.

Among the options, we focus here on the case in which 𝑢 is a
scalar to cover directly models mentioned in the introduction, unifying
them (analogoous analyses can be developed when 𝑢 is a pseudo-scalar
with rather straightforward adaptations). The technique we use extends
straightforward to the case in which 𝑢 is a list, not properly a vector.
When 𝑢 is, more generally, an element of  – obviously, considering it
a vector in R𝑘 is a special case of  – technical variants are necessary;
pertinent geometrical tools to be used are in Ref. [33].

An observer is here a frame of reference in R3 and a time scale.
Since 𝑢 is a scalar, it is insensitive under changes of observers that are
isometric (rigid-body type). However, when such changes of observers
are not isometric, 𝑢 is sensitive.

Consider one such change in which we presume to leave invariant
the time scale. Precisely we take a parameterized family

{

𝖿𝑠
}

of diffeo-
orphisms 𝖿𝑠 ∈ Diff(R3,R3), which is differentiable with respect to 𝑠

and is such that

𝑥 ⟼ 𝖿𝑠(𝑥) and 𝖿0(𝑥) = 𝑥.

The derivative
d𝖿𝑠
d𝑠

|

|

|

|𝑠=0
(𝑥)

efines the infinitesimal generator of the action of
{

𝖿𝑠
}

.
Consider 𝑢 to be differentiable with respect to 𝑥 and 𝑡; indicate as

above by 𝑢̇ its time derivative. Under the action of 𝖿𝑠 on the physical
space and at 𝑠 = 0, we consider the following rule:

𝑢̇(𝑥, 𝑡) ⟼ 𝑢̇⋄(𝑥, 𝑡) ∶= 𝑢̇(𝑥, 𝑡) + 𝜙(𝑥, 𝑡) , (9)

where 𝜙(𝑥, 𝑡) is a differentiable function of its arguments. In other
words, 𝑢̇⋄(𝑥, 𝑡) = (𝖿−1𝑠 )∗ d𝑢

d𝑡 (𝖿𝑡(𝑥), 𝑡)
|

|

|𝑠=0
, where the asterisk indicates pull-

ack. When 𝖿𝑠 is an isometry, 𝜙 = 0: rotations of reference frames do
ot affect 𝑢 and so is for translations because 𝑢 does not describe a
lacement in space, rather it expresses a property of a neuron placed
t a given 𝑥 at time 𝑡.

Since 𝜉 = 𝜉𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 is a second-rank tensor over R3, it is sensitive to
he action of 𝑆𝑂(3). Also, it is insensitive to translations of reference
rames in space because the connectivity is a relative property between
eighboring neurons. Precisely, take a smooth map 𝑡 ⟼ 𝑄 ∈ 𝑆𝑂(3)
uch that 𝑄(0) = 𝐼 , with 𝐼 the second-rank unit tensor. Under the
ction of 𝑆𝑂(3), 𝜉 changes into 𝑄𝜉𝑄⊤, where ⊤ indicates standard
ransposition and the product saturates only one component each time,
amely (𝑄𝜉𝑄⊤)𝑖𝑗 = 𝑄𝑖

ℎ𝜉
ℎ
𝑘𝑄

𝑘
𝑗 . A straightforward computation reveals

hat
̇

𝑄𝜉𝑄⊤ = 𝜉̇ + [𝑊 , 𝜉] ,

where [⋅, ⋅] is the Lie bracket, so that [𝑊 , 𝜉] = 𝑊 𝜉 − 𝜉𝑊 , and 𝑊 is the
skew-symmetric tensor 𝑊 ∶= 𝑄⊤𝑄̇; as such it satisfies 𝑊 = e𝑞 = 𝑞×,
with 𝑞 ∈ R3 and e the Ricci alternating index. In components we have
[𝑊 , 𝜉]𝑖𝑗 = 𝑊 𝑖

ℎ𝜉
ℎ
𝑗 − 𝜉𝑖𝑘𝑊

𝑘
𝑗 . Consequently, we can write

̇
𝑄𝜉𝑄⊤ = 𝜉̇ +(𝜉)𝑞 ,
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where the linear operator (𝜉) is a third-rank tensor given by e𝜉 + 𝜉e,
which is, in terms of components, 𝑖

𝑗𝑘 = −(e𝑖𝑗ℎ𝜉
ℎ
𝑘 + 𝜉𝑖ℎe

ℎ
𝑗𝑘).

These preliminaries on the behavior of 𝜉 become useful when we
onsider a generic change of observer in the physical space as indicated
y 𝖿𝑠. In this case the counterpart of relation (9) reads (see analyses
n [34])
̇ ⟼ 𝜉̇⋄(𝑥, 𝑡) ∶= 𝜉̇(𝑥, 𝑡) + 𝜐̄(𝑥, 𝑡) ,

here 𝜐̄ is a second-rank-tensor-valued differentiable map. Specifically,
e set

𝜐̄(𝑥, 𝑡) = 𝜐(𝑥, 𝑡) +(𝜉)𝑞(𝑡) ,

where 𝑞(𝑡) ∈ R3 and  is as introduced above. Thus, the rule for
changes of observer that we consider here for 𝜉 is

𝜉̇ ⟼ 𝜉̇⋄(𝑥, 𝑡) ∶= 𝜉̇(𝑥, 𝑡) + 𝜐(𝑥, 𝑡) +(𝜉)𝑞(𝑡) . (10)

Definition 2.1 (Physical Acceptability). The changes of observer above
are considered to be physically acceptable when 𝜙, |𝜐̄|, |∇𝜙|, and |∇𝜐̄|
are bounded for every 𝑡.

3. Firing and connectivity histories

Write in short H for the list

H(𝑥, 𝑡) ∶= (𝑢,∇𝑢, 𝜉,∇𝜉)(𝑥, 𝑡) ∈ R × R3 ×𝑀3×3 ×𝑀3×3×3 ,

where 𝑀3×3 is the set of 3 × 3 real matrices and an analogous mean-
ing holds for 𝑀3×3×3, with the proviso of considering the additional
dimension.

We assume that admissible values of H are in an open connected set

 ⊆ R × R3 ×𝑀3×3 ×𝑀3×3×3 ≃ R × R3 × R3 ⊗ R3 × R3 ⊗ R3 ⊗ R3 .

At every 𝑥 ∈  and for 𝑡 > 0, we call a history a map H𝑡 ∶ R ⟶

R × R3 ×𝑀3×3 ×𝑀3×3×3 with values

H𝑡(𝑠) ∶= (𝑢,∇𝑢, 𝜉,∇𝜉)(𝑠) ,

for 𝑠 < 𝑡. We omitted writing 𝑥 for the sake of brevity, since the issue
tacked in this section concerns the dependence on time. So, by writing
simply H or H(𝑡), we indicate only the present value of the history at 𝑥.
Its clipping to the interval [𝑟, 𝑝), with 0 < 𝑟 < 𝑝, is indicated by K𝑟

𝑝 and
defined by

K𝑟
𝑝(𝑠) ∶= (𝑢,∇𝑢, 𝜉,∇𝜉)(𝑟 + 𝑠) ,

for 0 ≤ 𝑠 < 𝑝 − 𝑟. Given a pair (H𝑟,K𝑟
𝑝), we define a prolongation of H𝑟

through K𝑟
𝑝 as the history given by

(K𝑟
𝑝 ∗ H𝑟)(𝑠) ∶=

{

H𝑟(𝑠) if 0 ≤ 𝑠 < 𝑟,
K𝑟
𝑝(𝑠) if 𝑟 ≤ 𝑠 < 𝑝 .

When both H𝑟 and K𝑟
𝑝 are differentiable and lim𝑝↘0 K

𝑟
𝑝(𝑠) = H𝑟, the

prolonged history is differentiable too.
We indicate by 𝛴 the space of histories H𝑡, as defined above,

possibly partitioned into classes of equivalence, the defining relation
described later.

Take F ∶ 𝛴 × R3 × 𝑀3×3 × 𝑀3×3×3 ⟶ R, defined for every H ∈
R3 × 𝑀3×3 × 𝑀3×3×3 and every H𝑡 such that H𝑡(𝑠) is in  for almost
every 𝑠. Assume that

(1) F is continuously differentiable;
(2) the map 𝑡 ⟼ H(𝑡) has two continuous derivatives Ḣ(𝑡) and Ḧ(𝑡);

they are values of histories in 𝛴.

Under these assumptions, the function ℎ(𝑡) ∶= F(H𝑡;H(𝑡)) is continu-
ously differentiable and its derivative is given by

ℎ̇(𝑡) = 𝐷HF(H𝑡;H(𝑡)) ⋅ Ḣ(𝑡) + 𝛿F(H𝑡;H(𝑡)|J̇𝑡) , (11)

where 𝐷HF(H𝑡;H(𝑡)) is a continuous linear functional on the tangent
space to  at H, while 𝛿F(H𝑡;H(𝑡)|J̇𝑡) is a continuous functional depend-
ing linearly on J̇𝑡 and defined on the closed subspace of 𝛴 spanned by
the histories J𝑡 such that H𝑡(𝑠) + J𝑡(𝑠) ∈  (see also [35–38]).
4

r

4. Covariance of a mechanical dissipation inequality as a unique
source for the description of firing and connectivity variations

4.1. Power of actions

The phase fields in hands are so far firing state 𝑢 and connectivity
𝜉, scalar and tensor fields respectively. We consider actions power-
conjugated with them: they are those determining a power needed to
vary firing state and connectivity in a unit of time. According to a
common instance, we distinguish them into bulk and contact actions.
The latter class includes only first-neighbor neuronal interactions. The
former class accounts for external impulses, those represented by 𝛽
in Eq. (7).

Consider a region b ⊆ , which is arcwise connected and endowed
with a surface-type boundary oriented by the outward unit normal 𝑛 to
within a possibly empty finite set of corners and edges — roughly b has
the same topological properties of . We define external power over b

the functional

𝑒𝑥𝑡
b

(𝑢̇, 𝜉̇) ∶= ∫b
(𝛽𝑢̇ + 𝛾 ⋅ 𝜉̇) d𝑥 + ∫𝜕b

(𝜏𝜕 𝑢̇ + 𝜋𝜕 ⋅ 𝜉̇) d2(𝑥) ,

where the interposed dot means duality pairing, which is coincident
with the scalar product when the metric in space is flat and trivial,
namely it refers to an orthonormal frame of reference; d2 is the two-
dimensional Hausdorff measure; 𝛾 is a second-rank tensor describing
possible bulk actions on the connectivity, while 𝜋𝜕 is also a second-
rank tensor that represents first-neighbor (thus contact) interactions
and depends on the boundary of b, beyond 𝑥 and 𝑡, a circumstance
indicated by the subscript 𝜕; 𝛽 and 𝜏𝜕 are scalar fields: specifically, 𝜏𝜕
represents first-neighbor interactions associated with relative firing of
neurons; it depends on the boundary of b, beyond 𝑥 and 𝑡. In short, 𝑒𝑥𝑡

b
is the power (that is unit energy over unit time) of external actions
that determine firing and may alter connectivity variation processes
in b. The apparent vagueness in the interpretation of such a defini-
tion, as connected with neuronal processes, will become progressively
vanishing when we will elaborate its consequences.

4.2. Free energy and a peculiar property under the action of 𝖿𝑠

We consider a free energy for  as a Radon measure that is ab-
solutely continuous with respect to the volume, namely, for the free
energy 𝛷() we write

𝛷() ∶= ∫
𝜑(𝑥, 𝑢,∇𝑢, 𝜉,∇𝜉; 𝑢𝑡,∇𝑢𝑡, 𝜉𝑡,∇𝜉𝑡) d𝑥 ,

so we presume that it depends on the present values of 𝑢, 𝜉 and their
first gradients, and the histories of these variables. Also, 𝜑 is taken
to be a differentiable function of 𝑢, 𝜉 and their first gradients; also
𝜑(𝑥, 𝑢,∇𝑢, 𝜉,∇𝜉; ⋅) is considered to be lower semicontinuous over 𝛴.

Consider a generic material body for which we can render explicit
the notion of state. Assume there exist a set of operators on the state
space such that their action determines state evolution. Associate with
each process in the state space a functional that is continuous over
states and additive with respect to continuation of processes. In this
setting we can prove that the body (whatever its nature be) admits a
free energy (see the pertinent proof in [39]).

Per se, 𝜑 is a density associated with the volume form. So, according
to proposals in Refs. [32,40], we assume that it varies tensorially under
the action of 𝖿𝑠 on the ambient space. Precisely, by interpreting exactly
such a tensoriality as in Ref. [32], we consider a counterpart of relations
(9) and (10) for 𝜑̇, so that we take the following change for 𝜑̇:

𝜑̇ ⟼ 𝜑̇⋄ ∶= 𝜑̇+
𝜕𝜑
𝜕𝑢

𝜙+
𝜕𝜑
𝜕∇𝑢

⋅∇𝜙+
𝜕𝜑
𝜕𝜉

⋅𝜐+
𝜕𝜑
𝜕∇𝜉

⋅∇𝜐+𝛿F(H𝑡;H(𝑡)|J̇𝑡) , (12)

here 𝛿F is a continuous map of its arguments (see the differentiation
ule (11)).
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4.3. Mechanical dissipation inequality and pertinent covariance principle

We refer here to isothermal setting because the models whose
foundations we analyze do not account for temperature variations. We
are however aware that non-isothermal effects may play a nontrivial
role in brain functioning.

The mechanical dissipation inequality we refer to reads
d
d𝑡
𝛷(b) − 𝑒𝑥𝑡

b
(𝑢̇, 𝜉̇) ≤ 0 (13)

and is presumed to hold for any choice of b and the (time) rate fields
involved.

Write in short D for the left-hand side terms of the inequality (13),
which thus reads D ≤ 0 as referred to an observer . Another observer,
amely ′, which differs from  by the action of diffeomorphisms

𝖿𝑠 ∶  ⟶ ′, records an inequality D′ ≤ 0. According to the rules
for changes of observers (9), (10), and (12), the pull back of D′ into
he frame of reference defining  gives rise to another inequality, say
∙ ≤ 0, with D∙ = D + D†. The term D† involves the fields 𝜙, 𝜐, ∇𝜙,
𝜐.

If we consider the change ′ ⟶ , the pull-back of D into the
bserver ′ reads D◦ and satisfies the inequality D◦ ≤ 0, where,
ow, according always to the adopted rules for changes of observers,
◦ = D′ +D‡.

In principle, D‡ is different from D†.
We impose the following covariance principle in dissipative setting,

s given in Refs. [32,33]: it states, essentially, that both D† and D‡

re always non-positive. In other words, if a process is dissipative for
given observer, it is so for any other observer related to the first

ne by a diffeomorphism. Dissipation is thus considered as an intrinsic
roperty.

xiom 1. In any change of observer, the additional term arising after
ulling-back the Clausius–Duhem inequality evaluated by the second
bserver in a frame defining the first one is always non positive.

.4. Consequences of the covariance principle in dissipative setting

Consider the change of observer  ⟶ ′. According to previous
otations, the term
† = D∙ −D

urnishes, according to the covariance principle above, the inequality

∫b

(

𝜕𝜑
𝜕𝑢

𝜙+
𝜕𝜑
𝜕∇𝑢

⋅∇𝜙+
𝜕𝜑
𝜕𝜉

⋅𝜐+
𝜕𝜑
𝜕∇𝜉

⋅∇𝜐+𝛿F(H𝑡;H(𝑡)|J̇𝑡)
)

d𝑥−𝑒𝑥𝑡
b

(𝜙, 𝜐̄) ≤ 0 .

(14)

Rather immediate consequences are as follows:

• Set 𝜐 = 0 and 𝑞 = 0, which means also 𝜐̄ = 0. The inequality (14)
reduces to

∫b

(

𝜕𝜑
𝜕𝑢

𝜙+
𝜕𝜑
𝜕∇𝑢

⋅∇𝜙+𝛿F(H𝑡;H(𝑡)|J̇𝑡)
)

d𝑥−∫b
𝛽𝜙 d𝑥−∫𝜕b

𝜏𝜕𝜙 d2(𝑥) ≤ 0 .

(15)

Assume that 𝛽, 𝛿F, and the partial derivatives of 𝜙 with respect to
𝑢 and ∇𝑢 are bounded. When 𝜏𝜕(⋅, 𝑡) is continuous at every time 𝑡,
by Cauchy’s theorem (see, e.g., [41, p. 3]) applied to 𝜏′𝜕 = −𝜏𝜕
we realize that 𝜏𝜕 depends on the boundary 𝜕b, and for every
b, only on the normal 𝑛 at all points where it is well-defined.
Precisely, we have 𝜏𝜕(𝑥, 𝑡) = 𝜏(𝑥, 𝑡, 𝑛), with the additional property
that 𝜏(𝑥, 𝑡, 𝑛) = −𝜏(𝑥, 𝑡,−𝑛). Also, there exists a vector function h,
depending on 𝑥 and 𝑡, and not on 𝑛, such that
5

𝜏(𝑥, 𝑡, 𝑛) = h(𝑥, 𝑡) ⋅ 𝑛 .
In addition, if h(⋅, 𝑡) ∈ 𝐶1() ∩ 𝐶(̄) at every 𝑡, where ̄ is the
closure of , the inequality (15) reduces to

∫b

(

𝜕𝜑
𝜕𝑢

𝜙 +
𝜕𝜑
𝜕∇𝑢

⋅ ∇𝜙 + 𝛿F(H𝑡;H(𝑡)|J̇𝑡)
)

d𝑥 − ∫b
𝛽𝜙 d𝑥

− ∫b
(𝜙divh + h ⋅ ∇𝜙) d𝑥 ≤ 0 .

(16)

Consider 𝛽(⋅, 𝑡) to be a continuous function at every 𝑡, and set

𝑧𝑢 = 𝛽 + divh , (17)

presuming that 𝑧𝑢 is the sum 𝑧𝑢 = 𝑧𝑒𝑢 + 𝑧𝑑𝑢 , where 𝑧𝑒𝑢 is an energetic
component, meaning it is fully determined by the free energy,
while the other is a dissipative component, which, per se, satisfies
the inequality

𝑧𝑑𝑢 𝑢̇ ≥ 0 ,

presumed to hold for every choice of 𝑢̇, a requirement compatible
with a constitutive structure

𝑧𝑑𝑢 = 𝑎𝑢(⋯)𝑢̇ .

In the previous identity, 𝑎𝑢(⋯) is a positive-definite scalar func-
tion depending on H, H𝑡, and possibly their gradients, according
to Truesdell’s equipresence principle. With these choices, the
inequality (16) reduces to

∫b

(

( 𝜕𝜑
𝜕𝑢

−𝑧𝑒𝑢
)

𝜙+
( 𝜕𝜑
𝜕∇𝑢

−h
)

⋅∇𝜙+𝛿F(H𝑡;H(𝑡)|J̇𝑡)−𝑧𝑑𝑢𝜙
)

d𝑥 ≤ 0 . (18)

The arbitrariness of 𝜙 and ∇𝜙 implies the constitutive restrictions

𝑧𝑒𝑢 =
𝜕𝜑
𝜕𝑢

, h =
𝜕𝜑
𝜕∇𝑢

, (19)

and the local dissipation inequality

𝛿F(H𝑡;H(𝑡)|J̇𝑡) − 𝑧𝑑𝑢𝜙 ≤ 0 ,

which implies

𝛿F(H𝑡;H(𝑡)|J̇𝑡) ≤ 0 (20)

when 𝑢̇ = 0, after identifying 𝜙 with 𝑢, thanks to the arbitrariness
of 𝜙. Consequently, Eq. (17) becomes

𝑎𝑢(⋯)𝑢̇ = 𝛽 −
𝜕𝜑
𝜕𝑢

+ divh , (21)

or

𝑎𝑢(⋯)𝑢̇ = 𝛽 −
𝜕𝜑
𝜕𝑢

+ div
𝜕𝜑
𝜕∇𝑢

.

When 𝑎𝑢(⋯) = 𝜏, with 𝜏 the relaxing time and 𝜑 is quadratic with
respect to 𝑢, namely

𝜑 = 1
2
𝛼𝑢2 + 𝜑̂(𝑥,∇𝑢, 𝜉,∇𝜉 ∶ 𝑢𝑡,∇𝑢𝑡, 𝜉𝑡,∇𝜉𝑡) ,

the local balance (21) of actions associated with firing reduces
to Eq. (7), now derived from first principles rather than postu-
lated.

• Set 𝜙 = 0. The inequality (14) reduces to

∫b

(

𝜕𝜑
𝜕𝜉

⋅ 𝜐 +
𝜕𝜑
𝜕∇𝜉

⋅ ∇𝜐 + 𝛿F(H𝑡;H(𝑡)|J̇𝑡)
)

d𝑥 − ∫b
𝛾 ⋅ 𝜐̄ d𝑥

− ∫𝜕b
𝜋𝜕 ⋅ 𝜐̄ d2(𝑥) ≤ 0 .

(22)

By maintaining previous hypotheses, among them the bounded-
ness of 𝛿F, assume also that |𝛾| and the partial derivatives of 𝜑
with respect to 𝜉 and ∇𝜉 are bounded. When 𝜋𝜕(⋅, 𝑡) is continuous
at every time 𝑡, Cauchy’s theorem applied to 𝜋′

𝜕 = −𝜋𝜕 allows
us to conclude that 𝜋 depends on the boundary 𝜕b, and for
𝜕
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every b, only on the normal 𝑛 at all points where it is well-
defined. Precisely, we have 𝜋𝜕(𝑥, 𝑡) = 𝜋(𝑥, 𝑡, 𝑛), with the additional
property that 𝜋(𝑥, 𝑡, 𝑛) = −𝜋(𝑥, 𝑡,−𝑛). Also, there exists a third-rank
tensor-valued map , depending on 𝑥 and 𝑡, such that

𝜋(𝑥, 𝑡, 𝑛) = (𝑥, 𝑡)𝑛 ,

which reads in components 𝜋 𝑗
𝑖 =  𝑗𝑘

𝑖 𝑛𝑘, by considering the
normal 𝑛 as a covector. In addition, if (⋅, 𝑡) ∈ 𝐶1() ∩ 𝐶(̄) at
every 𝑡, where ̄ is the closure of , the inequality (22) reduces
to

∫b

(

𝜕𝜑
𝜕𝜉

⋅ 𝜐 +
𝜕𝜑
𝜕∇𝜉

⋅ ∇𝜐 + 𝛿F(H𝑡;H(𝑡)|J̇𝑡)
)

d𝑥 − ∫b
𝛾 ⋅ 𝜐 d𝑥

− ∫b
(𝜐 ⋅ div + ⋅ ∇𝜐) d𝑥

− 𝑞 ⋅
(

∫b

(

∗(𝛾 + div) + (∇∗)⊤
)

d𝑥
)

≤ 0 ,

(23)

where ∗ is the formal adjoint of , which coincides with the
transpose, indicated by ⊤, when the spatial metric is flat and
trivial. Take 𝛾(⋅, 𝑡) to be a continuous map at every 𝑡, and set

𝐳𝜉 = 𝛾 + div , (24)

presuming even in this case that 𝐳𝜉 is the sum 𝐳𝜉 = 𝐳𝑒𝜉 + 𝐳𝑑𝜉 , where
the superscripts 𝑒 and 𝑑 have the same meaning adopted for 𝑧𝑢.
The dissipative component 𝐳𝑑𝜉 satisfies per se the inequality

𝐳𝑑𝜉 ⋅ 𝜉̇ ≥ 0 ,

presumed to hold for every choice of 𝜉̇, a requirement compatible
with a constitutive structure

𝐳𝑑𝜉 = 𝑎̂𝜉 (⋯)𝜉̇ ,

with 𝑎̂𝜉 (⋯) a positive-definite scalar function depending on H, H𝑡,
and possibly their gradients. Then, the inequality (23) reduces to

∫b

(

( 𝜕𝜑
𝜕𝜉

− 𝐳𝑒𝜉
)

⋅ 𝜐 +
( 𝜕𝜑
𝜕∇𝜉

−
)

⋅ ∇𝜐 + 𝛿F(H𝑡;H(𝑡)|J̇𝑡) − 𝐳𝑑𝜉 ⋅ 𝜐
)

d𝑥

− 𝑞 ⋅
(

∫b

(

∗(𝛾 + div) + (∇∗)⊤
)

d𝑥
)

≤ 0 .

(25)

Once again, the arbitrariness of 𝜐 and ∇𝜐 implies the constitutive
restrictions

𝐳𝑒𝜉 =
𝜕𝜑
𝜕𝜉

,  =
𝜕𝜑
𝜕∇𝜉

. (26)

When ∇𝜉 is also continuous, so is ∇∗ by the definition of , the
arbitrariness of 𝑞 and b implies also

∗𝐳𝜉 + (∇∗)⊤ = 0 . (27)

What remains is the local dissipation inequality

𝐳𝑑𝜉 ⋅ 𝜐 − 𝛿F(H𝑡;H(𝑡)|J̇𝑡) ≥ 0 ,

which furnishes again the local inequality (20) when 𝜉̇ = 0, after
identifying 𝜐 with 𝜉. Eq. (24) thus reduces to

𝑎̂𝜉 (⋯)𝜉̇ = 𝛾 −
𝜕𝜑
𝜕𝜉

+ div
𝜕𝜑
𝜕∇𝜉

, (28)

which is the desired evolution equation for the connectivity.

Remark 4.1. Recall that 𝜑 = 𝜑(H,H𝑡), so the dependence on memory is
included in Eq. (28); coupling it with the balance of firing interactions
(21) and including a delay, we can consider in the evolution of 𝜉
pre-firing and post-firing effects (see, e.g., [28], where first-neighbor
6

interactions described by  are not included).
Remark 4.2. Consider only the external power over a generic brain
part b of actions associated with connectivity variations, namely

𝑒𝑥𝑡
b

(𝜉̇) ∶= ∫b
𝛾 ⋅ 𝜉̇ d𝑥+ ∫𝜕b

𝜋𝜕 ⋅ 𝜉̇ d2(𝑥) = ∫b
𝛾 ⋅ 𝜉̇ d𝑥+ ∫𝜕b

𝑛 ⋅ 𝜉̇ d2(𝑥) .

Apply Gauss’ theorem on the last integral and exploit Eq. (24). The
esult is

𝑒𝑥𝑡
b

(𝜉̇) = ∫b
(𝐳𝜉 ⋅ 𝜉̇ + ⋅ ∇𝜉̇) d𝑥 .

The right-hand-side integral is what we call a internal power of
ctions that perform power in the connectivity evolution. So, Eq. (27)
s nothing more that the condition assuring that the internal power
anishes when 𝜉̇ is apparent, meaning that it is determined only by
ime-dependent rotations of the spatial frames of reference, which
ffect 𝜉 due to its tensor nature. An analogous relation does not hold
or 𝑢 because it is chosen here to be a scalar insensitive to action of the
pecial orthogonal group. When 𝑢 is selected to be a vector – not a simple
ist of scalars – or a tensor of any higher order, a relation analogous to
27) should be derived: it would connect one another both firing and
onnectivity actions; also it would involve different linear operators ,
ne for 𝑢, depending on its tensor nature, another for 𝜉, the one defined
bove.

emark 4.3. On the basis of the obtained results, given two histories
𝑡 and H̄𝑡, we say that they are equivalent when

𝑢(H̄𝑡, H̄) = 𝑧𝑢(H𝑡,H) , h(H̄𝑡, H̄) = h(H𝑡,H)

nd

𝜉 (H̄𝑡, H̄) = 𝐳𝜉 (H𝑡,H) , (H̄𝑡, H̄) = (H𝑡,H) .

. Accounting for calcium channels bringing dopamine excess in
arkinson’s disease

The scheme developed so far is suitable to describe brain plas-
icity intended as the reorganization of neuronal connectivity (see,
.g., remarks in [31]). Parkinson’s disease involves the occurrence of
dopamine excess through calcium channels. Their distribution in a

eighborhood of 𝑥 at instant 𝑡 is a function 𝑔̂ of the direction 𝑛 ∈ 𝑆2,
here 𝑆2 is the unit sphere in 3𝐷-space. It can be expanded as follows

see [42, Ch. 4]):

𝑔̂(𝑛) = 𝑔̂0 +𝐷(1)
𝑖𝑗 𝑛𝑗𝑛𝑖 +𝐷(2)

𝑖𝑗ℎ𝑘𝑛
𝑘𝑛ℎ𝑛𝑗𝑛𝑖 +⋯ ,

here 𝑔̂0 is a scalar, namely the average density; 𝐷𝑖𝑗 and 𝐷𝑖𝑗ℎ𝑘 are
econd-rank and fourth-rank symmetric tensors, respectively. Choosing
ne or the other element of the approximation may allow us to consider
ariously refined representation of the particle distribution.

For example, to approximate 𝑔̂, we may choose a second-rank tensor
= 𝜆𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 , where

𝑖𝑗 ∶= 𝑔̂0𝛿𝑖𝑗 +𝐷(1)
𝑖𝑗

nd 𝛿𝑖𝑗 is Kronecker’s delta.
The free energy, now, may in principle include 𝜆, together with its

istory. The simplest choice is

() ∶= ∫
𝜑(𝑥, 𝑢,∇𝑢, 𝜉,∇𝜉 ∶ 𝑢𝑡,∇𝑢𝑡, 𝜉𝑡,∇𝜉𝑡, 𝜆) d𝑥 .

f we consider 𝜆 to be time-varying, by taking into account that under
hanges of observer 𝜆 would vary according to a relation similar to
he one for 𝜉, namely (10), because 𝜆 is a second-rank tensor too,
nd varying the relation (12) according to the presence of 𝜆, the path
ollowed so far would furnish an appropriate evolution equation for 𝜆,
hich would be analogous in structure to those local balances obtained

o far, namely (21) and (28).
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6. Influence of uncertainties in the calcium channel distribution
on homogeneous connectivity evolution at constant firing

We do not undertake the path leading to an evolution equation for
𝜆. We just reduce attention to a special case because it allows us to
characterize explicitly the influence on 𝜉 distribution of uncertainties
pertaining to data about 𝜆. Our analysis is local, meaning focused at a
point 𝑥 and presumes that in a neighborhood of 𝑥

• 𝜆 is constant,
• neuron firing is constant,
• 𝜉 is homogeneous over  – first-neighbor interactions due to

coonnectivity variations in space are thus excluded; in this case
𝜑 does not depend on ∇𝜉 and its history ∇𝜉𝑡.

Analyses pertinent to these ideal assumptions are below. They re-
quire some preliminaries.

6.1. Pushing forward Probability Density Functions (PDFs)

As it is known, the push-forward through a homeomorphism of a
probability measure that admits a density with respect to the standard
Lebesgue measure is itself a probability measure but it does not neces-
sarily admit a density. Specific examples of such a lack of density are,
for example, in the treatise [43]: there are, in fact, homeomorphisms
of R that map a set of positive measure onto the Cantor set (a dust
of points). If we push-forward a Lebesgue measure (density 1) through
such a map, we assigns positive measure to the Cantor set, hence it
is clearly not absolutely continuous. If, instead, the push forward is
provided by a diffeomorphism, a density occurs and we may give an
explicit formula for the target density. We specify here the circum-
stance with details because it is the tool that we use in analyzing
the interactions between calcium channel distribution and neuronal
connectivity.

For calculations in the rest of this paper we exploit Voigt’s notation,
namely we adopt an isomorphism between R3⊗R3 and R9, being aware
that it is not unique. So, from now on, we consider 𝜉 ∈ R9. However,
our analyses do not change if assuming 𝜉 ∈ R𝑛, a choice that could
include a different modeling for the connectivity representation (for
example, we could consider 𝜉 as a fourth-rank tensor with major and
minor symmetries, so that the isomorphism would be with R21). For
this reason, and for the sake of generality, we will write R𝑛 instead of
R9. We apply the same reasoning to 𝜆 and will consider it in R𝑘; so,
we maintain possibly distinguished the tensor rank of connectivity and
calcium channel distribution descriptions.

Under the ideal assumptions at the beginning of this section, the
local balance of actions associated with connectivity variations (28)
reduces, when we neglect also the history 𝜉𝑡 and 𝜆, to an equation of
the form

𝜉̇(𝑡) = 𝑓
(

𝑡, 𝜉(𝑡)
)

(29)

where, with the adopted isomorphism discussed above, 𝑓 ∶R×R𝑛 → R𝑛

is assumed to be locally Lipschitz and such that solutions to Eq. (29) are
defined for each 𝜉(0) = x in some open subset 𝑉 of R𝑛 up to time 𝑇 > 0.
Eq. (29) defines the (Poincaré) translation (or flow) operator 𝛷𝑡(x) at time
𝑡 that associates to x ∈ 𝑉 , the value at time 𝑡 of the unique solution of
(29), which is equal to x at 𝑡 = 0, that is 𝑡 ↦ 𝛷𝑡(x) is solution to the
Cauchy problem
{

𝜉̇(𝑡) = 𝑓
(

𝑡, 𝜉(𝑡)
)

,
𝜉(0) = x.

We will indicate by 𝑦 the final point of the process.
Write 𝑋 for a random variables associated with the initial point of

the process. It admits a probability density function 𝑝1 on 𝑉 , assumed
to be known. So, we write 𝑝1(x) to indicate the probability distribution
of 𝑋 when 𝜉(0) = x. Let 𝑝2 indicate the probability density function
for 𝑌 = 𝛷𝑇 (𝑋), the push-forward of 𝑋 through 𝛷 up to time 𝑇 . The
following proposition holds true:
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Proposition 6.1. With the above notation, we have

𝑝2(𝑦) = 𝑝1
(

𝜁𝑦(𝑇 )
)

e− ∫ 𝑇
0 tr 𝜕2𝑓

(

𝑇−𝑡,𝜁𝑦(𝑡)
)

d𝑡 (30)

where 𝜁𝑦 is solution to
{

𝜁̇𝑦(𝑡) = −𝑓
(

𝑇 − 𝑡, 𝜁𝑦(𝑡)
)

,
𝜁𝑦(0) = 𝑦.

(31)

Proof. Given a diffeomorphism 𝛹 ∶R𝑛 → R𝑛, as a direct consequence
of the change of coordinate formula for multiple integrals, we have

𝑝2(𝑦) = 𝑝1
(

𝛹−1(𝑦)
)

|

|

|

det[(𝛹−1)′(𝑦)]||
|

, (32)

where (𝛹−1)′(𝑦) denotes the Fréchet derivative, evaluated at 𝑦, of the
inverse transformation 𝛹−1. In our setting, 𝛹 is merely the map that
to any 𝑥 ∈ R𝑛 associates the solution at time 𝑇 of Eq. (29) with initial
condition 𝜉(0) = x.

𝛹−1(𝑦) is given by the solution at time 𝑡 = 𝑇 of system (31), that is

𝛹−1(𝑦) = 𝜁𝑦(𝑇 ) . (33)

Also, (𝛹−1)′(𝑦) is solution at time 𝑇 of the variation equation associ-
ated with (31). Namely, let 𝜂 be solution of the following matrix-valued
Cauchy problem:
{

𝜂̇(𝑡) = −𝜕2𝑓
(

𝑇 − 𝑡, 𝜁𝑦(𝑡)
)

𝜂(𝑡),
𝜂(0) = 𝐼,

(34)

where 𝐼 denotes the identity matrix in R𝑛×𝑛 and 𝜕2 means derivative
with respect to the second entry of 𝑓 . We get (𝛹−1)′(𝑦) = 𝜂(𝑇 ).
By Liouville’s formula [44, Th. 1.2 (Liouville), Th. 3.1 (Peano), and
Corollary 3.1], we have

det
(

𝜂(𝑡)
)

= e− ∫ 𝑡
0 tr 𝜕2𝑓

(

𝑇−𝑠,𝜁𝑦(𝑠)
)

d𝑠 . (35)

Hence, we compute

det
[

(𝛹−1)′(𝑦)
]

= e− ∫ 𝑇
0 tr 𝜕2𝑓

(

𝑇−𝑡,𝜁𝑦(𝑡)
)

d𝑡.

The assertion follows from formulas (33) and (35). ■

When Eq. (29) is linear with constant coefficient and possibly
non-homogeneous, namely

𝜉̇(𝑡) = 𝐴𝜉(𝑡) + 𝜑(𝑡) , (36)

we can obtain a more explicit formula.

Corollary 6.2. When Eq. (29) has the form (36), we have

𝑝2(𝑦) = 𝑝1

(

e−𝑇𝐴𝑦 − ∫

𝑇

0
e−(𝑇−𝑠)𝐴𝜑(𝑇 − 𝑠) d𝑠

)

e−𝑇 tr 𝐴.

Proof. Let 𝑓 (𝑡, 𝑥) = 𝐴𝜉(𝑡)+𝜑(𝑡). Then, the function 𝜁𝑦(𝑡) that solves (31)
is given by 𝜁𝑦(𝑡) = e−𝑇𝐴𝑦− ∫ 𝑇

0 e−(𝑇−𝑠)𝐴𝜑(𝑇 − 𝑠) d𝑠 and, since 𝜕2(𝐴𝜉) = 𝐴,
by substituting in formula (30) we get the assertion. ■

A simple scalar example illustrates the stage.

Example 6.3. Take 𝑛 = 1, 𝑓 (𝑡, 𝑥) = 1∕𝑥, and 𝑎, 𝑏 ∈ R, with 0 < 𝑎 < 𝑏.
Consider 𝑝1(𝑥) =

1
𝑏−𝑎𝜒[𝑎,𝑏](𝑥), where

𝐼 (𝑥) =

{

1 if 𝑥 ∈ 𝐼 ,
0 otherwise,

enotes the characteristic function of the interval 𝐼 . 𝜁𝑦 in Proposi-
ion 6.1 is given by 𝑡 ↦

√

𝑦2 − 2𝑇 ; therefore we have

𝑝2(𝑦) = 𝑝1
(
√

𝑦2 − 2𝑇
)

e
∫ 𝑇
0

d𝑡
𝑦2−2𝑇 =

𝜒
[
√

𝑎2+2𝑇 ,
√

𝑏2+2𝑇 ]
(𝑦)

√

𝑦2
2

.

𝑏 − 𝑎 𝑦 − 2𝑇
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𝑧

𝑧

Although 𝑝1 is uniform, 𝑝2 is not so. Also, if once again 𝑋 and 𝑌 are
random variables associated, respectively, with starting and end points
of the process, we find for the expected value (average) 𝐸(𝑌 ) of 𝑌 :

𝐸
(

𝛷𝑇 (𝑋)
)

= 𝐸(𝑌 ) = 1
𝑏 − 𝑎 ∫

√

𝑏2+2𝑇

√

𝑎2+2𝑇
𝑦

√

𝑦2

𝑦2 − 2𝑇
d𝑦.

Taking, for example 𝑎 = 1, 𝑏 = 5, and 𝑇 = 1, we have approximately
𝐸(𝑌 ) ≃ 3.3603…, whereas we have 𝛷𝑇

(

𝐸(𝑋)
)

=
√

10 ≃ 3.1622…. Thus,
or this example, 𝛷𝑇

(

𝐸(𝑋)
)

≠ 𝐸
(

𝛷𝑇 (𝑋)
)

.

Remark 6.4. Even for uniformly distributed random variables, in
general the flow operator does not transport the expected value into the
one pertaining to the induced push forward. However, for a uniformly
distributed random variable 𝑋, Corollary 6.2 implies that for the flow
perator induced by Eq. (36) is such that 𝛷𝑇

(

𝐸(𝑋)
)

= 𝐸
(

𝛷𝑇 (𝑋)
)

.

6.2. Combining uncertainties in connectivity and calcium channel distribu-
tion

When we account for the dependence on 𝜆, that is what approx-
imately describes the distribution of calcium channels, a variable
considered in this section – we recall – in R𝑘, Eq. (29) changes
into

𝜉̇(𝑡) = 𝐹
(

𝑡, 𝜉(𝑡), 𝜆
)

, (37)

with 𝐹 ∶R × 𝑉 × 𝑊 → R𝑘, 𝑉 ⊆ R𝑠, 𝑊 ⊆ R𝑘 open sets. As above, we
assume that all solutions of this equation starting at time 𝑡 = 0 can be
continued up to time 𝑡 = 𝑇 , for 𝑇 > 0 given.

As assumed at the beginning of this section, we consider a time
interval in which the parameter 𝜆 remains constant during the process.
In fact, for 𝜆 ∈ 𝑊 fixed, (37) induces a flow operator x ↦ 𝛷𝜆

𝑇 (x) and the
map 𝑡 ↦ 𝛷𝜆

𝑡 (x) is the unique solution of Eq. (37) with initial (at 𝑡 = 0)
condition x ∈ 𝑉 .

In order to reduce this case to the one considered in the previous
section we observe that we can consider equivalently to equation (37)
the following expanded system in R𝑘+𝑛:
{

𝜉̇(𝑡) = 𝐹
(

𝑡, 𝜉(𝑡), 𝜆),
𝜆̇ = 0.

(38)

Setting 𝑧(𝑡) ∶=
(

𝜉(𝑡), 𝜆(𝑡)
)

and 𝑓 (𝑡, 𝑧) ∶=
(

𝐹 (𝑡, 𝜉, 𝜆), 0
)

∈ R𝑘+𝑛, this system
can, in turn, be written as

𝑧̇(𝑡) = 𝑓
(

𝑡, 𝑧(𝑡)
)

, (39)

which is of the form (29) with 𝑈 = 𝑉 ×𝑊 .
Let 𝑋 and 𝛬 be random variables representing the initial (at 𝑡 =

0) condition for Eq. (39) in 𝑉 × 𝑊 . We assume that 𝑋 and 𝛬 are
independent, endowed with probability density functions 𝑝𝑋 and 𝑝𝛬,
respectively. Clearly, for (𝑥, 𝜆) ∈ 𝑉 ×𝑊

𝑝1(𝑥, 𝜆) = 𝑝𝑋 (x)𝑝𝛬(𝜆)

is a joint probability density function.
Random variables 𝑋 and 𝑌 with marginal probability density func-

tions 𝑝𝑋 and 𝑝𝑌 , respectively, are independent if and only if for any
joint probability density function 𝑝(𝑋,𝑌 ) we have 𝑝(𝑋,𝑌 )(x, 𝑦) = 𝑝𝑋 (x)𝑝𝑌 (𝑦)
for almost all (𝑥, 𝑦).

Let 𝛷𝑇 the flow operator induced by Eq. (39). Clearly we get
𝛷𝑇 (x, 𝜆) =

(

𝛷𝜆
𝑇 (x), 𝜆). Similarly to the previous section, for (𝑦, 𝜆) ∈

𝑉 ×𝑊 , let 𝑡 ↦ 𝜁𝜆𝑦 (𝑡) be the (unique) solution of the Cauchy problem
{

𝜉̇(𝑡) = −𝐹
(

𝑇 − 𝑡, 𝜉(𝑡), 𝜆
)

,
𝜉(0) = 𝑦 .
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The unique solution 𝑡 ↦ 𝑧𝑦,𝜆(𝑡) of the Cauchy problem
{

𝜂̇(𝑡) = −𝑓
(

𝑇 − 𝑡, 𝜂(𝑡)
)

,
𝜂(0) = (𝑦, 𝜆)

has the form 𝑧𝑦,𝜆(𝑡) =
(

𝜁𝜆𝑦 (𝑡), 𝜆
)

.
Since in block-matrix form we have

𝜕2𝑓 =
(

𝜕2𝐹 𝜕3𝐹
0 0

)

,

where 𝜕𝑖𝑓 indicates the derivative with respect to the 𝑖th entry of 𝑓 ,
we find that tr

(

𝜕2𝑓 (𝑇 − 𝑡, 𝑧𝜆𝑦(𝑡))
)

= tr
(

𝜕2𝐹 (𝑇 − 𝑡, 𝜁𝜆𝑦 (𝑡), 𝜆)
)

. Hence, a
direct application of Proposition 6.1 yields a formula for the probability
density function 𝑝2 of 𝛷𝑇 (𝑋,𝛬):

𝑝2(𝑦, 𝜆) = 𝑝1
(

𝑧𝑦,𝜆(𝑇 )
)

e− ∫ 𝑇
0 tr 𝜕2𝐹

(

𝑇−𝑡,𝜁𝜆𝑦 (𝑡),𝜆
)

d𝑡

= 𝑝𝛬(𝜆)𝑝𝑋
(

𝜁𝜆𝑦 (𝑇 )
)

e− ∫ 𝑇
0 tr 𝜕2𝐹

(

𝑇−𝑡,𝜁𝜆𝑦 (𝑡),𝜆
)

d𝑡.
(40)

So, we obtain

𝑝𝑌 (𝑦) ∶= ∫R𝑘
𝑝𝛬(𝜆)𝑝𝑋

(

𝜁𝜆𝑦 (𝑇 )
)

e− ∫ 𝑇
0 tr 𝜕2𝐹

(

𝑇−𝑡,𝜁𝜆𝑦 (𝑡),𝜆
)

d𝑡 d𝜆.

6.3. Memory effects

Consider Eq. (8) with 𝜉 in R𝑛 as above. We first avoid considering
the parameter 𝜆, so that we look at the equation

𝜉̇(𝑡) = 𝑔
(

𝑡, 𝜉(𝑡),∫

𝑡

−∞
𝛾𝑏𝑎 (𝑇 − 𝜏)𝜑(𝜉(𝜏)) d𝜏

)

, (41)

where 𝜑 ∶ R𝑛 ⟶ R𝑛 is continuous and 𝑔 ∶ R×R𝑛 ×R𝑛 ⟶ R𝑛 a locally
Lipschitz function.

The peculiar structure of the kernel (a gamma distribution) al-
lows one to establish a correspondence between the bounded solutions
of Eq. (41) and those of the system

̇ = 𝐺(𝑡, 𝑧(𝑡)) , (42)

where 𝑧 ∶= (𝑣0,… , 𝑣𝑏) and 𝐺 ∶ R × R𝑛(𝑏+1) ⟶ R𝑛(𝑏+1) is given by

𝐺(𝑡, 𝑣0, 𝑣1,… , 𝑣𝑏) =
(

𝑔(𝑢, 𝑣0, 𝑣𝑏), 𝑎
(

𝜑(𝑢, 𝑣0) − 𝑣1
)

, 𝑎(𝑣1 − 𝑣2)… , 𝑎(𝑣𝑏−1 − 𝑣𝑏)
)

.
(43)

The correspondence between systems (41) and (42) is intended in this
way: If 𝜉(𝑡) is a bounded solution of equation (41), the map 𝑡 ⟼

(𝜉(𝑡), 𝜂0(𝑡),… ,
𝜂𝑏(𝑡)), with 𝜂𝑖(𝑡) ∶= ∫ 𝑡

−∞ 𝜑(𝜉(𝜏)) d𝜏
)

, 𝑖 = 1,… , 𝑏, solves system (42).
Conversely, given any bounded solution (𝜉(𝑡), 𝜂0(𝑡),… , 𝜂𝑏(𝑡)) of system
(42), 𝜉(𝑡) is a bounded solution to Eq. (41) (see [45–51]).

6.3.1. Linear setting
Consider

𝑔(𝑡, 𝜉, 𝑣) = 𝐴(𝑡)𝜉 + 𝐵(𝑡)𝑣 , and 𝜑(𝜉) = C𝜉,

where 𝐴,𝐵 ∶ R ⟶ R𝑛×𝑛 are continuous matrix-valued maps and
C ∈ R𝑛×𝑛 is a constant matrix. In this case, Eq. (42) reduces to

̇ (𝑡) = G(𝑡)𝑧(𝑡),

where 𝑡 ⟼ G(𝑡) ∈ R𝑛(𝑏+1)×𝑛(𝑏+1) is continuous. We represent G(𝑡) in
block-matrix form as follows:

G(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴(𝑡) 0 … … … 0 𝐵(𝑡)
C −𝑎𝐼 0 … … … 0
0 𝑎𝐼 −𝑎𝐼 0 … … 0
∶ ⋱ ⋱ ⋱ ⋱ ⋱ ∶
∶ ⋱ ⋱ ⋱ ⋱ ⋱ ∶
0 … … … … 𝑎𝐼 −𝑎𝐼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝐼 indicates the 𝑛 × 𝑛 unit matrix. Clearly, trG = tr𝐴 − 𝑎𝑛𝑏.
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𝑧

Assume that a probability density function 𝑝𝑋 is known for the
distribution of initial values for Eq. (42). On the basis of Proposition 6.1
and considering the system
{

𝜁̇𝑦(𝑡) = −G
(

𝑇 − 𝑡
)

𝜁𝑦(𝑡),
𝜁𝑦(0) = 𝑦 .

(44)

for the probability density function 𝑝𝑌 pertaining to the distribution of
𝜉(𝑡), 𝑡 ≠ 0, we get

𝑝𝑌 (𝑦) = 𝑝𝑋
(

𝜁𝑦(𝑇 )
)

e− ∫ 𝑇
0 trG(𝑇−𝑡) d𝑡 − 𝑝𝑋

(

𝜁𝑦(𝑇 )
)

e𝑛𝑎𝑏−∫
𝑇
0 tr 𝐴(𝑇−𝑡) d𝑡

≥ 𝑝𝑋
(

𝜁𝑦(𝑇 )
)

e− ∫ 𝑇
0 tr 𝐴(𝑇−𝑡) d𝑡 .

When 𝐴 and 𝐵 do not depend on time, the previous formula reduces to

𝑝𝑌 (𝑦) = 𝑝𝑋
(

e−𝑇G𝑦
)

e−𝑇 trG − 𝑝𝑋
(

e−𝑇G𝑦
)

e𝑛𝑎𝑏−𝑇 tr 𝐴 ≥ 𝑝𝑋
(

e−𝑇G𝑦
)

e−𝑇 tr 𝐴.

When 𝑔 depends only on memory or ∫ 𝑇
0 tr 𝐴(𝑇 − 𝜏) d𝜏 = 0, we simply

get

𝑝𝑌 (𝑦) = 𝑝𝑋
(

𝜁𝑦(𝑇 )
)

e𝑎𝑛𝑏 ≥ 𝑝𝑋
(

𝜁𝑦(𝑇 )
)

.

Assume that G depends on 𝜆 and write G𝜆 to underline such an
aspect. System (44) changes into

⎧

⎪

⎨

⎪

⎩

𝜁̇𝑦(𝑡) = −G𝜆(𝑇 − 𝑡
)

𝜁𝑦(𝑡) ,
𝜆̇ = 0 ,
𝜁𝑦(0) = 𝑦 .

(45)

Assuming independence of the random variables 𝑋 and 𝛬, the argu-
ment in Section 6.2 yields

𝑝𝑌 (𝑦) = ∫R𝑛
𝑝𝛬(𝜆)𝑝𝑋

(

𝜁𝑦(𝑇 )
)

e𝑛𝑎𝑏−∫
𝑇
0 tr 𝐴(𝑇−𝑡) d𝑡 d𝜆

≥ ∫R𝑛
𝑝𝛬(𝜆)𝑝𝑋

(

𝜁𝑦(𝑇 )
)

e− ∫ 𝑇
0 tr 𝐴(𝑇−𝑡) d𝑡 d𝜆 .

When ∫ 𝑇
0 tr

(

𝐴 (𝑇 − 𝑡)
)

d𝑡 = 0, the previous relation reduces to

𝑝𝑌 (𝑦) ≥ ∫R𝑛
𝑝𝛬(𝜆)𝑝𝑋

(

𝜁𝑦(𝑇 )
)

d𝜆

or, when G𝜆 is constant, to

𝑝𝑌 (𝑦) ≥ ∫R𝑛
𝑝𝛬(𝜆)𝑝𝑋

(

e−𝑇G
𝜆)

d𝜆.

6.3.2. The nonlinear setting
Let us come back to Eq. (41) and modify it by the introduction of

𝜆, so that it reads

𝜉̇(𝑡) = 𝑔
(

𝑡, 𝜉(𝑡),∫

𝑡

−∞
𝛾𝛽𝛼 (𝑇 − 𝜏)𝜑(𝜉(𝜏)) d𝜏, 𝜆

)

. (46)

Eq. (42) now changes into

̇ = (𝑡, 𝑧(𝑡), 𝜆) , (47)

with
(𝑡, 𝑣0, 𝑣1,… , 𝑣𝑏) =

(

𝑔(𝑢, 𝑣0, 𝑣𝑏, 𝜆), 𝑎
(

𝜑(𝑢, 𝑣0) − 𝑣1
)

, 𝑎(𝑣1 − 𝑣2)… , 𝑎(𝑣𝑏−1 − 𝑣𝑏)
)

,
(48)

and is complemented by the condition

𝜆̇ = 0 . (49)

In block-matrix notation we have also

𝜕2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕2𝑔 0 … … … 0 𝜕3𝑔
𝑎𝜑′ −𝑎𝐼 0 … … … 0
0 𝑎𝐼 −𝑎𝐼 0 … … 0
∶ ⋱ ⋱ ⋱ ⋱ ⋱ ∶
∶ ⋱ ⋱ ⋱ ⋱ ⋱ ∶
0 … … … … 𝑎𝐼 −𝑎𝐼

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

so that tr𝜕  = tr𝜕 𝑔 − 𝑛𝑎𝑏.
9

2 2
Under the same assumptions of Section 6.2, we eventually find

𝑝𝑌 (𝑦) ∶= ∫R𝑘
𝑝𝛬(𝜆)𝑝𝑋

(

𝜁𝜆𝑦 (𝑇 )
)

e𝑛𝑎𝑏−∫
𝑇
0 tr 𝜕2𝑔

(

𝑇−𝑡,𝜁𝜆𝑦 (𝑡),𝜆
)

d𝑡 d𝜆

≥ ∫R𝑘
𝑝𝛬(𝜆)𝑝𝑋

(

𝜁𝜆𝑦 (𝑇 )
)

e− ∫ 𝑇
0 tr 𝜕2𝑔

(

𝑇−𝑡,𝜁𝜆𝑦 (𝑡),𝜆
)

d𝑡 d𝜆 .

7. Additional remarks

Asking covariance of the second law of thermodynamics, even only
written in terms of an isothermal dissipation inequality, allows one
to derive from a unique source evolution equations for firing states
and neuronal connectivity in the presence of brain plasticity. When
Parkinson’s disease occurs, the evolution of calcium channel distri-
bution or prion accumulation can be derived along the same path.
We proved it with details by looking at first-neighbor interactions
for firing processes and connectivity variations, and including related
memory effects. The path can be extended to cover second-neighbor or
higher-order interactions.

There are uncertainties in the evaluation of calcium channel distri-
bution at a certain instant. They imply uncertainties in the evolution
of connectivity. Their general analysis is rather intricate; however, in
some ideal conditions, as those described in Section 6, we can obtain
explicit expressions for the marginal probability distribution of the
connectivity.
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