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Abstract�Seabed inspection is one of the most sought-after
applications for autonomous underwater vehicles (AUVs). Acous-
tical sensors, such as side-scan sonars and forward-looking sonars
(FLSs), are commonly favored over optical cameras to carry out
such a task. Indeed, sonars are not in�uenced by illumination
conditions and can provide high-range data. However, due to the
lack of features and low resolution, acoustical images are often hard
to interpret with conventional automatic techniques, forcing human
operators to analyze thousands of collected images to identify the
so-called objects of potential interest (OPIs). In this article, we
report the development of an automatic target recognition (ATR)
methodology to identify and localize OPIs in FLS imagery. Such
detections have been then exploited to realize a virtual world model
with the probabilistic multiple hypothesis anchoring data associa-
tion and model tracking algorithm. Distinct models of convolutional
neural networks have been trained with a data set acquired in May
2019 at the Naval Support and Experimentation Centre (Centro di
Supporto e Sperimentazione Navale�CSSN) basin in La Spezia,
Italy. The ATR strategy has been successfully validated of�ine with
the data gathered in October 2019 in the same site where the seabed
targets were replaced and relocated. As regards the world modeling
technique, it has been preliminarily tested on a simulated scenario
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built upon unmanned underwater vehicle Simulator. Finally, both
the ATR and world modeling systems were on-�eld tested in Oc-
tober 2020 at the CSSN basin in a multivehicle architecture by
employing an acoustical channel between FeelHippo AUV and an
autonomous moving buoy.

Index Terms�Arti�cial intelligence (AI), automatic target
recognition (ATR), autonomous underwater vehicles (AUVs),
convolutional neural networks (CNNs), intelligent robotics, marine
robotics, underwater surveillance.

I. INTRODUCTION

THE recent advancement in autonomous vehicles aims to
develop increasingly intelligent systems capable of in-

teracting with the surrounding environment and independently
deciding the best actions to fulfill specific tasks. In this context,
modern robotics tries to integrate artificial intelligence (AI)
concepts and technologies; this pattern especially arises in the
underwater domain, where the poorness of communications and
the total absence of global navigation satellite system (GNSS)
signal force to give more autonomy to the vehicle. AI is currently
used in robotic systems for different purposes, such as making
autonomous decisions, planning paths, and extensive data pro-
cessing, which are all fields where excellent results are being
achieved. Since the tasks demanded to autonomous underwater
vehicles (AUVs) have become more and more challenging [1],
[2], researchers and scientists are investigating the use of AI
technologies in the marine environment. Indeed, autonomous
inspection strategies for underwater installations [3], exploration
planning [4], and autonomous coverage strategies [5], [6] have
become essential tools to execute complex and hazardous subsea
operations in unknown scenarios.

Perceiving and understanding the environment is a fundamen-
tal hierarchical step to accomplish such complicated tasks. To
this end, AUVs can be equipped with several payload sensors,
such as optical cameras, multibeam echosounders, side-scan
sonars (SSSs), forward-looking sonars (FLSs), sub bottom pro-
filers, and so on. However, collecting raw data might not be
enough for meaningfully understanding the environment; as a
matter of fact, such data shall be processed online and fused

1558-1691 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 18,2022 at 22:23:19 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3389-1631
https://orcid.org/0000-0002-0498-2238
https://orcid.org/0000-0002-0786-7788
https://orcid.org/0000-0003-4207-2451
https://orcid.org/0000-0001-7349-4089
https://orcid.org/0000-0002-8660-9022
https://orcid.org/0000-0002-1653-5590
https://orcid.org/0000-0001-8493-7594
mailto:penalty -@M leonardo.zacchini@unifi.it
mailto:penalty -@M leonardo.zacchini@unifi.it
mailto:alberto.topini@unifi.it
mailto:matteo.franchi@unifi.it
mailto:nicola.secciani@unifi.it
mailto:a.ridolfi@unifi.it
mailto:vincenzo.manzari@marina.difesa.it
mailto:mirko.stifani@marina.difesa.it
mailto:mirko.stifani@marina.difesa.it
mailto:lorenzo.bazzarello@marina.difesa.it


2 IEEE JOURNAL OF OCEANIC ENGINEERING

to identify obstacles, objects of interest, or hazardous targets.
Free and occupied areas must be carefully identified [7] and 3-D
occupancy maps must be created for exploring unknown areas
and navigating into highly unstructured environments. Mechani-
cal scanned imaging sonar, optical cameras, and FLSs are viable
solutions [4], [8]. As regards autonomous interventions, vehicles
shall correctly detect and localize objects of interest to interact
with the external environment; more specifically, when dealing
with structured areas, such as water tanks, augmented reality
markers, and computer vision (CV), techniques represent a
simple and extremely effective solution [9]. Nevertheless, robots
have to face frequently nonstructured and unknown regions.
For instance, in sea mining explorations, the AUV performs
optical surveys to identify nodules and stones; once a nodule
is detected, a visual-guided landing maneuver to collect the
object is performed. Since environmental and light conditions
change continuously and cannot be foretold, the performance
of CV techniques is limited. Hence, modern convolutional neu-
ral networks (CNNs) shall be exploited to achieve satisfying
results [10].

For what concerns seabed inspections, AUVs are commonly
used for a wide variety of applications, ranging from geomor-
phological and biological analyses to port supervision in the
view of ensuring the safety of the vessel traffic. Marine scientists
use AUVs to study the seafloor morphology and the bathymetric
changes or examine benthic habitats [11], [12]. In archaeological
investigations, the seabed is carefully photographed [13] to
classify historical finds; acquire high-quality data is of utmost
importance. For underwater surveillance, AUVs exploitation is
related to mine counter measure tasks and analogous opera-
tions [14], where potential hazardous targets must be identified
keeping human operators far from the risks.

The aforementioned tasks are generally performed by ex-
ploiting optical sensors. However, optical cameras are affected
by water turbidity and lighting conditions, and gathering sat-
isfactory images does arise as a nontrivial task not feasible in
several scenarios. As a consequence, acoustical sensors, e.g.,
SSSs, as well as FLSs, are commonly favored to carry out
inspection and exploration tasks. In fact, sonars are not influ-
enced by illumination conditions and can provide high-range
data. In particular, FLSs can synthesize satisfactory resolution
images and, more importantly, do not require the vehicle to
move to create an image. Nevertheless, although high-grade but
extremely expensive sonars can provide excellent images, FLSs
generally present high noise and a lack of features that make the
images hard to interpret by using conventional image processing
techniques. As a consequence, a human operator is usually in
charge of analyzing the thousands of acquired images to identify
the so-called objects of potential interest (OPIs). Once identi-
fied, the targets shall also be localized; for this end, the AUV
navigation data and the sonar characteristics are hence needed.
An automatic target recognition (ATR) strategy that detects and
localizes OPIs in FLS imagery, hence, represents an important
tool that could help human operators in this demanding task.
In this context, cutting-edge deep learning (DL) techniques,
which have become the state of the art in the classification and
object detection tasks [15], are being investigated in marine ATR
applications [16], [17].

Moreover, as long as a large set of OPI detections and local-
izations is provided, the need for a world modeling methodol-
ogy, containing a dynamically updated list of 3-D geolocalized
objects, does arise as pivotal. Indeed, the major purpose of
such a technique is constituted by providing a unique unified
representation of the whole gamma of existing objects of interest
in the surveyed area; in other words, if the same target is detected
and localized several times, the world modeling algorithm aims
at fusing the supplied information into a single world model
object. Such a model represents a fundamental outcome pro-
vided by the AUV. In fact, the world model could help human
operators analyze the data collected and plan additional surveys
or intervention operations. Besides, it could be employed by the
AUV to achieve complex tasks.

A. Contribution

In this work, an extension of the ATR strategy for FLS frames
presented in [18] has been designed and implemented to detect
and geolocalize potential targets of interest placed on the seabed.
Besides, the several detections, supplied by the ATR system,
have been employed to create a world model of 3-D-localized
and labeled objects of interest.

The research activity has focused on developing and evalu-
ating the aforementioned solution on FLS imagery; addition-
ally, the system feasibility has been verified during real-time
tests. First, selected CNN models have been trained by ex-
ploiting a custom gathered data set of heterogeneous images,
acquired in May 2019 at the Naval Support and Experimen-
tation Centre (Centro di Supporto e Sperimentazione Navale
- CSSN) basin in La Spezia (Italy), and the open-source ma-
chine learning library TensorFlow [19]. Then, the trained neural
networks have been incorporated into a custom ATR software,
developed in the Robot Operating System framework [20].
Aiming to develop an onboard, pragmatically working ATR
solution for compact AUVs, an NVIDIA Jetson Nano [21]
has been selected as dedicated payload hardware for running
the trained CNN models, and it was mounted on FeelHippo
AUV [22], [23]. As a preliminary stage, the ATR strategy
performance was assessed through hardware-in-the-loop offline
validation using prerecorded data. Finally, the ATR with world
modeling solution has been validated online with two vehicles
both developed by the Department of Industrial Engineering
of the University of Florence (UNIFI DIEF): FeelHippo AUV
(equipped with a small towed buoy as Wi-Fi bridge), and an
autonomous moving buoy [24], working as surface vessel and
capable of Wi-Fi as well as acoustical communication. The
two involved vehicles have been together employed during an
experimental campaign performed within the activities of the
SEALab, the joint research laboratory between the CSSN of
the Italian Navy and the Interuniversity Center of Integrated
Systems for the Marine Environment (ISME). In detail, the
FLS images were acquired and processed online with the devel-
oped embedded ATR solution by FeelHippo AUV. To provide
a visual feedback (not available from an acoustical link), the
detected targets and their estimated positions, outcomes of the
ATR strategy, were additionally streamed in real-time using
the small towed buoy (phisically linked to FeelHippo AUV)
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to a workstation where a human operator could supervise the
process. It is worth highlighting that the towed buoy was only an
additional asset for supervising the recognition process during
the validation campaign. It is not necessary for the proposed
methodology.

At the same time, FeelHippo AUV acoustically transmitted
the same ATR results to the autonomous buoy, which also
worked as a Wi-Fi bridge to a workstation running a data as-
sociation algorithm to generate and maintain a consistent world
state estimate. As the last stage, the developed data association
solution allowed to model the perceived environment by de-
ciding whether the detected OPIs had already been discovered
or not and creating a world model symbolic representation of
3-D-localized, uniquely labeled objects.

The rest of this article is organized as follows. Section II
reviews the most used CNN architectures for FLS-based ATR
solutions and related works about environment modeling and
data association strategies. Section III is dedicated to describing
the proposed ATR methodology by accurately outlining the DL
model selection and training processes. Section IV reports the
reference frames used in this article and describes the FLS
model exploited to localize the identified OPIs. In Section V,
the developed data association algorithm to create a model of
the environment is presented. Section VI reports and analyzes
the offline validation results, while Section VII overviews the
experimental scenario and the on-field results obtained by col-
lecting data during a sea mission. Finally, Section VIII concludes
this article.

II. BACKGROUND

A. State-of-the-Art ATR Solutions

With the growing demand for intelligent systems capable of
performing complex interactive tasks, reacting to the environ-
ment while inspecting areas, and cooperating meaningfully with
human operators, object detection has become a fundamental
feature of modern robots. Unmanned ground vehicles and un-
manned aerial vehicles can rely on a large variety of sensors,
ranging from optical cameras to light detection and ranging de-
vices, to detect objects. Due to the wide use of modern cameras,
several image-based target identification solutions have been
developed. In particular, CNN-based approaches have shown
outstanding results, becoming the golden standard in the image
classification and target recognition tasks [15].

On the contrary, marine robots have limited recognition capa-
bilities due to the underwater domain. Water turbidity, low-light
conditions, and poor visibility degrade the quality of the optical
images (see Fig. 1), making the subsea object detection hardly
achievable in many cases. Acoustical sensors, such as FLS or
SSS, represent a valid alternative. Indeed, these sensors provide
high-range data that are not as affected by water conditions.
Besides, even though recognizing object patterns in the high-
noise acoustical sonar images can be challenging, FLS has the
potential to be a functional device in underwater ATR tasks by
providing decent resolution images (an example is provided in
Fig. 1), at high frame rates, and not requiring the vehicle to move.

Fig. 1. On the left, an underwater pipeline structure in the corresponding
optical image (native resolution of 704 × 576 pixels); on the right, the 2-D FLS
acoustical frame (native resolution of 894 × 477 pixels).

Different template-matching-based object recognition ap-
proaches for FLS imagery have been developed and tested with
different similarity measures and feature-trained classifiers [25],
[26], [27], [28], [29]. Nonetheless, these techniques cannot
generalize the template patterns; additionally, their performance
degrades in the handling of multiscale objects. Therefore, these
limitations led many marine researchers to investigate the use
of CNN-based solutions also in acoustical imagery. In [16],
custom CNN architectures to classify FLS images have been
evaluated. The reported performance comparison with classical
template matching solutions shown that CNNs could provide
better performance while keeping a low number of parameters.
Nevertheless, developing a custom CNN architecture is time
expensive and requires plenty of images to train the network.
Besides, AUVs usually have limited onboard computational
power, and ATR should be performed in real-time to be effec-
tive during underwater missions. Thus, developing a CNN for
onboard applications does emerge as a real challenge.

Turning to a more detailed overview, these solutions follow a
common approach. The first network layers, called the backbone
of the network, are in charge of extracting the dominant features,
while the last layers classify those features and localize objects in
the image. Generally, the backbone is tricky to train and requires
a large data set. As regards the subsea environment, since gather-
ing a large and heterogeneous data set in an underwater scenario
is by no means straightforward, two common techniques do
emerge as suitable solutions: data augmentation [30], which
consists of applying several transformations to the previously
acquired images to inflate the original data set with additional
synthetically modified frames, as well as transfer learning [31],
which involves the training of the last layers of pretrained models
on a custom data set by fine-tuning higher order feature repre-
sentations, speeding up the training phase. As a consequence of
the aforementioned reasons, such deep neural network (DNN)
approaches, relying on data augmentation and transfer learning,
could be used to tackle object detection in FLS images.

Several remarkable DNN architectures have been proposed
over the last few years for several and disparate fields of applica-
tion; considering that for FLS the scientific literature highlights
sparse applications, the most performing and promising DNN
architectures have been taken into account to find which ones
best fit our system. The you only look once (YOLO) network [32]
was developed as an optimized end-to-end structure composed
of 24 convolutional layers and 2 fully connected layers. This
simple structure allows predicting bounding boxes and class
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probabilities from full images in one evaluation. Thus, the
network achieves real-time image processing with an extremely
high frame per second (fps). YOLO was tested on FLS images
ATR in [33], where the authors developed a system to detect
divers.

A different approach was used to design the single shot
multibox detector (SSD) [34], a convolutional network able to
detect and classify objects at different scales at a high fps. Its
native version used the visual geometry group network [35] as a
backbone to extract the image features; however, the SSD strat-
egy has been successfully incorporated with different feature
extraction networks, such as Inception [36] and Mobilenets [37].
Small convolutional filters are then applied to different scale
feature maps in the final layers to detect and classify objects.
The network training aimed to optimize a multitask loss that
took into account both the classification error and the bounding
box coordinate error. This simple structure lets the SSD reach
high-accuracy detections at high fps (up to 45). As the underwa-
ter domain is concerned, SSD was used to recognize objects in
optical images [17], but as far as the authors known, it has not
been tested on FLS imagery yet.

When the detection accuracy shall be favored over the infer-
ence speed, region-based architectures, such as the Faster region-
based convolutional neural network (R-CNN) [38], are the rec-
ommended choice. The Faster R-CNN’s backbone is composed
of a feature extractor network and a region proposal network to
produce the regions of interest (ROIs) in the feature maps and
predict the bounding boxes. Two fully-connected sibling layers
take each ROI as input and classify possible objects and refine
the bounding boxes. The loss function used to train the network
was a tradeoff between the classification and the localization
tasks. As accurately highlighted in the speed/accuracy tradeoff
analysis proposed in [39], compared with the SSD, the Faster
R-CNN is more accurate but cannot reach the exceptionally high
inference speed.

Mask R-CNN [40] extended the Faster R-CNN. First, the
backbone was improved through the feature pyramid network
that can better represent objects at multiple scales. Besides,
the authors added in the final layers a convolutional branch
to generate a segmentation mask for the selected ROIs. The
training loss also considered the segmentation tasks, improving
the network performance. In fact, instance segmentation enables
identifying object outlines at the pixel level, enhancing the lo-
calization precision. R-CNN architectures were tested on optical
underwater images [41] and on FLS imagery [17]. However,
in [17], an analysis of their performance on FLS images was not
reported.

B. World Modeling State-of-the-Art

Creating an accurate world model of the scenario where the
AUV is navigating is a crucial stage for understanding the
surrounding environment. For this reason, the targets detected by
the ATR architecture alongside their localized positions must be
handled, selected, and filtered to get a symbolic representation
of the underwater scenario. Three significant points require
hence to be addressed [42]. First, the robot needs to link the

features supplied by the ATR system (e.g., label, size, position,
shape, etc.) to semantic objects (anchoring [43] [44]). Second,
probabilistic methodologies have to be exploited to associate the
ATR sensor measurements with the corresponding object in the
world model (data association [45]). Finally, a mathematical
model, describing the prior knowledge of the detected target
motion, is employed to perform object tracking [45].

The scientific literature highlights a wide range of distinct
alternatives for the combined data association and model track-
ing problem, generally renown as multiple target tracking. For
instance, the probability hypothesis density (PHD) Filter [46]
can be considered analogous to a constant gain Kalman filter
(KF) in a multitarget scenario. On the other hand, the multiple
hypothesis tracker (MHT) [47] simultaneously takes into ac-
count the whole gamma of possible explanations from sensor
measurements by identifying each world state a hypothesis
alongside their correctness probability. The joint probabilistic
data association filter [48] and the global nearest neighbor [49]
methodology arise as another possible approach. Finally, in [42],
the probabilistic multiple hypotheses anchoring (PMHA) archi-
tecture is proposed by fusing the advantages of multiple model
(MM) techniques along with the major features of the MHT
procedure as well as an anchoring strategy.

As far as the specific underwater scenario is concerned, the
examples of world modeling are still sparse. Indeed, data asso-
ciation methodologies are rather employed within simultaneous
localization and mapping contexts [50], [51], [52]. Nevertheless,
an underwater target mapping strategy for AUV is suggested
in [53], where a PHD-based approach aims at clustering several
detections of the same object in a single unique representation
(or cluster).

III. CNN-BASED AUTOMATIC TARGET RECOGNITION

A. Model Selection

The presented work investigates the development of a DL
ATR strategy for FLS imagery that can run real-time on compact
AUVs with limited hardware capabilities. In particular, since
the effectiveness of image-based state-of-the-art DNNs on FLS
images was shown in previous works [17], [33], this research
focuses on a practical application of such DNN techniques.
Besides, even though gathering a large and heterogeneous under-
water data set is time and cost consuming, the aforementioned
state-of-the-art DNNs allow the use of both data augmentation,
increasing the number of data set frames by ad hoc modifying
the original data set and transfer learning, which speed up the
ATR development by fine-tuning the final network layers, while
the backbone is not modified. As a result, a network model does
not require thousands of images to be trained on a custom data
set.

When it comes to select the most appropriate network, some
relevant points must be considered. First, the acoustical frames
are acquired at a low frame rate (3 Hz) in this work; thus, a high
inference rate is not required. Moreover, the ATR solution has
to provide additional geolocalization of possible seabed objects;
within this context, since the target 3-D positions are estimated
from the 2-D DNN localization in the FLS frame, minor errors in
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Fig. 2. Examples of FLS images used in the training data set. The selected DNN architectures were trained to detect and localize the depicted OPIs. It is worth
noting that to get a heterogeneous ATR solution, the OPI forms and sizes vary while affecting their rendering, which also depends on the FLS viewpoint.

the bounding boxes at the pixel level could lead to large errors in
meters in the 3-D localization. Therefore, the network accuracy
is of utmost importance and shall favor the inference speed
as the model selection parameter. As a consequence of these
statements, region-based DNNs represent a functional selection
for the developed ATR solution.

Faster R-CNN Inception V2 was employed in [17] to de-
tect a massive underwater structure in FLS images showing
satisfying results. However, in the context of this research
activity, the primary goal has shifted to detect and localize
objects of different sizes on the seabed, whose rendering is
strictly related to both their form and the FLS viewpoint. Thus,
the network multiscale object detection capability, together
with the localization precision, plays a fundamental role. As
a matter of fact, the Mask R-CNN, based on the Inception
V2, fitted the above-described characteristics and has been se-
lected to be tested within the hereafter suggested ATR strategy.
Moreover, since this research activity proposes a preliminary
investigation of an ATR solution for self-contained onboard
applications, the required computational resources are of ut-
most importance, and the efficient SSD Mobilenet V2 network,
designed for mobile and embedded devices, has also been
tested.

B. Data Set Gathering

Within the context of this work, the training data set was
acquired with FeelHippo AUV, whose main features and charac-
teristics are illustrated in Section VII. The data set was gathered
during on-field trials, performed in May 2019, at the CSSN
basin, La Spezia, Italy. As depicted in Fig. 2, target OPIs have
different shapes and dimensions, and their rendering on FLS
images is strictly related to the sonar viewpoint.

Among the recorded FLS images, 175 frames, in a native
resolution of 894 × 477 pixels and containing one or more
detectable targets, had been selected. In particular, it is worth

noting that this procedure has been fulfilled in the view of collect-
ing a diversified heterogeneous data set. Consequently, images
with different informative regions have been taken into account.
Although it may be considered an evident and negligible pattern,
this design guideline plays a fundamental role in providing
the DNN architecture with an optimal generalization capability
by avoiding overfitting during the training phase. Furthermore,
coherently with the aim of building a robust data set, a data
augmentation strategy has been employed; in particular, the
data set has been augmented by randomly horizontally flipping
the picked images and randomly varying their brightness and
contrast.

C. Training Details and Results

Regarding the training details, SSD and Mask R-CNN present
distinct size configuration strategies; however, the former resizes
the images on a fixed shape, the latter exploits a shorter edge-
based image scaling procedure. More in detail, as far as the SSD
network is concerned, a down-scaling process is achieved for a
final image size of 300 × 300 pixels. On the other hand, since
the acoustical sonar provides low-resolution and low-frame rate
pictures, the Mask R-CNN training pipeline has been designed
by maintaining the image dimensions, and, thus, the aspect ratio
to focus on the classification performance rather than on the
computational cost. The SSD model has been trained using
RMSProp with batch sizes of 24, whereas Mask R-CNN has
exploited stochastic gradient descent with momentum with batch
sizes of 1. Finally, the learning rate schedules have been defined
explicitly for each CNN architecture to accomplish optimal
inference outcomes and a fast convergence timing. The whole
training procedure has been performed on a PC fitted with 16-GB
RAM, an Intel Core i7-8750H processor, and an Nvidia GeForce
GTX 1070 Ti card. For sake of completeness, the training
outcomes, in terms of training curves, have been reported in
Fig. 3.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 18,2022 at 22:23:19 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE JOURNAL OF OCEANIC ENGINEERING

Fig. 3. Results of the training processes in terms of the loss curves. On the left, the SSD model training outcome is reported; conversely, on the right, the Mask
R-CNN loss curve is reported.

IV. FLS MODEL BASED TARGET LOCALIZATION

As described in Section III, the proposed ATR solution uses
image-based DNN architectures to identify OPIs in FLS im-
ages. Such models give the predicted classes as output, with
the computed confidence, and the object bounding boxes. In
particular, the bounding boxes are provided as the top-left and
the bottom-right corners in the image reference system that uses
pixels as the measurement unit. Therefore, the DNN detections
shall be projected into an inertial reference frame to allow the
AUV to correctly localize the OPIs and construct a model of the
environment (see Section V).

First, the mathematical notation used in this research is
introduced. Given a generic reference system {Oixiyizi}, a
vector p � R3 expressed in this frame will be denoted as ip. A
rotation matrix R � SO(3), for which it holds that R � R3×3,
RR� = I3, where I3 is the 3 × 3 identity matrix, and
det(R) = 1 is referred as kRj

i ; it rotates a unit vectors of the
frame {Oixiyizi} in unit vectors of the frame {Ojxjyjzj}, both
expressed in the frame {Okxkykzk}. If k = j, the three-indexes
notation could be simplified in the following form: jRj

i = Rj
i .

Introducing the transformation matrix T of the special Euclidean
group in R3

SE(3) :=
�

T =
�

R p
0T 1

�
| R � SO(3),p � R3

�
(1)

the relation between two reference frames can be described in
a compact notation by using homogeneous transformations as
well as the 4-D representation vector �p. In particular, it holds
that

j �p =
� jp

1

�
=

�
Rj

i tji
0T 1

� � ip
1

�
= T ji

i �p (2)

where tji is the translation vector between the center of the frames
< i > and < j >.

Then, the reference systems can be defined. The North–
East–Down frame {ONEDxNEDyNEDzNED}, denoted as < N >,
is commonly used in marine robotics as the inertial refer-
ence system. It is a local Earth-fixed frame whose axes point,

North, East, and Down (NED) respectively, and its center are
placed on Earth’s surface at a specific latitude and longitude
pair, depending on the specific application [54], [55]. Attached
to the vehicle, a reference system called body frame < b >,
{Obxbybzb}, is defined assuming the x-axis along the longitu-
dinal axis of the vehicle, the z-axis pointing downwards, and the
y-axis completes a right-handed system (see [56]). The vehicle
used in this research work is FeelHippo AUV, described in
Section VII, which estimates its pose with sufficient accuracy by
using high-quality sensors and navigation strategies developed
by the UNIFI DIEF. In detail, the nonlinear observer detailed
in [57] is employed for estimating the vehicle attitude using
inertial measurement unit (IMU) and fiber optic gyroscope
(FOG) data. Then, the attitude estimate is combined with the
Doppler velocity log (DVL) measurements in a dead reckoning
algorithm to calculate the AUV position. The performance of
this navigation methodology has been assessed in various works
(e.g., [23] and [58]), resulting in an error of about 3% of
the total traveled distance. For what concerns this works, the
vehicle navigation strategy has been considered accurate for
conducting inspection surveys, and the robot pose uncertainty
was not considered for the target localization phase. Further in-
formation about the exploited navigation solutions can be found
in [23], [57], and [58]. In conclusion, the relation between the
< N > frame and the< b > frame, T N

b , is assumed completely
known [56].

Regarding the FLS, it is rigidly attached in front of
the AUV, and a right-handed reference system, denoted
as < F >, {OFxF yF zF }, can be considered. The intro-
duced < F > frame center corresponds with the FLS cen-
ter; its x-axis points forward while the z-axis points down-
wards. Since the FLS mounting position and orientation with
respect to the AUV are known, the homogeneous trans-
formation T b

F is determined. Fig. 4 depicts the overall
situation.

According to [23], [59], and [60], in the< F > frame, a point
P � R3 represented in Cartesian coordinates F P = [X,Y, Z]�
can be expressed in spherical coordinates F P = [flr, �, �]�,
where flr is the FLS delivering range, � is the azimuth angle,
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Fig. 4. Representation of the NED frame < N >, the body frame < b >, and
the FLS frame < F >.

and � the elevation angle. It holds that
�

�
X
Y
Z

	


 = flr

�

�
cos� cos�
cos� sin�
� sin�

	




�

�
flr
�
�

	


 =

�

�

�
X2 + Y 2 + Z2

tan�1 (Y/X)
tan�1 �

�Z/
�
X2 + Y 2

�

	


 . (3)

FLS devices natively use the spherical system in the imaging
process: for each beam that composes the FOV, at every range
interval, the average power of the reflected waves is measured
and used to produce the corresponding pixel intensity in the
image. However, the 3-D to 2-D image formation process leads
to a loss of the information about the elevation angle � [60]. In
fact, as depicted in Fig. 5, the 3-D point F P (flr, �, �) � R3 is
projected on the FLS image plane, as depicted in red in Fig. 5
and denoted in the following as < FI >, in a point p along the
arc defined by the elevation angle � [61]. Hence, given an FLS
image, only the azimuth angle � and the range flr of point can
be computed. FLSs typically have limited vertical beamwidth
� (see [62], [61]) and are mounted with a small elevation
angle �, i.e., the angle between the horizontal plane and the
insonifiying direction, which determines the FLS image plane.
Besides, vehicles such as FeelHippo AUV, considered in this
work, have the roll and pitch dynamics hydrostatically stable,
and seabed inspection surveys do not excite these degrees of
freedom (DOFs). Hence, the AUV navigates with roll and pitch
angles almost zero with negligible variations. As a consequence
of these considerations, a point F P can be localized through its
projection p in the FLS image plane. Thus, the approximation
F P̂ of F P can be computed as

F P̂ =

�

�
�X
�Y
�Z

	


 = flr

�

�
cos�
sin�
0

	


 . (4)

As previously discussed, in (4), there is a loss of the informa-
tion about the point elevation angle � that could lead to an error
in the localization process. However, considering the problem
tackled in this work, additional assumptions to enhance the
localization accuracy can be drawn. First, the considered OPIs

to be identified and localized are on the seabed. Then, the sea
bottom imaged within a frame is assumed dominantly flat. That
is, the detected bounding boxes lie on the seafloor at an altitude
h from the AUV (see Fig. 5). Under these additional hypotheses,
a point on the sea bottom can be accurately localized from an
FLS image. To this end, the point elevation angle fl� shall be
calculated. When the aforementioned assumptions hold, using
altimeter data, the elevation of the point F P can be retrieved. In
fact, according to the local flat seafloor hypothesis, for a point
F P on the seabed, it holds

flr sin(� + fl�) = h (5)

where � denotes the angle between the horizontal plane and
the FLS insonifiying direction. Equation (5) allows to calculate
the elevation angle fl�, and thus, the point F P can be localized
accurately

F P =

�

�
X
Y
Z

	


 = flr

�

�
cos� cos fl�
sin� cos fl�

sin fl�

	


 . (6)

Therefore, (5) and (6) are utilized to geolocalize the ATR
findings. In fact, as discussed above, image-based DNN archi-
tectures produce as output the objects’ bounding boxes whose
coordinates are referred to the classic image reference frame
< I > that has the center in the image top-left corner and the
x- and y-axis along the image width and height, respectively.
The relation between the < I > frame and the < FI > frame is
known, as depicted in Fig. 6. Thus, for each OPI identified by
the trained neural network, the bounding box can be projected
from the < I > frame to the < FI > frame; then the target can
be localized: by using (6), its position is estimated in the < F >
frame, and since the transformation T N

F = T N
b T b

F is accurately
known, it is localized in the inertial reference frame< N >, and
consequently, in the World Geodetic System (WGS84), which
uses latitude, longitude, and altitude as coordinates (see [54] for
more details).

V. WORLD MODELING

Due to its feature of incorporating into an anchoring algorithm
the MHT data association capability alongside the MM tracking
characteristics, the PMHA methodology [42] has been selected
as suitable to perform the world modeling task. Indeed, PMHA,
coherently with its developers’ purpose, has outlined the ability
to extend MHT within a probabilistic anchoring framework
where the targets to be semantically anchored are associated
as well with a tracking mathematical model. As far as PMHA is
concerned, the overall algorithm will be summarily presented in
Section V-A, whereas in Section V-B, the proposed implemen-
tation will be highlighted by pointing out the distinctive features
of this specific scenario.

A. PMHA Algorithm Description

As far as the anchoring process is concerned, the world objects
are represented by anchors, whose attributes are updated over
time by using the measurements provided by the sensors. More
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Fig. 5. FLS imaging process: given a range r̄, points on the arc defined by the angle
�
� are projected in the FLS image plane < FI > (in red) in the point p [61].

Fig. 6. 2-D FLS frame with respect to the image reference system < I >.

specifically, an anchor �a is described as a tuple

�a =
�
�, zki ,M

k
a
�

(7)

where � is the individual symbol constituting a physical object
in the world, zki is the measurement provided at the k-time
and linked to this symbol with i = 1, . . . , nmeas representing
the measurement index, Mk

a describes the whole set of anchor
behavior models, whereas a = 1 . . . .nobj represents the anchor
index (with maximum value the object number in the exploited
environment). Indeed, given

Mk
i =



���

���

p
�
Mk

a,1
�

: Mk
a,1

...

p
�
Mk

a,nmod,a

�
: Mk

a,nmod,a

(8)

Ma,m reflects an m-indexed behavior model, nmod,a defines
the total number of behavior models in the single anchor, and
p(Ma,m) denotes the probability mass function associated with
a single behavior model. Furthermore, the resulting attribute
estimate �k

a is computed by a weighted sum of the behavior
model probability mass functions p(Mk

a,1) and the probability
density functions of the attribute estimated �k

a,m

�k
a =

nmod,a�

m=1

p
�
Mk

a,m
�
�k
a,m. (9)

For instance, an AUV may observe a static OPI in an area
described by a set of two behavior models: a fixed-position KF,
where, in this case, Mk

a is the whole filter along with the motion
model, and a uniform distribution behavior model highlighting
the possibility for the OPI to be randomly moved, e.g., by a sea
current, over the selected area.

As long as the anchor implementation is provided, the PMHA
algorithm requires achieving the data association task by cor-
rectly selecting the right anchor attributes to be updated once
new measurements are supplied by the sensors. As mentioned
above, this specific problem is addressed by exploiting an MHT
data association technique.

From a qualitative perspective, for every new set of measure-
ments supplied by some sensors, three possible data association
states are taken into account: First, a measurement can reflect
the observation of a new object (i.e., not incorporated in the
world model yet); second, a measurement may be descrip-
tive of an object already included in the world model; finally,
the last state represents a measurement originating from a false
detection. Consequently, coherently with the MHT methodol-
ogy, a hypothesis tree is built upon the assumption that each
leaf constitutes a hypothesis � describing one admissible world
state (i.e., containing a list of anchor-described objects). For
each hypothesis, its corresponding correctness probability is
evaluated and the highest value one is considered as the truthful
world state model.

Quantitatively speaking, the correctness of the hypotheses
(containing the listed anchors describing the world model) is
computed by means of the Bayes’ law as

p
�
�k

h | Zk�
=

p(Z(k)|�k
h ,Z

k �1)p
�
�k

h |�
k �1
p ( h ) ,Z

k �1
�
p

�
�k �1

p ( h ) |Z
k �1

�

p(Z(k)|Zk �1 )
(10)

with p(�k
h | Zk) being the posterior probability of theh-indexed

hypothesis �k
h up to the time step k, the likelihood described

by p(Z(k) | �k
h, Z

k�1), p(�kh | �k�1
p(h), Z

k�1) evaluates the prior

probability of the associations �kh, p(�k�1
p(h) | Z

k�1) represents
the posterior probability of the parent hypothesis, and p(Z(k) |
Zk�1) is introduced to normalize the probability value; in
the following lines, each term will further be analyzed so
as to provide a thorough understanding of their computing
process.
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By assuming independent measurements, the likelihood is
computed as

p
�
Z(k) | �k

h, Z
k�1�

=
nm a s�

i=1

p
�
zki | �k

h,ai
, Zk�1�

(11)

with ai indicating the anchor index to which the zki measurement
is linked in the specific hypothesis �k

h. The second term of
the previous equation, p(zki | �k

h,ai
, Zk�1), is specifically calcu-

lated in two distinct ways depending on whether a measurement
is associated with a new/false detection or with an already
existing anchor. In the first case, a uniform distribution around
the measurement volume V is taken into account (withnk

N,h and
nk
F,h representing the number of new and false measurements

relative to the corresponding hypothesis) as follows:

p
�
zki | �k

h,ai
, Zk�1�

= V �nk
N,h �nk

F,h . (12)

Conversely,�k
a can be employed if the provided measurement

is associated with an already established anchor by considering
respectively the correctness probability of the behavior model
Mk

h,ai ,m and the probability p(zki | �k
h,q1 ,m) that the measure-

ment is supplied by the object linked to the anchor

p
�
zki | �k

h,ai
, Zk�1�

= p
�
zki | �k

a
�

=
n mod a�

m=1

p
�
Mk

h,ai ,m
�
p

�
zki | �k

h,ai ,m
�
.

(13)

Turning to the prior probability p(�k | �k�1
p(h), Z

k�1), its eval-
uation is supplied by

p
�
�k | �k�1

p(h), Z
k�1

�
=

nk
N,h!n

k
F,h!

nk
meas !

pN
�
nk
N,h

�
pF

�
nk
F,h

�

×
nobj ,h�

a=1

�
p

�
Dk

h,a
���a �

1� p
�
Dk

h,a
��1��a (14)

with pN (nk
N,h) and pF (nk

F,h), respectively, describing the prob-
ability mass functions of the new object and false detection
numbers, p(Dk

h,a) indicating the detection probability of the
anchor �a in the hypothesis �k

h, whereas �a is calculated as

�a =
�

1, if the anchor �a in �k�1
p(h) is detected at time k

0, otherwise
.

(15)
With regard to the term p(Dk

h,a), the computation is achieved
by exploiting p(V k

h,a) (i.e., the probability that the object is
actually visible)

p
�
Dk

h,a
�
= p

�
Dk

h,a | V k
h,a

�
p

�
V k
h,a

�

= p
�
Dk

h,a |V
k
h,a

�n mod ,a�

m=1

p
�
V k
h,a | Mk

h,a,m
�
p

�
Mk

h,a,m
�

(16)

where p(Dk
h,a | V k

h,a) clearly represents the detection probabil-
ity conditioned to its visibility and p(V k

h,a | Mk
h,a,m) evaluating

visibility probability given the model of the object itself.

Finally, the resulting world state is selected by checking the
whole gamma of possible world states over the tree and selecting
the most probable hypothesis.

B. Specific Implementation

Turning to the specific adaption of the aforementioned theo-
retical concepts for practical use of the PMHA algorithm, several
parameters require to be tuned to achieve accurate results; as a
matter of fact, a working implementation needs the definition
of the behavior models M alongside the whole set of related
parameters, the setting of the prior probabilities for new and
existing objects as well as false detections.

In particular, the FLS-based detection and localization
methodology provides two major features: the class label clas-
sification alongside the probability of the target to actually
represent the previously labeled object and the target position
estimate; in this view, both these features have been selected as
predicates of the PMHA algorithms. The FLS-supplied position
estimate is, first, evaluated by using an NED frame with origin
the first valid position provided by the robot; such a vector is ex-
ploited to define a multidimensional Gaussian density function
with mean the NED-referenced position itself and covariance
a previously defined 3-D identity matrix. Conversely, the class
label feature is described by a probability mass function with
probability computed by the DL-model prediction.

As far as the behavior models M are concerned, due to the
intrinsic diversity of the class label and position attributes, two
distinct behavior models have been considered. Specifically,
the class label model has been selected as a probability mass
function over two different classes: target and not-target; it is
worth noting that while the first one evaluates the real class
label property, the second one is required as a complementary
class. Indeed, by assuming, for instance, that the DL-based
ATR system provides a 90% probability detection (i.e., the
recognized object is a target with the aforementioned proba-
bility), the not-target class will simply get a 10% probability
value. On the other hand, the target position behavior model is
represented by a model including both a constant position KF
and a Gaussian fixed-uncertainty characterization. As a matter
of fact, the target position estimate is propagated by employing
the KF, whereas localization measurements are provided; con-
versely, if the localization measurements are not provided for an
apriostically-defined arc of time, the target position propagation
switches to a multidimensional Gaussian with mean the current
position values and covariance previously set matrices. Within
this context, the design guideline of providing the target position
with a 3-D identity matrix covariance has been adopted. Since
the targets of interest are stationarily placed on the seabed,
a constant position kinematic model has been considered; in
particular, the 3-D NED position vector NP has been defined
as the state vector x

NP =

�

�
X
Y
Z

	


 = x (17)
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with a discrete-time state equation

x(k + 1) = Fx(k) + v(k) (18)

where

F =

�

�
1 0 0
0 1 0
0 0 1

	


 (19)

due to the constant-position design guideline and v(k) defined
as a 3-D identity matrix. Within this perspective, the pattern
of defining several covariance matrices of the target position
predicate arises from the idea (argued by both simulated and
on-field tests) of a maximum error of 1 m in the target lo-
calization process. It is worth noting that such a parameter
has been established by taking into account just the target
localization error in the sonar frame without considering the
vehicle navigation uncertainty; further research activities will
focus on analyzing the effect of the AUV pose covariance
within this context. Additionally, to supplement the information
supplied so far, since the measurement vector does coincide with
the system state, the measurement model [usually indicated as
H(k)] results as a 3-D identity matrix as well. Furthermore, this
behavior model relies on multidimensional uniform distributions
for the new object case as well as false detections; namely, the
probability of achieving both new object or false detections is
equally distributed over the volume in which the robot navi-
gates. Finally, as reported in [42], a typical design guideline
is to establish the probability of a measurement representing a
false detection higher than the probability of the measurement
representing a new object. This way the false detections that
arise in a standalone way can be actually “filtered” by the world
modeling strategy; nevertheless, occasional (i.e., not repeated)
correct detections are filtered as well. As far as the specific imple-
mentation is concerned, since the FLS sensor may provide quite
noise frames and lead the ATR system toward false detections,
the authors have decided to be coherent with the cautious design
guideline provided in [42].

VI. PRELIMINARY OFFLINE VALIDATION

A. Automatic Target Recognition and Localization on
Prerecorded Data

The trained networks were validated offline with a prere-
corded data set (hereinafter called “validation data set”) ac-
quired in October 2019 at the CSSN basin. First, a preliminary,
qualitative analysis was performed. The validation data set was
processed with the trained SSD and Mask R-CNN models to
assess their performance. The ATR solution was run on the PC
used for the networks training (see Section III). As illustrated
in Figs. 7 and 8, the developed strategy has guaranteed to fulfill
the detection task; both the CNN models manage to recognize
the underwater targets.

In the light of providing a more comprehensive overview,
the achieved results have also been quantitatively evaluated in
terms of precision and recall for the Mask R-CNN as well as
the SSD networks. As can be seen from Table I, the SSD model
has achieved a higher recall value (0.86) by outlining a superior

Fig. 7. Example of target recognition in a 2-D FLS acoustical image. The target
was detected and classified by means of Mask R-CNN. The predicted bounding
box is used to geolocalize the target through the FLS acquisition model.

Fig. 8. Result of the ATR in a 2-D FLS acoustical image by means of SSD.

TABLE I
CNN PERFORMANCE INDICATOR SCORE

detection capability of true-positive targets. Nonetheless, this
pattern is counterbalanced by a significantly lower precision
value (0.77), describing a nonnegligible aptitude in supplying
several false positives. Concerning the Mask R-CNN, despite a
slightly inferior recall (0.82), the excellent precision value (0.95)
outlines the potential to accomplish adequate ATR performance.
Indeed, within the scenario of developing a proactive intelligent
system, enabling FeelHippo AUV to detect unknown targets and
actively perform replanning for an inspection task, the Mask
R-CNN has emerged as the most suitable architecture to avoid
undesired reactive motions due to false-positive detections.

Since this research work focuses on developing a self-
contained ATR methodology capable of running on compact
AUVs, the CNN models were tested offline on FeelHippo AUV
hardware to verify whether the developed CNN-based ATR
solution could be used on hardware with limited computational
resources. To this end, both the aforementioned ATR strategies
were run on the NVIDIA Jetson Nano mounted on FeelHippo
AUV, while its main computer was used to stream the training
data set. It is worth noting that the NVIDIA Jetson Nano was
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