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Abstract. In this paper, we study the number of conjugacy classes of maximal cyclic sub-
groups of a finite group G, denoted �.G/. First we consider the properties of this invariant
in relation to direct and semi-direct products, and we characterize the normal subgroups
N with �.G=N/D �.G/. In addition, by applying the classification of finite groups whose
nontrivial elements have prime order, we determine the structure of G=hG�i, where G�

is the set of elements of G generating non-maximal cyclic subgroups of G. More pre-
cisely, we show that G=hG�i is either trivial, elementary abelian, a Frobenius group or
isomorphic to A5.

1 Introduction

Unless otherwise stated, all groups in this paper are finite. A covering of a group
G is a set of proper subgroups ¹Hiº, called components, such that G �

S
i Hi .

A covering is called irredundant if removing any component means the set is
no longer a covering. Identifying coverings of groups and the minimal size of
such a covering, called the covering number, has a long mathematical history.
It is an easy problem to show that a group cannot be covered by 2 subgroups.
In 1926, Scorza considered groups with a covering of size 3 (see [16]); then, in
1994, Cohn continued the investigation, considering groups with a minimal cov-
ering of sizes 4, 5, and 6 amongst other things [9]. The case of 7 is considerably
more difficult and surprising in that no such covering exists. This was conjectured
by Cohn and proved by Tomkinson. Tomkinson also determined the coverings of
solvable groups in [20]. Since then, many authors have written on the theme; for
an overview, see [3, 14]. At this time, the research appears to be on determining
the coverings of nonabelian simple groups and the symmetric groups.

Recently, authors have considered normal coverings, that is coverings which are
invariant under G-conjugation (not coverings by normal subgroups). The normal
covering number is the smallest number of conjugacy classes of proper subgroups
in a normal covering of G. In [5–7], the authors consider the normal covering
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number for symmetric and alternating groups, while in [12], the authors consider
groups for which the normal covering number is equal to the covering number.

Also, there has been interest in coverings where certain requirements are im-
posed on the components of the covering. In this paper, we consider coverings by
cyclic subgroups up to conjugacy. For finite groups, it is not difficult to see that
every cyclic subgroup is contained in a maximal cyclic subgroup. Furthermore,
every covering by cyclic subgroups has to contain the maximal cyclic subgroups
since the only cyclic subgroups containing the generators of the maximal cyclic
subgroups will be the maximal cyclic subgroups. Therefore, the set of the max-
imal cyclic subgroups of G form the only irredundant covering of G by cyclic
subgroups. Hence, it makes sense to study the set of maximal cyclic subgroups
of G. In particular, the set of conjugacy classes of maximal cyclic subgroups form
an irredundant normal covering where all components are cyclic.

We note that, in infinite groups, cyclic subgroups need not be contained in max-
imal cyclic subgroups (see the Prüfer group), so the question of irredundant cover-
ings of infinite groups by cyclic subgroups may be independent of the question of
maximal cyclic subgroups. This is being explored by the second and third authors
with Yiftach Barnea and Mikhail Ershov in [1].

Coverings of abelian groups by maximal cyclic subgroups have been studied
by Rogério in [15]. For nonabelian groups, von Puttkamer initiated the study of
the number of conjugacy classes of maximal cyclic subgroups in his dissertation
[21, Section 5]. In particular, von Puttkamer considers finite groups G that have
two conjugacy classes of maximal cyclic subgroups. He proves that such groups
must be solvable, and in addition, he proves that they have derived length at most 4.
In fact, he essentially classifies them. We pick up the study of groups in terms of
the number of conjugacy classes of maximal cyclic subgroups in this paper. With
this in mind, we set the following definition.

Definition. Let G be a finite group; we denote the number of conjugacy classes of
maximal cyclic subgroups of G by �.G/.

In Section 2, we will consider �.G/ when G is a direct product. We also deter-
mine �.G/ when G is a Frobenius group. For a group G, we define G� to be the
set of g 2 G such that hgi is not maximal cyclic. In Section 4, we will show that
there is a strong connection between �.G/ and G�.

In Section 3, we consider some properties of G� as a set. In particular, the
first main result of this paper is the Theorem 1.1, whose proof strongly relies on
the classification of groups in which every nontrivial element has prime order.
The investigation of such groups has a long history; it appears that they were first
studied by Higman in [13]. This work continued in [4, 10, 17–19], and culminated
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with a complete classification by Cheng et al. in [8]. Namely, they prove that if
G is a group whose nontrivial elements have prime order, then G is one of the
following: (i) a p-group of exponent p, (ii) a Frobenius group whose Frobenius
kernel is a p-group of exponent p and whose Frobenius complement has order q
for distinct primes p and q, or (iii) A5.

Theorem 1.1. If G is a group and hG�i < G, then G=hG�i is either (i) a p-
group with exponent p, (ii) a Frobenius group whose Frobenius kernel is a p-
group with exponent p and whose Frobenius complements have order q for some
prime q ¤ p, or (iii) A5.

We will see that we have stronger control on G� when G is a p-group. When
G is a p-group and N is a normal subgroup so that G=N has exponent p, then
G� � N .

If N is a normal subgroup of G, then it is not hard to see that �.G=N/ � �.G/.
In Proposition 4.1, we give criteria for when equality occurs. We note that the
criteria is in terms of G�. We then show that, when G is a p-group, there exists
a unique (characteristic) subgroup X.G/ of G such that �.G/ D �.G=X.G// and
X.G/ is maximal under this condition. We will give an example to show thatX.G/
does not exist in general.

We close by proving a couple of results regarding the structure of N when
�.G=N/ D �.G/. The first considers the relationship between N and the derived
subgroup G0.

Theorem 1.2. SupposeG is a group andN is a subgroup so that �.G/D �.G=N/.
If every nontrivial Sylow subgroup of G=G0 is noncyclic, then N � G0.

Finally, when G is a p-group and a maximal cyclic subgroup is normal in G,
then we can prove that X.G/ is cyclic.

Theorem 1.3. Suppose G is a p-group for some prime p. If some maximal cyclic
subgroup of G is normal, then X.G/ is cyclic.

2 � and products

In this section, we consider the relationship between � and direct products and
semi-direct products. In this next result, we give some idea of the relationship
between � and direct products.

Lemma 2.1. Suppose G D H �K; then the following are true.

(i) �.G/ � �.H/�.K/.
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(ii) If .jH j; jKj/ D 1, then �.G/ D �.H/�.K/.

(iii) If p is a prime so that p divides jKj and H is a nontrivial p-group, then
�.G/ � �.H/�.K/C �p.K/ > �.H/�.K/, where �p.K/ is the number of
conjugacy classes of maximal cyclic subgroups of K whose order is divisible
by p.

(iv) If H is nilpotent and p divides both jH j and jKj, then �.G/ > �.K/.

(v) If H and K are both nontrivial p-groups, then

�.G/ � �.H/�.K/C �.H/C �.K/:

Proof. Suppose hhi is a maximal cyclic subgroup of H and hki is a maximal
cyclic subgroup of K. Suppose that h.h; k/i � hgi for some element g 2 G. We
can write g D .h1; k1/ for h1 2 H and k1 2 K. Since .h; k/ 2 hgi, there is an
integer n so that gn D .h; k/, and hence, hn

1 D h and kn
1 D k. It follows that

hhi � hh1i and hki � hk1i. By maximality, we have hhi D hh1i and hki D hk1i,
and so hgi D h.h; k/i. Thus, �.H/�.K/ � �.G/.

We now assume that .jH j; jKj/ D 1. Let hgi be a maximal cyclic subgroup
of G. We know g D .h; k/ for unique h 2 H and k 2 K. Suppose hhi � hh1i

for some h1 2 H and hki � hk1i for some k1 2 K. Since o.h1/ and o.k1/ are
coprime, it follows that .h; 1/ and .1; k/ are powers of .h1; k1/. Thus, we have
g D .h; 1/.1; k/ 2 h.h1; k1/i, and so hgi � h.h1; k1/i. Maximality of hgi implies
that hgi D h.h1; k1/i, and so hhi D hh1i and hki D hk1i. We conclude that hhi
and hki are maximal cyclic subgroups. This implies that �.G/ � �.H/�.K/, and
so we have �.G/ D �.H/�.K/.

Next, we have thatH is a nontrivial p-group and p divides jKj. Consider an el-
ement k 2 K so that hki is maximal cyclic inK and p divides o.k/. We claim that
h.1; k/i will be a maximal cyclic subgroup ofH �K. Suppose there exists an ele-
ment g 2 G so that gq D .1; k/ for some prime q that divides o.g/. We can write
g D .h�; k�/ for h� 2 H and k� 2 K. We see that .1; k/ D gq D ..h�/q; .k�/q/,
and so .h�/q D 1 and .k�/q D k. We claim that q divides o.k�/, and this con-
tradicts the choice of hki as a maximal cyclic subgroup of K. If h� D 1, then
o.g/ D o.k/, and so the claim is immediate. If h� ¤ 1, then q D p, and the claim
follows from the fact that p divides o.k/ and o.k/ divides o.k�/. Note that .1; k/
is not conjugate to any of the subgroups included in the count in part (i). This
yields �.G/ � �.H/�.K/C �p.K/. By Cauchy’s theorem, we know that K has
an element whose order is divisible by p, and soK has a maximal cyclic subgroup
whose order is divisible by p, and so �p.K/ � 1. This proves (iii).

We now prove conclusion (iv). We can writeH DP �Q, where P is the Sylow
p-subgroup of H and Q is the Hall p-complement. Then G D .K �Q/ � P .
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By conclusion (iii), we have �.G/ > �.K �Q/, and by conclusion (i), we have
�.K �Q/ � �.K/. Combining these, we have conclusion (iv). For conclusion (v),
note that every maximal cyclic subgroup in either H or K will have order divis-
ible by p. Thus, if h 2 H and k 2 K satisfy that hhi is a maximal cyclic sub-
group of H and hki is a maximal cyclic subgroup of K, then arguing as in (iii),
we see that h.h; 1/i and h.1; k/i are maximal cyclic subgroups of G. Since these
cannot be conjugate to the maximal cyclic subgroups counted in (i), we obtain
�.G/ � �.H/�.K/C �.H/C �.K/.

We note that equality can hold in Lemma 2.1 (i) even if jH j and jKj are not
relatively prime. Take H D S3 and K to be the dihedral group of order 10. Then
�.H �K/ D 4 and �.H/ D �.K/ D 2. The various cases that arise show that
computing � for direct products is not trivial when the factors do not have coprime
orders.

We expect the situation for computing � of semi-direct products to be even
more complicated. We begin with the case of Frobenius groups which is relatively
straightforward.

Proposition 2.2. Let G D NH be a Frobenius group with Frobenius kernel N
and Frobenius complement H . Then �.G/ D ��.N /C �.H/, where ��.N / is
the number of H -orbits on the N -conjugacy classes of maximal cyclic subgroups
of N .

Proof. Let C be a maximal cyclic subgroup of G. Since the union of the Frobe-
nius kernel and the Frobenius complements of G equal G, either C � N or some
conjugate of C lies inH . Furthermore, if C � N , then C is a maximal cyclic sub-
group of N , and if C � H , then C is maximal cyclic in H . Also, we know that
if C and C g lie in H , then 1 < H \Hg , and so g 2 H . It follows that the num-
ber of conjugacy classes of maximal cyclic subgroups of G will equal the number
of H -conjugacy classes of maximal cyclic subgroups in H plus the number of
H -orbits on the N -conjugacy classes of maximal cyclic subgroups of N .

In general, when the group G is a semi-direct product ofH acting on N , where
.jN j; jH j/ D 1, we would like to bound �.G/ in terms of ��.N / and �.H/. It
is tempting to ask whether ��.N /C �.H/ is the lower bound for �.G/. It turns
out the answer is no. Let G be the semi-direct product of D D D8 acting faith-
fully onN D Z3 �Z3. (In the SmallGroups library in Magma, this is SmallGroup
(72, 50).) It is not difficult to see that D has two orbits on cyclic subgroups of or-
der 3 in N , and so ��.N / D 2. We know �.D/ D 3, so ��.N /C �.D/ D 5. On
the other hand, one can see that the maximal cyclic subgroups of G have orders
4 and 6, and that there is one conjugacy class of cyclic subgroups of order 4 and
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two conjugacy classes of cyclic subgroups of order 6, so �.G/ D 3. We now pro-
vide a lower bound. Trivially, we see that this lower bound will be met when G is
a cyclic group and N is a normal subgroup. A less trivial example is provided by
taking G to be the semi-direct product of the cyclic group of order 3 acting on the
Frobenius group N of order 56. (In the SmallGroups library in Magma, the result-
ing group is SmallGroup(168, 43).) In this case, �.G/ D ��.N / D �.N / D 2.

Proposition 2.3. Let N be a normal subgroup of a group G and let ��.N / be
the number of G-orbits on the N -conjugacy classes of maximal cyclic subgroups
of N . Then �.G/ � ��.N /. In particular,

(i) if N is central in G, then �.G/ � �.N /;

(ii) if jG W N j D k, then �.G/ � �.N /=k.

Proof. Let C1; : : : ; Cm be a set of representatives for the G-orbits of the maxi-
mal cyclic subgroups of N . We know that each Ci is contained in some maximal
cyclic subgroup of G. It suffices to show that if i ¤ j , then Ci and Cj are not
G-conjugate to subgroups of the same maximal cyclic subgroup of G. Without
loss of generality, we may assume i D 1 and j D 2. Suppose that C1 and C2 are
G-conjugate to subgroups of the same maximal cyclic subgroup D of G. Replac-
ing C1 and C2 by conjugates if necessary, we may assume that C1 and C2 are
subgroups of D. Since C1 and C2 are contained in N , we see that C1 and C2

are subgroups of D \N . Now, D \N is a cyclic subgroup of N , and C1 and
C2 are maximal cyclic subgroups of N , so we have C1 D D \N D C2, but this
contradicts the fact that C1 and C2 are representatives of distinct orbits.

We close by mentioning that the situation for subgroups is more complicated;
for instance, �.G/ 6� �.N / in general, even ifN E G. In fact, consider the wreath
product C3 o C3 and its base group C3 � C3 � C3; then we have �.C3 o C3/ D 7,
but �.C3 � C3 � C3/ D 13.

3 The set G�

Let G be a finite group. We define the set

G� D ¹g 2 G W hgi is not a maximal cyclic subgroup of Gº:

For a prime p, we set G¹pº D ¹gp W g 2 Gº.
It is not hard to see that, for any group G, we have

G� D ¹gq
j g 2 G; q a prime dividing the order of gº:

In particular, if G is a p-group, then G� D G¹pº.
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In this next result, we show that, when G is a p-group, G� is contained in
every normal subgroup whose quotient has exponent p. We also show that it is
rare when G is not a p-group for G� to be contained in a proper subgroup. Note
that Theorem 1.1 follows from conclusion (i).

Theorem 3.1. Let G be a group. Then the following statements are true.

(i) If N is a normal subgroup of G, then G� � N if and only if every element
in G nN has prime power order and every element in G=N has prime order.
In particular, G=N is either (1) a p-group with exponent p, (2) a Frobe-
nius group whose Frobenius kernel is a p-group with exponent p and whose
Frobenius complement has order q for some prime q ¤ p, or (3) A5.

(ii) If M is a normal subgroup of G and p is a prime so that jG WM j D p, then
G� �M if and only if every element in G nM has p-power order.

(iii) If G is a p-group and N is a normal subgroup so that G=N has exponent p,
then G� � N .

Proof. We begin by considering an element g 2 G whose order is divisible by at
least two primes, say p and q. It follows that gp and gq lie inG�. It is not difficult
to see that hgi D hgp; gqi, so g 2 hG�i. It follows that if hG�i � N , where N
is a normal subgroup of G, then every element in G nN must have prime power
order. Furthermore, if p is the prime that divides o.g/, then gp 2 G� � N , and so
.gN /p D N . Hence, every element of G=N has prime order. Conversely, suppose
N is a normal subgroup of G so that every element in G nN has prime power
order and every element in G=N has prime order. Let h 2 G�. We know that
h D gp, where g 2 G and p is a prime that divides o.g/. If o.g/ is also divisible
by some prime other than p, then we cannot have g 2 G nN , so g, and hence, h
must lie in N . We may now suppose that o.g/ is a power of p. If g 2 N , then we
are done, so we assume g … N . We see that o.gN/ divides o.g/ and is prime; we
have o.gN/ D p, and so h D gp 2 N . This proves thatG� � N . The proof of (i)
can be completed by using the result in [8] that was mentioned in the introduction.

We have the condition that M is normal in G and jG WM j D p. Note that if
every element inG nM has p-power order, then (i) implies thatG� �M . On the
other hand, if G� �M , then every element g 2 G nM has prime power order
by (i) and o.gM/ D p, which implies that p divides o.g/. It follows that every
element in G nM has p-power order. Finally, suppose G is a p-group and N is
a normal subgroup so thatG=N has exponent p. Then we may apply (i) to see that
G� � N .
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We note that there are p-groupsG whereG¹pº is a subgroup ofG and p-groups
where G¹pº is not a subgroup of G. We next show that, for G� to be a subgroup,
it must be the case that all of the elements of G have prime power order.

Lemma 3.2. Let G be a group. If G� is a subgroup of G, then every element of G
must have prime power order.

Proof. Suppose h is an element of G that does not have prime power order. Then
there is an element g so that hgi is maximal cyclic and h 2 hgi. It follows that o.g/
is not a prime power. Hence, there exist nonidentity elements a; b that are powers
of g so that g D ab and .o.a/; o.b// D 1. We see that g … G�, but a; b 2 G�,
and this implies that all elements of G have prime power order.

Higman in [13] classifies solvable groups where all elements have prime power
order. However, we present a different viewpoint to describe these groups. In par-
ticular, if G is a solvable group, then all the elements have prime power order if
and only if (1)G is a p-group or (2)G is either a Frobenius group or a 2-Frobenius
group that is also a ¹p; qº-group for primes p and q. Recall that a group G is a
2-Frobenius group if there exist normal subgroups L � K � G so that G=L and
K are Frobenius groups with Frobenius kernels K=L and L, respectively. This
can be seen using the Grueneberg–Kegel graph (GK-graph) (sometimes called the
prime graph). This graph has the primes dividing jGj as its vertices, and there is
an edge between p and q if there is some element g 2 G so that pq divides o.g/.
The GK-graph of a group where all the elements have prime power order will be
an empty graph (i.e., a graph with no edges). Note that the GK-graph of G con-
sists of a single vertex if and only if G is a p-group. When G is solvable, it is
known that the GK-graph is disconnected if and only if G is a Frobenius group or
a 2-Frobenius group and that it has two connected components (see [22]). Assum-
ing all elements of G have prime power order, this implies that jGj is divisible by
two primes p and q.

Let p and q be primes so that p divides q � 1. It is not difficult to see that there
will exist a Frobenius group G whose Frobenius kernel is cyclic of order q2 and
a Frobenius complement has order p. It is easy to see that G� is going to be the
unique subgroup of order q. This gives an example of a group G where G� is
a subgroup.

Now let p and q be primes so that p2 divides q � 1. In this case, we take G to
be the Frobenius group whose Frobenius kernel has order q and whose Frobenius
complement has order p2. It is not difficult to see in this case that G� will be the
elements of order p in G along with 1, and that they do not form a subgroup. This
gives an example where G� is not a subgroup.
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Let l.G/ be the number of conjugacy classes of cyclic subgroups of G. Note
that �.G/ � l.G/ � 1 when G is a nontrivial group. If every nontrivial element
of G has prime order, then every cyclic subgroup will be maximal cyclic, and so
�.G/ D l.G/ � 1. Conversely, if l.G/ � 1 D �.G/, then every nontrivial cyclic
subgroup will be maximal cyclic and so will have prime order. It will follow that
every element of G will have prime order. Hence, �.G/ D l.G/ � 1 if and only if
every element ofG has prime order (again, as mentioned in the introduction, these
groups are classified in [8]).

4 � and quotients

In this next result, we show that �.G=N/ � �.G/ when N is a normal subgroup.
We then give necessary and sufficient conditions for �.G=N/ D �.G/. We also
refine the necessary and sufficient conditions when G is a p-group. Let S and T
be subsets of G; then we set ST D ¹st j s 2 S; t 2 T º. When N is a normal sub-
group of G, we write SN=N D ¹sN j s 2 Sº as a subset of G=N .

Proposition 4.1. Let N be a proper normal subgroup of G. Then

(i) �.G=N/ � �.G/.

(ii) �.G=N/ D �.G/ if and only if the following conditions hold:

(a) N � G�,

(b) .G=N/� D ¹gN 2 G=N j gN � G�º, and

(c) every element x 2 G nG� satisfies the condition that every element of
xN nG� is conjugate to a generator of hxi.

(iii) If G is a p-group and �.G=N/ D �.G/, then G� is a union of N -cosets.

(iv) �.G=N/ D �.G/ and G� is a union of N -cosets if and only if, for every
x 2 G nG�, every element of xN is conjugate to a generator of hxi.

(v) If �.G=N/ D �.G/ and G� is a union of N -cosets, then the following hold:

(a) G�N D G�, and

(b) .G=N/� D G�N=N .

Proof. Fix an element x 2 G. First note hxi is maximal cyclic if and only if
x 2 G nG�. Similarly, hxN i is maximal cyclic if and only if

xN 2 G=N n .G=N/�:

Suppose hxN i is maximal cyclic inG=N . Let hgi be a maximal cyclic subgroup
containing hxi. It follows that hxN i � hgN i. By the maximality of hxN i, we have
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that hxN i D hgN i. Let x1; : : : ; xn 2 G be chosen so that hx1N i; : : : ; hxnN i are
representatives of the conjugacy classes of maximal cyclic subgroups of G=N .
For each i , choose gi 2 G so that hgi i is a maximal cyclic subgroup of G con-
taining hxi i. The work above shows that hxiN i D hgiN i. Suppose hgi i and hgj i

are conjugate for 1 � i , j � n. Hence, there exists y 2 G so that hgj i D hgi i
y .

This implies that hxjN i D hgjN i D hgiN i
yN D hxiN i

yN . Since the xi ’s were
chosen to be representatives, we see that i D j . Because the hgi i’s form a subset
of a set of representatives of the conjugacy classes of maximal cyclic subgroups
of G, we have �.G=N/ � �.G/.

Now assume �.G=N/ D �.G/. That is, we may assume that hg1i; : : : ; hgni

are representatives of the maximal cyclic subgroups of G. Suppose there exists
x 2 N nG�. Then hxi is a maximal cyclic subgroup of G. Note that g1; : : : ; gn

all lie outside of N . Thus, hxi will not be conjugate to any hgi i, a contradiction.
Hence, we must have that N � G�.

We now work to show

.G=N/� D ¹gN j gN � G�º:

Suppose that xN 2 .G=N/� and suppose there exists y 2 xN nG�. It follows
that hyi is maximal cyclic in G and hyN i is not maximal cyclic in G=N . In
particular, hyi cannot be conjugate to one of the hgi i’s, a contradiction. Thus,
we have xN � G�. Conversely, suppose now that xN � G�. We know that if
xN … .G=N/�, then hxN i is maximal cyclic inG=N . We have seen hxN i is con-
jugate to hgiN i for some i , and so there exists g 2 G nG� so that xN D gN ,
and we do not have xN � G�, a contradiction. Thus, we have that

.G=N/� D ¹gN j gN � G�º:

We now prove that if x 2 G nG� and y 2 xN nG�, then y is conjugate to
a generator of hxi. We have that hxi and hyi are maximal cyclic subgroups of G,
and hxN i D hyN i is a maximal cyclic subgroup of G=N . Using the fact that
�.G/ D �.G=N/, this implies that hxi and hyimust be conjugate to the same hgi i,
and so they are conjugate to each other. We conclude that y must be conjugate to
a generator of hxi.

Conversely, assume thatN � G�, .G=N/� D ¹gN j gN � G�º and every el-
ement x 2 G nG� satisfies the condition that every element of xN nG� is con-
jugate to a generator of hxi. Define a map from the maximal cyclic subgroups
of G to the maximal cyclic subgroups of G=N by C 7! CN=N . Suppose C is
a maximal cyclic subgroup of G. Then C D hxi for some x 2 G nG�. It fol-
lows that xN 2 G=N n .G=N/�. We see that CN=N D hxN i is a maximal sub-
group of G=N . Also, if C D hxi D hyi, then hxN i D hyN i, so the map is well-
defined. Suppose D is a maximal cyclic subgroup of G=N . Then D D hxN i,
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where xN 2 G=N n .G=N/�. As we have seen, this implies that xN nG� con-
tains some element g, and thus, hgi is a maximal cyclic subgroup of G. Also,
hgiN=N D hgN i D hxN i D D. This implies that the map is onto. Finally, sup-
pose that x; y 2 G nG� yields hxN i D hyN i. This implies that some generator
of hyi lies in xN . By hypothesis, this generator will be conjugate to a generator
of hxi. This implies that hxi and hyi are conjugate. Hence, our map yields a bijec-
tion of conjugacy classes, and we conclude that �.G/ D �.G=N/.

We now suppose that G is a p-group and assume N is a normal subgroup so
that �.G=N/ D �.G/. Suppose x 2 G nG¹pº D G nG�. The above work shows
that xN 2 G=N n .G=N/¹pº. Let y 2 xN and suppose y 2 G¹pº, so y D gp for
some element g 2 G. This implies that xN D yN D gpN D .gN /p, and this
contradicts xN 2 G=N n .G=N/¹pº. We conclude that xN \G� is empty. This
implies that G nG� and G� are both unions of cosets of N .

If G� is a union of N -cosets and �.G=N/ D �.G/, then, when x 2 G nG�,
we must have that xN \G� is empty, and so every element y 2 xN lies in
G nG�, and so, applying conclusion (ii) (c), we have that y is conjugate to a gen-
erator of hxi. Conversely, suppose for every x 2 G nG� that every element of
xN is conjugate to a generator of hxi. Consider the element n 2 N n ¹1º. Since
hni cannot be conjugate to h1i, we must have that n 2 G�, and so N � G�. If
x 2 G nG�, then every generator of hxi will lie in G nG�. Since every ele-
ment of xN is conjugate to a generator of hxi, we have that xN � G nG�, and
we deduce that G nG�, and hence, G� is a union of N -cosets. It follows that
G�N � G�, and we deduce that G�N D G�. This implies that

.G=N/� D ¹gN j gN � G�º D ¹gN j g 2 G�º D G�N=N:

It follows that (a), (b), and (c) of (ii) are met, so �.G/ D �.G=N/. Note that we
have proved both (iv) and (v).

We note that we cannot completely drop the hypothesis that G is a p-group in
conclusion (iii). Let G be the dihedral group of order 30. Let M be the normal
subgroup of order 3, and N the normal subgroup of order 5. It follows that G=M
is a dihedral group of order 10, andG=N is a dihedral group of order 6. We see that
�.G=M/ D �.G=N/ D �.G/ D 2. On the other hand, it is not difficult to see that
G� D N [M , andG� is not a union ofN -cosets orM -cosets. If x 2 NM nG�,
then it is not difficult to see that neither xN \G� nor xM \G� is empty. Also,
G�N D NM D G�M .

In Section 2, we considered the case where G is the semi-direct product of H
acting on N . Using Lemma 2.3, we saw that �.G/ � ��.N /. Since H Š G=N ,
we can use Proposition 4.1 (i) to see that �.G/ � �.G=N/ D �.H/. Note that the
example of D8 acting on Z3 �Z3 is an example where �.G/ D �.H/.
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For p-groups, we can find a largest normal subgroup such that � of the quotient
is equal to � of the group. In this situation, we also cannot completely drop the
hypothesis that G is a p-group from Corollary 4.2. Again, let G be the dihedral
group of order 30, let M be the normal subgroup of order 3, and let N the normal
subgroup of order 5. We have seen that �.G=M/ D �.G=N/ D �.G/ D 2. Note
that G=NM is cyclic of order 2, and so �.G=MN/ D 1.

Corollary 4.2. Let G be a noncyclic finite p-group for some prime p.

(i) Let N and M be normal subgroups of G. If �.G/ D �.G=N/ D �.G=M/,
then �.G/ D �.G=NM/.

(ii) There exists a characteristic subgroup X of G so that �.G/ D �.G=X/, and
if N is a normal subgroup G so that �.G=N/ D �.G/, then N � X .

Proof. (i) As N and M both lie inside G� by Proposition 4.1, it follows that
NM � G� again by Proposition 4.1 (v) (a). Suppose now that g 2 G nG�. We
need to show that every element in gMN is conjugate to a generator of hgi. An
arbitrary element of gMN has the form gmn, where m 2M and n 2 N . Apply-
ing Proposition 4.1 to M in G, we see that every element of gM is conjugate
to a generator of hgi. In particular, hgmi is conjugate to hgi. This implies that
gm 2 G nG�. We then apply Proposition 4.1 to N in G to see that every element
in gmN is conjugate to a generator of hgmi. We obtain that hgmni is conjugate
to hgmi. Using the transitivity of conjugate subgroups, we see that hgi and hgmni
are conjugate. We conclude that gmn is conjugate to a generator of hgi as desired.
We have now shown that MN satisfies the conditions of Proposition 4.1, and so
�.G=MN/ D �.G/.

(ii) Let M D ¹M E G j �.G=M/ D �.G/º, and let X be the subgroup of G
generated by (i.e. the product of) the members of M. It is not difficult to see that
X is characteristic in G, and if N is normal with �.G=N/ D �.G/, then N � X .
Since jGj is finite, we can use (i) inductively to see that �.G=X/ D �.G/.

Our next corollary states that N � G0 when �.G/ D �.G=N/ and every Sylow
subgroup of G=G0 is noncyclic. Note that if G is a noncyclic p-group, then G=G0

is noncyclic. It follows that the next corollary applies to p-groups.
We now show that the hypothesis thatG=G0 is not cyclic is necessary. LetM be

a cyclic group of order 3 and let H be a cyclic group of order 4. Note that H has
a nontrivial action on M and let G be the resulting semi-direct product. Take N
to be the subgroup of order 2 in H and note that N D Z.G/. It is easy to see that
M D G0. Note that G=N Š S3, and so �.G=N/ D 2. We claim that �.G/ D 2,
also. To see this, observe that MN is cyclic of order 6. Suppose g 2 G nMN .
It follows that gN 2 G=N nMN=N . Since G=N is isomorphic to S3, we see
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that gN is conjugate to hN , where h is the generator of H . Since N � H , this
implies that g is conjugate to either h or h3. We conclude that �.G/ D 2. Fi-
nally, note that N is not contained in G0 DM . We now present a second example
to see that we need to assume that all Sylow subgroups of G=G0 are noncyclic.
Take K to be a group so that K=K 0 is noncyclic, and take C to be a cyclic p-
group for a prime p so that p does not divide jKj. Let G D K � C . We see that
�.G=C/ D �.K/ D �.K � C/ D �.G/ and C is not contained in G0. We now
prove Theorem 1.2 which we restate.

Corollary 4.3. Suppose G is a group such that every nontrivial Sylow subgroup
of G=G0 is not cyclic and N a normal subgroup such that �.G/ D �.G=N/.
Then N � G0.

Proof. Let ˆ=G0 D ˆ.G=G0/, so ˆ is the preimage of the Frattini subgroup of
G=G0. We claim that N � ˆ. To obtain a contradiction, we suppose that N is not
contained inˆ. LetM D N \ˆ, and we haveM < N . We know thatG=ˆ is the
direct product of elementary abelian p-groups for various primes p. In particular,
there is a subgroup H so that G D H.Nˆ/ and H \Nˆ D ˆ. This implies that
ˆ � H and so G D NH . Also,

H \N D H \ .Nˆ \N/ D .H \Nˆ/ \N D ˆ \N DM:

It follows that G=M D H=M �N=M . Observe that

G=N Š H=M and G=H Š N=M:

If N=M is not cyclic, then by Lemma 2.1 (i), we have

�.G=M/ � �.N=M/�.H=M/ > �.H=M/:

On the other hand, suppose N=M is cyclic, and let p be a prime that divides
jN WM j. Observe that N=M Š Nˆ=ˆ and G=ˆ D Nˆ=ˆ �H=ˆ. Since we
are assuming no Sylow subgroup ofG=G0 is cyclic, we see that no Sylow subgroup
ofG=ˆ is cyclic. It follows that p must divide jH W ˆj, and so p divides jH WM j.
We now apply Lemma 2.1 (iv) to see that �.G=M/ > �.H=M/. In both cases, we
have proved that �.G=M/ > �.H=M/. By Proposition 4.1, we have

�.G/ � �.G=M/ > �.H=M/ D �.G=N/:

This however contradicts �.G/ D �.G=N/. Thus, we must have that N � ˆ.
Suppose N is not contained in G0. Then we can find n 2 N nG0 so that nG0

has order p in G=G0 for some prime p. Since G=G0 is not cyclic, we know that
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G=ˆ is not cyclic. Hence, we can find g 2 G nˆ so that hnG0i is not contained
in hgG0i. In particular, hgG0i and hgnG0i are distinct subgroups of G=G0. Note
that g;gn 2G nˆ�G nG�. By Proposition 4.1, we know that �.G/D �.G=N/
implies that every element in gN nG� is conjugate to a generator of hgi. This
implies that gn is conjugate to a generator of hgi. Hence, gnG0 is conjugate to
an element of hgG0i. Since G=G0 is abelian and hgnG0i and hgG0i are distinct
subgroups of G=G0, this is a contradiction.

Since it is well known when G is a noncyclic p-group that G=G0 is not cyclic,
Corollary 4.3 yields the following.

Corollary 4.4. If G is a noncyclic p-group and N is a normal subgroup such that
�.G=N/ D �.G/, then N � G0.

Applying Proposition 4.1 to p-groups of exponent p, we obtain the following
corollary.

Corollary 4.5. Suppose n � 2 and G is a p-group of order pn and exponent p.
Then �.G/ � nC p � 1.

Proof. If jGj D p2, then �.G/ D p C 1. We proceed by induction on the order
of G and assume jGj � p3. Suppose z is a central element of G; then we have
�.G=hzi/ < �.G/ by Proposition 4.1. Furthermore, G=hzi is a noncyclic p-group
of exponent p. The result follows.

A covering ¹Hiº of a group G is called a partition if Hi \Hj is trivial for
all i ¤ j . (That is, Hi \Hj D 1 for i ¤ j .) Also, a group G is tidy if, for all
x 2 G, the set CycG.x/ D ¹y 2 G W hx; yi is cyclicº is a subgroup of G. Suppose
G is a finite p-group andG has a covering that consists of cyclic groups that is also
a partition. Clearly, a cyclic group is tidy, so it follows from [11, Corollary 2.5] that
G is tidy. The tidy p-groups have been classified in [2]; they are either (i) cyclic,
(ii) have exponent p or (iii) p D 2 and G is dihedral or generalized quaternion.
Hence, if G is a p-group that is partitioned by cyclic subgroups, then either G is
cyclic and �.G/ D 1, G is dihedral or generalized quaternion and �.G/ D 3, or G
has exponent p and �.G/ � logp.jGj/C p � 1.

The following result gives a dichotomy of normal subgroups. Our proof requires
that G be a p-group, but we do not have any counterexamples when G is not a p-
group, so it may be possible to weaken the hypothesis on this corollary. Finally,
we have Theorem 1.3.

Corollary 4.6. LetG be a noncyclic p-group andN a nontrivial normal subgroup
of G such that �.G/ D �.G=N/.
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(i) Suppose M E G; then either N �M or M � G�.

(ii) If there exists a maximal cyclic group hxi which is normal, then N � hxi, so
N is cyclic.

Proof. (i) Suppose that N is not contained in M and M is not contained in G�.
Then we can find n 2 N nM and m 2M nG�. It follows that m 2M and mn
is not in M . Since M is normal, mn cannot be conjugate to any generator of hmi.
Since m is not in G�, we should have that every element of mN is conjugate to
a generator of hmi, and mn is not, so we have a contradiction to Proposition 4.1.

(ii) We are assuming that hxi is normal in G and x 2 G nG�. Thus, hxi is not
contained in G�. So by (i), we have N � hxi.
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