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Abstract. We present cosmological parameter measurements from the publicly available
Baryon Oscillation Spectroscopic Survey (BOSS) data on anisotropic galaxy clustering in
Fourier space. Compared to previous studies, our analysis has two main novel features.
First, we use a complete perturbation theory model that properly takes into account the
non-linear effects of dark matter clustering, short-scale physics, galaxy bias, redshift-space
distortions, and large-scale bulk flows. Second, we employ a Markov-Chain Monte-Carlo
technique and consistently reevaluate the full power spectrum likelihood as we scan over
different cosmologies. Our baseline analysis assumes minimal ΛCDM, varies the neutrino
masses within a reasonably tight range, fixes the primordial power spectrum tilt, and uses
the big bang nucleosynthesis prior on the physical baryon density ωb. In this setup, we find the
following late-Universe parameters: Hubble constant H0 = (67.9±1.1) km s−1Mpc−1, matter
density fraction Ωm = 0.295± 0.010, and the mass fluctuation amplitude σ8 = 0.721± 0.043.
These parameters were measured directly from the BOSS data and independently of the
Planck cosmic microwave background observations. Scanning over the power spectrum tilt
or relaxing the other priors do not significantly alter our main conclusions. Finally, we discuss
the information content of the BOSS power spectrum and show that it is dominated by the
location of the baryon acoustic oscillations and the power spectrum shape. We argue that the
contribution of the Alcock-Paczynski effect is marginal in ΛCDM, but becomes important
for non-minimal cosmological models.
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1 Introduction

Density fluctuations traced by galaxies are an important source of information about our
Universe. They can be used to probe perturbations on scales similar to those measured
in the cosmic microwave background (CMB) observations, but at a very different epoch of
cosmic evolution and in a very different physical environment. Future galaxy surveys with
their increasingly larger volumes have a great potential to provide the most stringent tests
of ΛCDM and possibly lead to new discoveries [1–4].

The increasing precision of the large-scale structure (LSS) surveys calls for a consistent
and accurate theoretical modeling which is easy to implement in the data analysis pipeline.
In this paper we focus on some aspects of this problem. In particular, we use a rigorous
perturbation theory model for the redshift-space galaxy power spectrum (PS) to measure
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cosmological parameters from the publicly-available1 Baryon Oscillation Spectroscopic Sur-
vey (BOSS) Data Release 12 (DR12) published in 2016.2 Similar full-shape (FS) analyses
of the power spectrum multipole moments [5, 6] or position-space correlation function and
redshift-space wedges [7–9] have been already done in the past. Our motivation to repeat
this exercise is twofold.

First, despite significant progress in understanding the nonlinear evolution of large-scale
structure and biased tracers, many recently developed theoretical tools are not routinely used
in the data analysis. These new results can be roughly split into two categories. The first
category comprises consistent perturbative descriptions developed to improve matter clus-
tering modeling in the mildly nonlinear regime. This includes nonlinearities in the dark
matter fluid [10, 11], the bias model [12–15] (for a review see [16]), and redshift space dis-
tortions [17, 18]. In all these cases one can systematically, order by order in perturbation
theory, write down all independent contributions to the nonlinear density field. These contri-
butions are derived using equations of motion and general symmetry arguments, such as mass
and momentum conservation, and the equivalence principle. The functional form of these
contributions is entirely fixed by these arguments, but the amplitudes are unknown. These
contributions are related to the familiar bias parameters and less popular “counterterms”,
whose purpose is to capture the impact of unknown small-scale physics on the long-wavelength
fluctuations. Any consistent theoretical model has to keep all these parameters in the fit in
order to obtain unbiased estimates of cosmological parameters.

The second category of analytical results is related to the accurate description of the
baryon acoustic oscillations (BAO). It has long been known that the shape of the BAO peak is
very sensitive to large displacements or bulk flows [19–21]. Their effect on the density field can
be significant since the typical displacements of galaxies are of order ∼ 10 Mpc. However, the
basic formulation of Eulerian Perturbation Theory [22] treats bulk flows only perturbatively.3

This problem has recently been resolved in a number of works within different but equivalent
perturbation theory schemes and in various approximations [25–31]. In a nutshell, large bulk
flows are induced by the long-wavelength or “infrared” modes, whose dominant physical effect
is a simple translation of matter. This allows for an exact treatment beyond perturbation
theory, which was called infrared (IR) resummation [25]. Using IR-resummation the shape
of the BAO wiggles can be predicted to very high precision (including higher order loops if
necessary). Crucially, this procedure requires no fitting parameters. This is very different
from usual, more phenomenological methods to predict the spread of the BAO peak and this
difference is relevant even for the analysis of data from current surveys. We implement all
these novel results in our theoretical model for the power spectrum.

Let us stress that the theoretical description of non-linear BAO damping may not be the
most optimal way to extract cosmological information. Rather than modeling the damping
of the BAO peak, one can undo this damping by means of BAO reconstruction at the catalog

1We use the data that can be accessed via https://fbeutler.github.io/hub/hub.html, see also http://www.
sdss3.org/science/boss publications.php.

2We use directly the power spectrum multipoles provided by the BOSS collaboration. The details of the
data are given in section 3.

3In Lagrangian Perturbation Theory (LPT) this is not the case since the bulk flows correspond to the
linear displacement and they are resummed by construction. This is the reason why even in the Zel’dovich
approximation the shape of the BAO peak is described rather well. For some more recent progress in modeling
the BAO peak for dark matter and biased tracers in real and redshift space using models based on LPT
see [23, 24]. One practical disadvantage of LPT-based models is that evaluation of power spectra is numerically
rather demanding.

– 2 –

https://fbeutler.github.io/hub/hub.html
http://www.sdss3.org/science/boss_publications.php
http://www.sdss3.org/science/boss_publications.php


J
C
A
P
0
5
(
2
0
2
0
)
0
4
2

level [32, 33]. This procedure effectively transfers information from higher order n-point
functions to the 2-point function. The standard BAO reconstruction does sharpen the BAO
wiggles, but it also introduces some distortions in the broadband part, which are hard to
model analytically. Even though some progress towards a consistent reconstruction of the
full initial density field has recently been made [34–36], the available methods have not been
extensively tested for biased tracers in redshift space and we leave exploration of this direction
for future work.

Our second motivation to reanalyze the BOSS data is to perform a consistent Markov-
Chain-Monte-Carlo (MCMC) study that samples all relevant cosmological and nuisance pa-
rameters without assuming the CMB priors. This is not a standard practice in the FS
studies, in part due to a relatively high computational cost of a direct numerical evaluation
of perturbation theory loop integrals. Some exceptions are BOSS analyses of the position-
space correlation function and redshift-space wedges [7–9] where all relevant parameters in
the MCMC chains were varied, but only in combination with the Planck CMB likelihood.
A more conventional approach to FS analysis is to compute the power spectrum shape for
one fiducial cosmology and parametrize deviations from it by means of the following scaling
parameters:

α‖ ≡
Hfid

Htrue

∣∣∣∣∣
zeff

rd, fid

rd, true
, α⊥ ≡

DA,true

DA,fid

∣∣∣∣∣
zeff

rd, fid

rd, true
, fσ8(zeff) , (1.1)

where zeff is the effective redshift of the data, rd is the sound horizon at the drag epoch
(which sets the BAO frequency), H is the Hubble parameter and DA the angular diameter
distance, f is the logarithmic growth rate (f ≡ d lnD/d ln a, where D is the linear growth
factor and a is the scale factor), σ8 is the late-time rms mass fluctuation in the spheres of
comoving radius 8 Mpc/h. The parametrization above is motivated by the BAO studies, in
which rd/DA and rdH are the most relevant parameters. However, the use of these scaling
parameters is not entirely correct in the case of the full-shape analysis. To see this, let us
consider a variation of the physical dark matter density ωcdm with all other parameter fixed.
This variation will have an impact not only on rd, but also on the amount of the short-scale
baryon suppression and the position of the PS peak. This argument suggests that if the PS
shape is fixed, rd must be fixed as well for consistency. In this case the parameterization (1.1)
becomes a correct description of the Alcock-Paczynski effect [37], which does not assume any
priors on the radial and angular distances.

A rational behind the scaling parameter analysis is that ultimately one intends to com-
bine LSS and CMB data to constrain a class of non-minimal cosmological models that are
described by the standard physics at early times but modify the late-time expansion, e.g.
dynamical dark energy. The CMB data provide us with (sub-)percent priors on the physical
densities of baryons and dark matter, which nearly fix the PS shape in the combined analysis.
In that case the PS complements the CMB with the geometric and distance information that
is indeed captured by the α-parameters in eq. (1.1). The standard analysis thus assumes
strong priors on the early physics, i.e. the physical densities of baryons and dark matter,
which are the most relevant parameters defining the power spectrum shape. These priors
will be referred to as “shape priors” in what follows.

In practice, one may face situations that require a more general treatment. These
cases include the use of different priors, the study of degeneracies between cosmological and
nuisance parameters, the information content of the power spectrum shape, and exploring
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various extensions of the minimal ΛCDM that include physics, which is not captured by
a simple change of the late-time expansion and scale-independent growth factor. These
include, e.g. massive neutrinos or models with non-standard early physics. In all these cases
the common approach becomes inadequate. Besides, the future LSS data may supersede
Planck, which also calls for a reassessment of the standard analysis pipeline.

In the most general setup it would be ideal to measure cosmological parameters directly
from the shape of the observed multipoles, independently of the chosen priors. In that case
one would have to model the whole evolution of perturbations for a given cosmological model
in the same way as it is usually done in the CMB data analysis. In this paper we analyze
the BOSS data in this general way. This task requires a numerical routine able to generate
theoretical templates for the non-linear spectrum quickly enough for MCMC parameter esti-
mation. A crucial ingredient to achieve this goal is a fast and reliable method for evaluating
perturbation theory loop integrals. Fortunately, significant progress has recently been made
in this direction [38–42]. For the purposes of our analysis we implement the FFTLog method
described in [42] as a module in the publicly available code CLASS [43]. This new module
inputs the linear transfer functions computed by CLASS and calculates the multipole moments
of the one-loop power spectrum for biased tracers in redshift space for a given set of cosmo-
logical parameters. The details of the code, performance studies, and tests on simulations
will be presented in a separate publication. The code will soon become publicly available.

To summarize, our goal in this paper is to analyze the BOSS power spectrum data using
a consistent perturbation theory model, varying all relevant bias parameters and countert-
erms, and including IR-resummation to predict the shape of the BAO wiggles properly. In
this paper we mostly focus on base ΛCDM and analyze several different priors to explore
how they affect our final results. We point out that our MCMC chains consistently include
all the most important cosmological and nuisance parameters.

This paper is structured as follows. In section 2 we brief our main results. Section 3
summarizes our likelihood. It discusses the theoretical model, data, covariance matrices,
survey geometry, parameters and prior used in this work. In section 4 we present a more
detailed account of different analyses we ran to explore the parameter space of the base ΛCDM
with massive neutrinos. In section 5 we scrutinize the sources of information encoded in the
power spectrum data. Section 6 focuses on distance measurements and establishes the relation
between our work and the methods used in the previous full-shape analyses. There we case
study ΛCDM with shape priors and the model of dynamical dark energy. The study of this
section suggests that a consistent application of the standard analysis requires an accurate
implementation of proper physical priors for a given cosmological model. Section 7 draws
conclusions and points out directions of future research. Some additional material is collected
in appendices. Appendix A contains the details of our theoretical model. Appendix B
presents the tests of our pipeline on mock catalogs. Some additional supplementary material
and various tests are collected in appendix C. The extended triangle plots and marginalized
limits for cosmological and nuisance parameters are presented in appendix C.1. Appendix D
describes our implementation of the standard scaling parameter analysis.

2 Summary of main results

Let us briefly summarize our main results before going into the technical details of the
analysis. First, we test our pipeline on mock catalogs and find that our theoretical model
can be used reliably up to kmax = 0.25 h/Mpc with the BOSS survey covariance. We found

– 4 –



J
C
A
P
0
5
(
2
0
2
0
)
0
4
2

that the residual modeling uncertainty coupled with parameter projection effects may bias our
1d marginalized constraints for individual parameters at most by 1σ. It should be stressed,
however, that the shifts for different parameters are correlated, and the actual bias in the
full (unmarginalized) parameter space is much lower than 1σ. This systematic error should
be borne in mind when interpreting our results.

Our main analysis models four independent BOSS power spectrum datasets across two
redshift bins (zeff = 0.38, 0.61) in flat ΛCDM, marginalizing over 7 nuisance parameters for
each dataset (28 in total) and varying 5 cosmological parameters (ωb, ωcdm, H0, As,

∑
mν).4

We stress that the baseline constraints derived in this work are model-dependent and should
be interpreted in conjunction with the priors and assumptions we made:

• The Universe is described by the flat ΛCDM, i.e. it has the standard thermal history
and its late-time expansion is controlled by the cosmological constant.

• The spectrum of primordial scalar fluctuations has a simple power-law form dictated
by basic inflationary scenarios. It is fully characterized by two parameters: amplitude
As and tilt ns: Pζ = As(k/kpivot)

ns . The initial conditions are assumed to be adiabatic.
We fix the power spectrum tilt to the Planck best-fit value [44]. This can also be seen
as a theoretical prior motivated by inflation, which predicts that the deviations from
scale-invariance must be small.

• We assume an informative prior on the current physical baryon density ωb, which can
be obtained either from Planck or from the BBN.5

• We vary the neutrino mass in the reasonably narrow range (0.06, 0.18) eV, which is
motivated by particle physics6 and by other cosmological measurements, e.g. of the
Lyα forest [49].

Results obtained beyond these base assumptions will be discussed at the end of this section
and in several appendices. In particular, in appendix C we show what our main conclusions,
e.g. the low prediction H0, hold true in the extended analyses too. It is important to em-
phasize that our baseline analysis treats ωcdm as a completely free parameter, i.e. our priors
do not entirely fix the shape of the matter power spectrum. This can be contrasted with the
previous full-shape studies, which kept the shape totally fixed.

In principle, the priors on ωb, ns, and
∑
mν are not necessary for our analysis. However,

given that the BOSS data are not very sensitive to these parameters, we prefer to fix, or nearly
fix them by priors, which are ultimately CMB-motivated. This is reasonable keeping in mind
an eventual combination of BOSS with other cosmological probes in order to pin down one
correct model that would explain all the observed phenomena in the Universe.

4Here ωb = Ωbh
2 and ωcdm = Ωcdmh

2 stand for the physical densities of baryons and dark matter,
respectively, As is the amplitude of the primordial spectrum of scalar perturbations, H0 is the present-day
value of the Hubble parameter in units [km/s/Mpc], and

∑
mν is the sum of neutrino masses (to be quoted

in eV units).
5It is worth mentioning that the measurement of ωb from the shape of the CMB acoustic peaks is nearly

model-independent (see [45, 46] and also table 5 of ref. [44]). It is almost not sensitive to the late-time
expansion and early-time physics.

6It is natural to expect that the individual masses are of the same order as the mass splittings inferred from
oscillation experiments ∼ 0.05 eV [47]. Generating masses of this order of magnitude is a common benchmark
of many particle physics models, see e.g. [48] for a review.
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Figure 1. Left panel : the posterior distribution for the late-Universe parameters H0,Ωm and σ8

obtained with priors on ωb from Planck (gray contours) and BBN (blue contours). For comparison we
also show the Planck 2018 posterior (red contours) for the same model (flat ΛCDM with massive neu-
trinos). Right panel : the monopole (black dots) and quadrupole (blue dots) power spectra moments
of the BOSS data for high-z (upper panel) and low-z (lower panel) north galactic cap (NGC) samples,
along with the best-fit theoretical model curves. The corresponding best-fit theoretical spectra are
plotted in solid black and blue. H0 is quoted in units [km/s/Mpc].

The outcome of our analyses is shown in figure 1, where we display the final triangle
plot (left panel) and best-fit spectra for two BOSS data samples with the biggest volume7

(right panel). The inferred cosmological parameters are given in table 1. We have chosen to
present the parameters H0, Ωm and σ8 as our main results because they are more common
in the LSS literature and because they are close to the actual principal components of the
BOSS data.

Our constraints on Ωm and H0 are competitive with the Planck measurements for the
same cosmological model with varied neutrino masses.8 Moreover, the use of the full parame-
ter likelihood adopted in this work allows for a clear comparison between the two experiments
at the level of the fundamental ΛCDM parameters. Our measurement of H0 is driven by
the geometric location of the BAO peaks, whereas the limits on Ωm result from the com-
bination of both the geometric (distance) and shape information. σ8 is measured through
redshift-space distortions. We performed several tests to ensure that our constraints are sat-

7These are high-z and low-z north galactic cap (NGC) samples.
8There are several caveats that should be mentioned at this point. First, we approximate the neutrino

sector with one massive eigenstate, which should be contrasted with the approximation of three degenerate
eigenstates used in Planck 2018. The difference between these two approaches is a few percent at the matter
power spectrum level, and hence can be neglected for our purposes. Second, the Planck Legacy contours that
we show roughly correspond to the variation of the total neutrino mass in the range (0 − 0.24) eV, which is
somewhat different from our prior (0.06−0.18) eV. However, the effect of weighting the Planck posterior with
our prior on

∑
mν is marginal. We show the original Planck contours for clarity.
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BBN ωb best-fit mean ±1σ

ωcdm 0.1117 0.1113± 0.0046

H0 67.93 67.89± 1.06

Ωm 0.2950 0.2945± 0.0100

σ8 0.722 0.721± 0.043

fσ8(zeff, 1) 0.431 0.434± 0.038

fσ8(zeff, 2) 0.393 0.394± 0.034

Planck 2018 best-fit mean ±1σ

ωcdm 0.1197 0.1201± 0.0013

H0 68.03 67.1+1.2
−0.67

Ωm 0.3071 0.3191+0.0085
−0.016

σ8 0.8224 0.807+0.018
−0.0079

fσ8(zeff, 1) 0.4769 0.4766+0.0062
−0.0053

fσ8(zeff, 2) 0.4714 0.4689+0.0070
−0.0045

Table 1. The results of our analysis for the combined likelihood with the BBN prior on ωb (left
panel). For comparison we also show the results from the final Planck data release [44] (right table)
for the same cosmological model as used in our analysis (ΛCDM with varied neutrino masses). Note
that the first two parameters were used as actual sampled parameters in our chains, while the last
four are derived from them and from other parameters, which we do not display here (see section 3
and appendix C.1 for the full set of sampled parameters and corresponding limits). The effective
redshifts of the samples are zeff, 1 = 0.38 and zeff, 2 = 0.61.

urated with these three effects, and confirmed that distance ratio measurements implemented
through the Alcock-Paczynski effect can only marginally affect the cosmological parameters
of ΛCDM. However, the situation changes in its extensions that modify the late-time evo-
lution, in which the Alcock-Paczynski effect becomes a significant source of information to
constrain the parameters of these models.

In order to explore the relation with the previous works on the galaxy power spectrum
we ran an analysis with very tight shape priors and obtained essentially the same results as in
table 1. However, in that case Ωm cannot be viewed as an independently measured parameter,
since the shape priors completely fix the relation between Ωm andH0 in ΛCDM. This suggests
that the shape priors are not necessary for the parameter estimation from the BOSS data.
Moreover, the power spectrum shape itself can be a source of independent measurements of
ωcdm and Ωm, whose precision rivals that of the Planck CMB data. This happens because of
two main reason. First, the parameter ωcdm can be measured directly from the shape of the
galaxy power spectrum with 5% precision. Second, the degeneracy direction corresponding
to the angular acoustic scale of the galaxy power spectrum happened to be more orthogonal
to H0 than the angular acoustic scale of the CMB. Thus, even though the later is measured
with Planck much more precisely than the former one, their projections onto the H0 plane
happened to be comparable. In section 5 we give some further details on this effect.

Our results agree with the Dark Energy Survey (DES) data on weak lensing and photo-
metric galaxy clustering [50]. The combination best constrained by DES S8 = σ8(Ωm/0.3)0.5

= 0.773+0.026
−0.020 is within 2σ of our limit S8 = 0.703± 0.045.

Let us comment on the neutrino masses. Our analysis shows that the BOSS data
itself can only rule out very large neutrino masses ∼ 1 eV, which produce significant scale-
dependent modifications to the matter power spectrum. These modifications are not degen-
erate with effects of other cosmological and nuisance parameters. Smaller neutrino masses
cannot be constrained with the BOSS data mainly because of the degeneracy between galaxy
bias and

∑
mν , which persists even if we use the Planck 2018 prior on As. Naively, this

degeneracy may be broken by the quadrupole moment, but its large statistical error along
with the strong sensitivity to the finger-of-God uncertainties do not allow us to derive con-
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straints on the neutrino mass that could be competitive with the CMB data. Note that the
degeneracy between As,

∑
mν and the galaxy bias can, in principle, be alleviated by the

bispectrum data [51, 52].

To estimate results from a combined Planck + BOSS likelihood we analyzed the BOSS
data with a multi-variate Gaussian prior on all cosmological parameters of the minimal
ΛCDM (not including the neutrino mass) from the final Planck data release [44]. We obtained
the following limit from the combination of the two biggest BOSS data samples:∑

mν < 0.84 eV (95% CL) . (2.1)

This suggests that the BOSS data can only improve the current neutrino mass bounds by
breaking degeneracies internal to the CMB data (e.g. the degeneracy between mν and H0),
and not by actually observing the free-streaming short-scale suppression of the galaxy power
spectrum [53]. It would be curious to see if the full-shape BOSS + Planck data will give
better constraints than the Planck + BAO likelihood.

Finally, we tested some simple extensions of our baseline analysis, which assumes a
BBN prior on ωb and fixes the power spectrum tilt ns. To that end we explored the whole
likelihood with all relevant parameters (ωb, ωcdm, ns, H0, As,

∑
mν). We have found that

varying the tilt in chains with the BBN priors on ωb degrades the Ωm constraint but does
not significantly alter the H0 and σ8 limits. Moreover, one can obtain a constraint on ns,
which is independent of the Planck CMB data,

ns = 0.88± 0.08 . (2.2)

Instead, if we keep ns fixed but use a very wide prior on ωb, the constraints on H0 worsen
by a factor of two, but the limits on Ωm and σ8 remain essentially intact. This suggests that
our main conclusions are stable w.r.t. different prior choices.

3 Methodology and likelihood

In this section we discuss technical aspects of our analysis: the theoretical model, window
function treatment, covariance matrices and model parameterization.

3.1 Theoretical model

Our model for multipole moments of the redshift-space galaxy power spectrum is based on
one-loop perturbation theory. Schematically, it can be written as a sum of four pieces,9

Pg,`(k) = P tree
g,` (k) + P 1−loop

g,` (k) + P noise
g,` (k) + P ctr

g,` (k) . (3.1)

In this work we limit ourselves to the monopole and quadrupole moments (` = 0, 2). All
multipoles are computed from the 2D anisotropic galaxy power spectrum Pg(k, µ),

Pg,`(k) ≡ 2`+ 1

2

∫ 1

−1
dµ Pg(k, µ)P`(µ) , (3.2)

9We use the following convention: 〈δkδk′〉 = (2π)3P (k)δ
(3)
D (k + k′), where we introduced the density

(contrast) field δ ≡ ρ(x, t)/ρ̄(t) − 1 (ρ and ρ̄ are the local and background densities, respectively), and 〈. . .〉
denotes the averaging over the cosmological ensemble.

– 8 –



J
C
A
P
0
5
(
2
0
2
0
)
0
4
2

where µ ≡ k̂·ẑ is cosine of the angle between a Fourier mode k and the line-of-sight direction ẑ,
whereas P`(µ) are Legendre polynomials of order `. For example, the tree-level contribution
to the multipoles P tree

g,` (k) are given by the Kaiser formula [54],

P tree
g (k, µ) = (b1 + fµ2)2Plin(k) , (3.3)

where b1 is the scale-independent linear bias coefficient. For compactness, we suppress explicit
time dependence in all formulas of this section assuming that all relevant quantities are
evaluated at the effective redshift zeff of a given data sample. For clarity, all the expressions
of this section are presented without IR-resummation and the Alcock-Paczynski effect, which
are properly taken into account, see appendix A for more detail.

The next important ingredient of our analytic model is one-loop corrections P 1−loop
g,` (k)

that encapsulate the non-linear redshift-space mapping along with non-linearities due to dark
matter clustering and bias. This model has been described in detail in refs. [18, 55, 56] and
is summarized in appendix A. We use the following basis of bias operators10

δg = b1δ +
b2
2
δ2 + bG2G2 , (3.4)

where δ is the nonlinear matter density field and the Fourier representation of the tidal field
operator G2 is given by

G2(k) =

∫
d3p

(2π)3

[
(p · (k− p))2

p2|k− p|2
− 1

]
δlin(p)δlin(k− p) , (3.5)

where δlin is the linear theory density field. Note that there is one extra bias parameter that
contributes to the one-loop power spectrum, bΓ3 . We have found that this parameter is very
degenerate with other nuisance parameters and the BOSS data are not accurate enough to
break this degeneracy. For the purposes of this paper we have fixed it to zero. This choice
still allows for a sufficient freedom in the parameter space exploration. We have checked
that fixing bΓ3 or varying it within some priors has no effect on the cosmological parameter
estimates.

The stochastic contribution is modeled as a simple Poisson shot noise with the constant
power spectrum in Fourier space and a free amplitude. Note that in the absence of the
window function only the monopole moment has a constant shot noise power, i.e.

P noise
g,0 (k) = Pshot , P noise

g,2 (k) = 0 . (3.6)

Finally, the last part of our model are the so-called ultraviolet (UV) counterterms
P ctr
g,` (k). The counterterms were not included in theoretical models used in the previous

data analyses. For this reason, we discuss them in more detail here. The purpose of the
counterterms is to fix the dependence of the one-loop power spectrum on the complicated
unknown short-scale physics, which cannot be modeled by means of perturbation theory. To
understand qualitatively why these corrections are needed let us note that a part of the loop
integral comes from integrating over high-k Fourier modes for which perturbation theory
does not apply. This means that results of loop calculations are necessarily wrong, even

10As pointed out in [14, 57] the evolution of biased tracers is non-local in time, which leads to appearance
of bias operators that cannot be written in terms of tidal tensor ∂i∂jΦ at a finite time slice. However, these
operators appear only at fourth order in perturbation theory and this important subtlety is not relevant for
the one-loop power spectrum that we consider.
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though they converge to some finite values. For the theory to be consistent, there must be
counterterms to cancel the spurious UV-dependence. Besides, standard perturbation theory
does not correctly capture the backreaction of short scales on long-wavelength fluctuations.
These effects are taken into account by the so-called “finite” part of the UV counterterms,
which describes physical effects missing in standard perturbation theory. Since the loop inte-
grals converge for the ΛCDM linear power spectrum, there is no practical need to distinguish
between these two physically different parts of the counterterms. Hence, every counterterm
can be parametrized by a single free coefficient to be fitted from the data. Note that the
scale-dependence of the counterterms is not free. It is fully fixed by symmetry arguments at
any order in perturbation theory. This statement holds true for pure dark matter [11], dark
matter halos [14, 16], and galaxies in redshift space [17, 18].

At first non-trivial order in the gradient and field power expansion there are two coun-
terterms needed for the one-loop monopole and quadrupole moments [17, 18], which can be
cast in the following form:

P ctr,LO
` (k) ≡ −2 c2

` k
2 Plin(k) , ` = 0, 2 . (3.7)

The reason to keep two different free coefficients is that they fix different loops and capture
different physical effects. For instance, the monopole counterterm includes the contribution
of the higher-derivative bias term b∇2∇2δ, which is absent for higher moments. This should
be contrasted with the quadrupole counterterm, which is dominated by the fingers-of-God
effect [58]. Indeed, neglecting other nonlinearities, the c2

2-contribution can be related to the
short-scale galaxy velocity dispersion σ2

v ,

c2
2 =

f(5f2 + 12fb1 + 7b21)

14
σ2
v ≈ 2.5σ2

v , (3.8)

where we assumed b1 = 2 and f = 0.75 typical for the high-z BOSS sample. This formula is
derived by expanding the velocity field into the short and long-wavelength contributions and
averaging the redshift-space power spectrum over the short-scale modes,

PFoG(k, µ) ≈ −(µfkσv)
2P tree

g (k, µ) + higher orders , (3.9)

which is then matched to our expression for P ctr,LO
2 (k). Note that a similar expression can

be obtained upon Taylor-expanding some simple phenomenological models for the fingers-of-
God with a Gaussian or Lorentzian damping, e.g. [5, 6, 59]. The typical value for the velocity
dispersion for the BOSS-like sample σv ∼ 5 Mpc/h yields c2

2 ∼ 60 Mpc2/h2. We emphasize
that this is just a simple order-of-magnitude estimate and that the true amplitude (and even
the sign) of the counterterms cannot be predicted.

The one-loop perturbation theory model (3.1) is sufficient to describe the statistics of
biased tracers in real space up to kmax = 0.3 h/Mpc for the volume and redshifts typical
to the BOSS survey [60]. While two-loop contributions due to dark matter clustering may
be sufficiently small, the mapping from real to redshift space can produce significant cor-
rection to the one-loop result because of higher order short-scale velocity cumulants, whose
characteristic momentum scale σ−1

v can be significantly lower than the non-linear scale kNL

controlling gravitational non-linearities. This implies that the usual one-loop power spectrum
model [17, 18] is not sufficient for an accurate description of the data even on large scales. One
option to get around is to use some phenomenological model for the fingers-of-God. However,
these models are not derived from first principles and can introduce uncontrollable biases in
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cosmological parameter estimations. To proceed, we choose a different strategy which fits
the spirit of perturbation theory. We introduce an additional counterterm to capture the
redshift space non-linearities at next-to-leading order (NLO),

P ctr,NLO(k, µ) ≡ c̃ k4 µ4 f4 (b1 + fµ2)2Plin(k) . (3.10)

Let us discuss the form of this expression. As argued above, the non-linear scale for the
velocity dispersion ∼ σ−1

v is smaller than the dark matter nonlinear scale kNL, but the
stochastic velocity field couples with the large-scale density dominantly along the line-of-
sight. Thus, the redshift-space mapping effectively generates an expansion in powers of
(µkσv)

2. The standard one-loop counterterms in eq. (3.7) correspond to the term ∇2
zδ(k, µ)

in this expansion. From this point of view, the NLO counterterm in eq. (3.10) can be naturally
viewed as a next-to-leading term in this expansion, i.e. ∇4

zδ(k, µ) contribution.

It should be stressed that the main objective of introducing the new counterterm (3.10)
is to capture the NLO sensitivity to fingers-of-God. The contributions from other physical
effects (higher-derivative bias etc.) are expected to be sub-dominant since they have the
same order of magnitude as the two-loop corrections to the real-space matter density. Thus,
they can be neglected at the one-loop order that we use in this paper. Given this reason, we
choose the NLO contribution (3.10) to be universal for all multipole moments, as expected
from the redshift-space mapping.

Another way to understand role of the NLO counterterm is to view it as a simple model
for the theoretical error. Marginalizing over the amplitude c̃, we are marginalizing over
the estimated uncertainty due to the fingers-of-God modeling. While in principle a more
elaborate procedure is needed to ensure that the results of the analysis are unbiased [61], this
simple prescription is sufficient given the BOSS survey volume.

In summary, our model for the power spectrum is based on one-loop perturbation theory
for galaxies in redshift-space supplemented with LO and NLO counterterms. It includes seven
free nuisance parameters: three bias coefficients (b1, b2, bG2), three redshift-space counterterms
(c2

0, c
2
2, c̃) and the shot noise amplitude Pshot.

3.2 Power spectra and covariance matrices

The BOSS survey has measured the spectroscopic redshifts of 1 198 006 galaxies using
the SDSS multi-fibre spectrographs and multi-color SDSS imaging (see [62] and references
therein). The BOSS-DR 12 galaxy sample spans over the redshift range 0.2 < z < 0.75.
The data include four different selections: LOWZ, LOWZE2, LOWZE3, CMASS. They are
combined into two non-overlapping redshift bins with zeff = 0.38 and zeff = 0.61. Each
redshift bin sample is additionally divided into two sub-samples depending on the Galactic
hemisphere where the galaxies are observed. These are called “South and North Galactic
Cap” (SGC and NGC). To avoid confusion with the previous selections analyzed, e.g. in [5],
we will call the two redshift bins simply “low-z” and “high-z”. Note that each of the four data
chunks has a different selection function and therefore represents a different galaxy popula-
tion [62]. The comoving and effective volumes of the BOSS data samples are listed in table 2.
To obtain these numbers, the observed angles and redshifts were converted into comoving
distances assuming the following fiducial parameters: h = 0.676, Ωm = 0.31, which were also
used to create galaxy catalogs.11 Any departure of the real cosmology from the fiducial one

11Throughout this paper we will use h and the present day Hubble parameter H0 = h · 100 km s−1Mpc−1

interchangeably.
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Data Veff [(Gpc/h)3] V [(Gpc/h)3]

low-z NGC 0.84 1.46

low-z SGC 0.31 0.53

high-z NGC 0.93 2.8

high-z SGC 0.34 1.03

Table 2. Effective and comoving volumes for four independent samples of BOSS DR12.

is accounted for by explicitly including the Alcock-Pazcynski effect in our theoretical model.
The mean number density of each sample is approximately n̄ ∼ 3× 10−4 (h/Mpc)3, implying
that the shot noise is not a dominant contribution to the galaxy power spectrum on the
mildly non-linear scales.

We use the redshift space power spectrum monopole (` = 0) and quadrupole (` = 2)
of the publicly available data from BOSS DR12. The spectra are binned with the bin
size ∆k = 0.005 h/Mpc in the wavenumber range [0.0025, 0.25] h/Mpc. Our baseline anal-
ysis is performed for kmax = 0.25h/Mpc, which contains 50 k-bins in each multipole. We
have checked that our method can recover the correct cosmology from mock catalogs for this
choice of kmax (see appendix B).

Window function. We incorporate the effects of the survey geometry following the pro-
cedure described in [6]. The theory multipoles are first transformed to position space via

ξ`(r) = i`
∫
dk k2

2π2
j`(kr)P`(k) , (3.11)

and then the corresponding correlation function multipoles are convolved with the appropri-
ate window functions,

ξ̂0(r) = ξ0W
2
0 (r) +

1

5
ξ2(r)W 2

2 (r) ,

ξ̂2(r) = ξ0W
2
2 (r) + ξ2(r)

[
W 2

0 (r) +
2

7
W 2

2 (r)

]
.

(3.12)

The windowed power spectrum multipoles are then simply obtained by means of an inverse
Fourier transform,

P̂`(k) = (−i)`(4π)

∫
dr r2j`(kr)ξ̂`(r) . (3.13)

The integrals in eqs. (3.11) and (3.13) are computed with the FFTLog method [63].

Covariance matrix. We extract the covariance matrix from patchy mock catalogs,
which are described in detail in ref. [64]. The patchy algorithm is based on extended
Lagrangian perturbation theory and a stochastic halo biasing scheme calibrated on high-
resolution N-body MultiDark simulations run for a ΛCDM cosmology with the following
fiducial parameters:

Ωm = 0.307115 , Ωb = 0.048206 , h = 0.6777 ,

σ8 = 0.8288 , ns = 0.9611 .
(3.14)

The patchy algorithm uses halo occupation distribution (HOD) to construct catalogs which
match the BOSS galaxy clustering and its redshift evolution. The patchy mocks were
generated for every data chunk separately. In each case, they were assigned the same selection
function and survey geometry as the real data.
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We are using the covariance matrix extracted from the corresponding mocks,

C
(``′)
ij =

1

Nm − 1

Nm∑
n=1

[
P`,n(ki)− P̄`(ki)

] [
P`′,n(kj)− P̄`′(kj)

]
, (3.15)

where Nm = 2048 is the number of mock catalogs and P̄`(k) is the mean power spectrum,

P̄`(k) ≡ 1

Nm

Nm∑
n=1

P`,n(k) . (3.16)

In our analysis we neglect the Hartlap factor correction [65] which affects the covariance
matrix at the level of ∼ 1%. For simplicity we will also defer from the standard practice
of rescaling the parameter variances to account for the difference between the extracted
values and the ones used in the mock catalogs [66]. A more accurate treatement of the
covariance matrix would require its recalculation for the best-fit cosmology, which can be
done analytically along the lines of [67].

3.3 Parameters and priors

In all our analyses for the base flat ΛCDM we vary 5 cosmological and 7 nuisance parameters:(
ωb, ωcdm, h, A

1/2,
∑

mν

)
×
(
b1A

1/2, b2A
1/2, bG2A

1/2, Pshot, c
2
0, c

2
2, c̃
)
, (3.17)

where mν is the sum of neutrino masses, A is defined as

A ≡ As
As,Planck

, (3.18)

and As,Planck = 2.099 · 10−9. Since each BOSS data sample has its own selection function,
we allow biases, Pshot and counterterms for each data chunk to be different.

Let us discuss the choice of parameters and the corresponding priors. First, the initial
conditions for fluctuations are described by two parameters, the amplitude of the power spec-
trum A and the spectral index ns. The BOSS data can constrain the amplitude at O(10%)
level and the tilt cannot be measured with a reasonable accuracy. For this reason we fix the
spectral index to be

ns = 0.9649 , (3.19)

as measured by Planck [44], and we do not vary it in the MCMC chains. This is why this
parameter does not appear in (3.17). Since we cannot probe the amplitude of the primordial
power spectrum accurately, our eventual results are not very sensitive to variations of the
fiducial value of ns in a reasonable range around ns = 1. In particular, all main results of our
study would remain the same had we chosen the flat Harrison-Zel’dovich spectrum instead
of (3.19). In appendix C.2 we analyze the full power spectrum likelihood and show the effect
of varying the tilt. As for the relative amplitude A, we choose its prior to be uniform in the
range (0.04, 4).

Our final results will be presented in terms of the late-time mass fluctuation amplitude
σ8 because (a) this parameter is better constrained than As, (b) it is close to the actual
principal component of the BOSS data and hence is less sensitive to prior choices, (c) it is
more common in the large-scale structure literature. In appendix C.1 we show results for
both the rescaled primordial amplitude A and σ8.
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As far as the neutrino sector is concerned, we approximate it with one state of mass mν

and two massless states.12 Therefore, we will use mν and
∑
mν interchangeably in what

follows. We assume a flat prior on mν in the range

mν ∈ (0.06, 0.18) eV. (3.20)

The lower limit is inferred from the neutrino oscillation experiments and the upper limit is
the 3σ constraint obtained from the combination of the Planck 2018 TTTEEE+lowE+lensing

data and the BAO scale measurements [44]. The BOSS data are not accurate enough to
improve the measurement of the neutrino mass, hence we marginalize the final results over
it. Nevertheless, it is important to keep this parameter in the chains since the neutrino mass
is very degenerate with the amplitude of the power spectrum. Varying mν in the allowed
range can bias the amplitude A by the amount comparable to the 1σ error on this parameter.
We have found that mν does not affect significantly the limits on H0,Ωm and σ8, which will be
quoted as our final results.13 Specifically, we have repeated our analysis with no priors on the
neutrino mass (mν ∈ (0,∞)), and found very similar results for the cosmological parameters,
see appendix C.3 for more detail. Even if we impose the Planck priors on all cosmological
parameters, the neutrino mass can only be constrained at the level of∼ 1 eV (95% CL), which
is not competitive with other cosmological probes. Given this reason, we prefer to stick to
the realistic prior allowed by other experiments and/or motivated by particle physics. The
use of a somewhat wider prior mν ∈ (0, 0.24) eV matching the Planck 2018 2σ-allowed region
has a negligible impact on our results.

Finally, assuming the flat ΛCDM, the only additional cosmological parameters that are
needed to describe the matter content of the Universe are physical densities of baryons and
cold dark matter, ωb and ωcdm. The baryons have very distinctive effect on the CMB power
spectrum, which allows one to measure their physical density with sub-percent accuracy [44]
(assuming standard physics before and during recombination),

ωb = 0.02237± 0.00015 (ωb−CMB prior) . (3.21)

More conservatively, with minimal assumptions about the thermal and expansion history,
the physical baryon density can be inferred using the BBN predictions and the measurement
of helium and deuterium primordial abundances [44, 68–70],14

ωb = 0.02268± 0.00038 (ωb−BBN prior) . (3.23)

We will see momentarily that both priors yield identical constraints for the BOSS data.

12This approximation is accurate for the matter power spectrum within ∼ 10% precision for highest neutrino
masses considered in this paper, which is sufficient for our purposes.

13Note that our analysis constrains the late time fluctuation amplitude σ8 more directly than As and this
is why it is less sensitive to the neutrino mass.

14One may find different limits depending on nuclear rate predictions. Below we present constraints obtained
using the helium data from [68], deuterium data from [69] and assuming Neff = 3.046,

(standard) ωb = 0.02268± 0.00038 (68%) ,

(Marcucci et al.) ωb = 0.02197± 0.00022 (68%) ,

(PRIMAT) ωb = 0.02188± 0.00023 (68%) .

(3.22)

The fist limit is obtained using the d(p, γ)3 He nuclear rate from [71] and the PArthENoPE code [72]. The
same code but a different nuclear rate taken from [73] yield the second constraint. Finally, using nuclear
rates from [74] and the PRIMAT code (introduced in the same paper) gives the third constraint. In all the
limits quoted above the systematic error is added in quadratures. We prefer to use the “standard” case in our
analysis, although any other choice from (3.22) would produce very similar results. We are grateful to Julien
Lesgourgues for sharing with us the limits (3.22).
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The physical density of cold dark matter ωcdm can be also inferred from the shape of
the CMB spectra with percent accuracy [44],

ωcdm = 0.1200± 0.0012 . (3.24)

We will not use this prior in our main analysis, and vary ωcdm in the flat range (0.05, 0.2).
The prior (3.24) will only be imposed in a side analysis that compares our method with the
previous BOSS FS pipeline which also fixes ωcdm.

As already pointed out, using the tight CMB priors on ωb and ωcdm effectively fixes the
shape of the matter power spectrum and in this case our analysis reduces to the standard
BOSS analysis. The only remaining difference is in the theoretical model used. This allows
us to investigate the relation between our constraints on cosmological parameters and the
previous BOSS results. It is worth noting that this choice of priors is equivalent to fixing a
prior on the sound horizon at decoupling, since it can be approximated as [75],

rd ≈
55.154 e−72.3(ων+0.0006)2

(ωcdm + ωb)0.25351ω0.12807
b

Mpc , (3.25)

where ων ≡ mν/(93.14 eV). Note that the sound horizon at the drag epoch is insensitive to
the late-Universe physics [45, 76]. Planck gives a sub-percent measurement of this scale [44],

rd = (147.09± 0.24) Mpc . (3.26)

Regarding the bias parameters, we adopt flat priors centered around the values expected
from N-body simulations. The previous BOSS analyses have already measured b1 ' 2, for
which we use a flat prior in the range (1, 4). The second order biases are varied in the range

b2 ∈ (−4, 2) , bG2 ∈ (−3, 3) . (3.27)

These intervals are motivated by the measurements of biases for dark matter halos with
masses similar to typical hosts for BOSS galaxies [77]. These measurements roughly predict15

b2 ≈ −0.6 , and bG2 ≈ −0.3 , for b1 ≈ 2 . (3.28)

The halo bias is in general different from galaxy bias, but given that the satellite fraction is
relatively small in the BOSS samples [78], we expect these estimates not to be too far from
the truth. In all analyses we set bΓ3 = 0 and we do not vary it. The reason for this choice is
that bΓ3 is very degenerate with the counterterms c2

0, c2
2 and bG2 . The data are not accurate

enough to break this degeneracy. We have verified this using the mock catalogs.
Finally, let us discuss the amplitude of the shot noise. The number density of the

galaxies in the BOSS samples is known, and it is roughly n̄ ∼ 3× 10−4 (h/Mpc)3. However,
one might expect some deviations from the Poisson value for the shot noise amplitude due to
effects like exclusions [79]. Detailed comparisons to simulations [60] show that this deviation
for BOSS galaxy number density is not expected to be very large (at most 50%). For this
reason we will vary Pshot in the chains within the flat prior in the following range:

Pshot ∈ (0, 104) Mpc3/h3 . (3.29)

15Note that [77] use a different basis of biased operators. Their values have been appropriately converted
to match our bias prescription.
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Parameter Prior

Cosmology

ns (not varied) ns = 0.9649

ωb different for each analysis

A1/2 flat(0.02, 2)

h flat(0.4, 1)

ωcdm flat(0.05, 0.2)

mν flat(0.06, 0.18) eV

Biases and shot noise

b1 ×A1/2 flat(1, 4)

b2 ×A1/2 flat(−4, 2)

bG2 ×A1/2 flat(−3, 3)

bΓ3 (not varied) bΓ3 = 0

Pshot flat(0, 104) Mpc3/h3

Counterterms

c2
0, c

2
2 flat(−∞,∞) Mpc2/h2

c̃ flat(−∞,∞) Mpc4/h4

Table 3. Priors that are common to all baseline ΛCDM analyses. The analyses of these paper use
different priors on ωb, which will be specified separately in each case. In this table “flat(min,max)”
stands for a flat prior in the range (min,max). By (not varied) we denote the parameters that were
not varied in our MCMC chains.

Another reason to vary the constant Pshot in our analysis is to capture the fiber collision
effect. Indeed, this is a common practice to correct for the fiber collision residual contribu-
tions left after applying the nearest neighbor method [5, 6]. Ref. [80] pointed out that this
practice is not sufficient for the quadrupole, which does not have a constant shot noise con-
tribution. This reference showed that the problem can be alleviated by applying the effective
window function supplemented with additional nuisance parameters, which correspond to a
stochastic constant contribution for the monopole and a k2-contribution to the quadrupole.
While the first term is accounted for precisely by Pshot, the second contribution happened to
be fully degenerate with our NLO k4Plin counterterm. We have checked that, to a precision
of 0.5%, the difference between the spectra with and without the effective window function
can be absorbed into the nuisance parameters of our theory model. This difference is much
below the statistical error and can be safely neglected, which is why we proceed without the
effective mask.

All nuisance parameters, A, h and mν have the same priors in all our analyses. We
summarize them in table 3. We use different combinations of priors on ωb and ωcdm in our
analyses and we will specify them in each example separately.

Software. Our analysis is based on a modification of the publicly available CLASS code [43]
that incorporates the FFTLog method [42] for fast evaluation of one-loop perturbation the-
ory integrals. The parameter constraints are obtained with the April 2018 version of the
Montepython code [45, 81]. Plots with posterior densities and marginalized limits are pro-
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Figure 2. The 2d posterior distribution for cosmological parameters extracted from the BOSS DR12
power spectrum likelihood. We show results for four independent samples of the BOSS data separately
(left panel) and the combined likelihoods (right panel). In the latter case we also plot the posterior
distribution for the parameters of a similar model (ΛCDM with massive neutrinos) measured from
the final Planck 2018 CMB data. H0 is quoted in units [km/s/Mpc].

duced with the latest version of the getdist package,16 which is part of the CosmoMC

code [82, 83]. We monitor the convergence of our MCMC chains with the Brooks-Gelman
and Gelman-Rubin criteria [84, 85]

4 Constraints on base ΛCDM

In this section we present measurements of parameters of the minimal flat ΛCDM with
massive neutrinos. Our final results are quoted in terms of σ8, H0 and Ωm since these
parameters are most common in the large-scale structure literature. Another reason for the
use of these particular parameters is that they are close to the actual principal components
of the BOSS data.17 Our main analysis does not assume CMB priors on ωcdm (equivalently,
rd). We use several different priors on ωb. These are the CMB prior (3.21), a slightly weaker
BBN prior (3.23), and the CMB prior with a 30-times bigger variance. We impose the latter
prior in order to check to what extent the ωb prior is crucial for our results.

We start with the first case (the CMB prior on ωb). The reduced triangle plot with
the relevant cosmological parameters for four different BOSS datasamples are shown in the
left panel of figure 2. The full triangle plot and the 1d marginalized limits are given in
appendix C.1. There we also present results for parameters fσ8(zeff), H(zeff), DA(zeff) and
DV (zeff), derived from our MCMC chains.

Let us first discuss the consistency of our results. The posterior distributions seen in
the left panel of figure 2 overlap within 1σ regions. The observed scatter is compatible with

16https://getdist.readthedocs.io/en/latest/.
17E.g. the amplitude As is very correlated with the neutrino mass, which degrades the relative error on As

compared to σ8. Moreover, the asymmetric priors on mν make the posterior for As very asymmetric as well.
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Plωb high-z best-fit mean ±1σ

ωcdm 0.1199 0.1201± 0.0082

H0 68.92 68.96± 1.94

Ωm 0.3030 0.3033± 0.0194

σ8 0.6844 0.6862± 0.0589

Plωb low-z best-fit mean ±1σ

ωcdm 0.1013 0.1014± 0.0075

H0 66.34 66.38± 1.44

Ωm 0.2842 0.2846± 0.0144

σ8 0.7552 0.7604± 0.0634

Plωb comb. best-fit mean ±1σ

ωcdm 0.1125 0.1127± 0.0046

H0 67.86 67.88± 1.06

Ωm 0.2965 0.2967± 0.0103

σ8 0.723 0.723± 0.043

Plωb+ωcdm best-fit mean ±1σ

ωcdm 0.1200 0.1195± 0.0012

H0 69.64 68.57± 0.93

Ωm 0.2979 0.3057± 0.0082

σ8 0.721 0.731± 0.042

Table 4. The results for cosmological parameters from the combined likelihoods. We assume Planck
priors on ωb everywhere, whereas the results from the lower right table were derived upon additionally
imposing the Planck prior on ωcdm. H0 is quoted in units [km/s/Mpc]. The group of first two
parameters (ωcdm and H0) display the parameters which were sampled with flat uninformative priors.
The second two parameters (Ωm and σ8) are derived ones.

the hypothesis that all the independent samples are drawn from a single set of cosmological
parameters. This suggests that these samples can be combined. The combinations of low-z,
high-z, and all four samples are shown in the right panel in figure 2, while the corresponding
1d marginalized intervals are presented in table 4. For comparison, we also show the Planck
2018 results from the TT,TE,EE+lowE+lowl+lensing data,18 which were derived for ΛCDM
with the varied neutrino mass. Overall, we observe good consistency between BOSS and
Planck. The mean values of H0 and Ωm inferred from different BOSS redshift bins are within
1σ distance from each other and from the Planck posterior mean values. One can notice that
the high-z data prefer smaller σ8 than Planck. This tendency has already been observed in
the previous BOSS full-shape analyses [6, 86]. However, the obtained difference between the
Planck and our BOSS measurements is still consistent with a statistical fluctuation.

The statistical errors of our H0 and Ωm measurement are comparable with Planck
errorbars for the parameters of the same cosmological model with massive neutrinos. Note
that these parameters do not form principal components for the Planck data, and hence
are relatively poorly measured, e.g. compared to the combination Ωmh

3, which controls the
angular position of acoustic oscillations in the CMB temperature power spectrum [87]. This
fact is reflected in a well-known degeneracy betweenH0 and Ωm, which can be clearly observed
in the Planck contours shown in the right panel of figure 2. On the contrary, the degeneracy
between these two parameters is not very strong in the BOSS data, which provide us with
more direct measurements of H0 and Ωm than Planck.

Our main conclusions remain exactly the same if we use the BBN prior on ωb. Even in
this case one can measure H0 and Ωm quite well using no information from CMB whatsoever.
Remarkably, our ∼ 3% limit on the late-time matter density fraction Ωm is one of the best
measurements of this parameter from the LSS data. We emphasize that this constraint
is driven by the shape of the power spectrum. Since there is no difference between our

18The MCMC chains for the base mnu plikHM TTTEEE lowl lowE lensing likelihood were downloaded from
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology.
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measurements in the case of Planck and BBN priors on ωb, we prefer to quote the latter
ones as our final results because they use no input from the CMB data. The corresponding
posteriors are shown in figure 1, and limits are displayed in table 1.

To test the stability of our results we have run the same analysis assuming the Planck
Gaussian prior on ωb with a 33 times bigger error (ωb = 0.02237 ± 0.005). In that case the
BOSS data are able to deliver an independent constraint on ωb. Still, this limit is by far
superseded by the BBN, and will not be quoted here. Upon marginalizing over ωb, we obtain
the following constraints: Ωm = 0.293±0.012, H0 = 66.6±2.1 km/s/Mpc, σ8 = 0.713±0.045.
Remarkably, our measurement of Ωm did not degrade once we relaxed the prior on ωb, whereas
the measurement of H0 worsened by a factor of 2. The stability of Ωm is consistent with the
observation that upon marginalizing over ωb the matter density forms a principle component
of the geometric information is ∼ Ω−0.5

m [56]. The degradation of H0 occurs because it is
mainly extracted from rd/DV by using the power spectrum shape (which probes ωb and
ωcdm), which has less constraining power without the ωb prior.

It is important to stress that so far we have not imposed a prior on rd. Moreover,
since rd depends on ωcdm and ωb, our analysis provides an independent measurement of the
acoustic horizon at decoupling, which is consistent with Planck,

rd = (149.1± 1.3) Mpc (BOSS FS+BBN ωb) . (4.1)

To see how much this result depends on the ωb prior, let us also quote the value obtained in
the analysis with a loose non-informative Gaussian prior ωb = 0.02237 ± 0.005 described in
the previous paragraph,

rd = (150.0± 4.5) Mpc (BOSS FS+loose ωb) . (4.2)

Now let us discuss the constraints obtained with the Planck priors on both the physical
baryon and dark matter densities. As argued previously, in this case the shape of the matter
power spectrum is only allowed to vary within very tight priors, thus for practical purposes
the shape is effectively fixed. This case corresponds to the standard FS BOSS analysis.

Our results for the 2d posterior contours are shown in figure 3, while the 1d marginalized
limits are quoted in the lower right corner of table 4. One may notice that H0 and Ωm have
shifted upwards by ∼ 0.5σ w.r.t. our baseline analysis with the ωb prior only, while their
errorbars reduced only marginally. Obviously, in this case Ωm is a derived parameter which
is almost fully correlated with H0. This should be contrasted with our baseline analysis
without the ωcdm prior, where Ωm is a valid degree of freedom. Remarkably, the ωcdm prior
has a marginal effect on H0 and σ8, which implies that this prior is not necessary for an
accurate parameter estimation from the LSS data. This result is clear from figure 3, which
shows that ωcdm is not very degenerate with H0 and σ8. This effect will be discussed in more
detail in section 5.

Finally, let us discuss some implications of our results. Our measurement of H0 is
consistent with Planck [44] and the recent BAO + BBN analyses of refs. [70, 88]. However,
it is in tension with the results of the local astrophysical measurements of SNIa [89] and
strong gravitational lensing of distant quasars [90]. Our study shows that the full-shape
power spectrum information constrains H0 at 1.6% level, which is comparable to the SNIa
limits. Since there is no rd prior in our analysis, it disfavors explanations for the “tension”
based on modified expansion history at high redshifts which preserve the shape of the power
spectrum, e.g decaying DM.
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Figure 3. The posterior contours for the combined analysis assuming the Planck prior on ωb (in
gray), Planck priors on ωb and ωcdm (in light blue). For comparison also shown are the contours from
the Planck CMB data for ΛCDM with massive neutrinos (in red). H0 is quoted in units [km/s/Mpc].

As for our constraint on ωcdm, it is ∼ 4 times worse than the Plank limit, but can
be used to discriminate various proposals for the resolution of the H0 tension that involve
modifications of the linear power spectrum, such as early dark energy. We will explore this
in more detail in a separate publication.

5 Geometric, shape and Alcock-Paczynski information

In this section we quantify the information content of various effects relevant for the galaxy
clustering data. To that end, we will first roughly classify all the relevant effect and then
give some theoretical background on the difference between the geometric and the shape
information. In the second part of this section we will analyze several mock likelihoods
mimicking the BOSS data in order to explicitly see how much different effects contribute to
the final constrains. Throughout this section, we will be working within base ΛCDM and for
simplicity assume that all neutrinos are massless.

The sources of cosmological information can be roughly classified into four categories:

• Distance-free shape information. For a fixed ns, the power spectrum shape mostly de-
pends on ωb and ωcdm (and ων , to a lesser extent), which control the relative amplitude
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of the BAO wiggles (through ωb/ωcdm), their frequency (through rd), the amount of
the short-scale suppression due to baryons (through ωb/ωcdm), and the relative position
of the BAO wiggles and the baryon Jeans scale w.r.t the power spectrum peak (via19

rdωcb). The relative shape does not depend on the choice of rulers (i.e. H0).

• Geometric (or distance) information. The features discussed above (e.g. the BAO
frequency) can be assigned a (comoving) length scale for a given cosmological model,
which constrains parameters of this model. Indeed, the position of the BAO wiggles
in momentum space as extracted from the monopole is set by rd(ωcdm, ωb)/DV , where
the effective “volume-averaged” distance DV is defined as20

DV (z) ≡ ((1 + z)2D2
A(z)z/H(z))1/3 , (5.1)

DA(z) ≡ 1

1 + z

∫ z

0

dz′

H(z′)
. (5.2)

Analogously, the location of the monopole power spectrum peak is set by keqDV ∼
ωcbDV . In ΛCDM the physical densities of baryons and dark matter are fixed by the
transfer functions, thus there is only one parameter H0, which controls the location of
the power spectrum features.

• Alcock-Pazcynski information.21 The radial and angular distances can be measured
separately through the AP effect [37], parameterized by

FAP = (1 + z)DA(z)H(z) .

This parameter in encoded in the power spectrum quadrupole. We will see that in
ΛCDM these distances are fixed by the shape and geometric information, but they can
measured independently of this information in the extensions of ΛCDM.

• Redshift-space distortions. RSD help to measure the velocity power spectrum from the
quadrupole power spectrum moment, which constrains fσ8. The shape and geometric
information breaks the degeneracy between σ8 and f (which mostly depends only on
the background expansion, i.e. in ΛCDM f ' Ω0.5

m (z)).

Our main goal is to show how the first two effects contribute to our new constraints. Let us
focus on them.

5.1 Shape vs. geometry

In this section we will discuss in more detail the shape information and its distinction from the
distance information. This material will be somewhat pedagogical and has an overlap with
old works on the galaxy clustering that were using the power spectrum shape for cosmological
parameter measurements independent of CMB [92–94]. Unless otherwise stated, all numerical
estimates of this section will be made for the Planck best-fit ΛCDM cosmology [44].

It is instructive to review the role of the shape and distance information from the CMB
power spectrum of temperature (TT) fluctuations. The primary CMB spectrum has three

19We introduced an obvious notation ωcb = ωcdm + ωb.
20We work in the unit system with c = 1.
21It should be pointed out that the division into “geometric” vs. “AP” information is somewhat artificial

as these two effects cannot be isolated in a real survey. Alternatively, one may discuss the monopole vs.
quadrupole distance information, see e.g. [91].
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main sources of information, which can be cast into the amplitude, shape and geometric dis-
tance. The latter two are the relevant ones for our discussion. They can also be loosely called
the “horizontal” and “vertical” information [92]. Vertical information refers to the relative
height of the acoustic peaks, i.e. their shape, which depends only on the physical matter
densities ωm and ωb and the tilt ns. The distinctive physical effects produced by variations
of these parameters allow to measure them regardless of any late-time physics [45, 46]. By
horizontal information we mean the acoustic angular scale, which controls our freedom to
shift the spectra in the horizontal direction (rescaling of angular multipoles `’s). The angular
size of the sound horizon at the drag epoch is given by

θs,CMB =
rs(zd)

(1 + zd)DA(zd)
, (5.3)

(where rs(zd) = rd and DA(zd) are the sound horizon at decoupling and the angular diameter
distance corresponding to the decoupling redshift zd). Although this single parameter has
been measured by Planck with tremendous precision 0.05% [44], it depends on multiple
cosmological parameters. The numerator of (5.3) is a slow function of ωm and ωb (see
eq. (3.25)). However, the denominator DA depends sensitively on the late-time expansion. If
one expresses the measurement of θs,CMB in terms of the late-time parameters Ωm and h, one
finds a strong degeneracy corresponding to fixed Ωmh

3 = ωmh, with projections onto each
separate parameter being much wider than this combination itself. The geometric degeneracy
of the CMB gets eventually broken by the shape information of the power spectrum, i.e. by
ωm and ωb being measured from the relative hight of the CMB peaks.

Analogously to the CMB, the angular position of the BAO in the monopole power
spectrum of galaxies at some zeff is given by

θs,LSS =
rd

DV (zeff)
. (5.4)

If one were to measure only the combination (5.4) just like in the BAO analysis, the de-
generacy between ωm and h could not be broken and one would be left with the horizontal
information only. However, it is precisely the shape (vertical) information that allows one to
decouple h and ωm.

As discussed above, the sound horizon rd depends on ωb, ωm only (though very weakly,
see eq. (3.25)). These two parameters can be measured directly from the shape of the matter
power spectrum regardless of the late-time expansion just like in the CMB case. To see this,
we display in figure 4. the effect of varying these parameters. One clearly sees that ωb and
ωm control the frequency of the BAO, the shape of the BAO wiggles, the amount of the
short-scale suppression due to the baryon free-streaming before recombination, the overall
slope of the power spectrum and its turnover. In the case of our baseline analysis with fixed
ωb and ns, all these effects depend only on one parameter ωcdm, which results in quite tight
constraints.

It is precisely the shape information on ωm (and hence, rd) that allows one to break the
degeneracy between DV and rd and measure DV directly from θs,LSS. The crucial point is
that in ΛCDM DV is an extremely slow function of ωm at small redshifts relevant for galaxy
surveys. Indeed, using eq. (5.1) one finds22

DV (z = 0.38) ∝ h−0.78ω−0.11
m . (5.5)

22The Alcock-Paczynski effect also allows one to independently measure DA(zeff) from the quadrupole.
However, it turned out to be quite insensitive to ωm either, DA(z = 0.38) ∝ h−0.83ω−0.08

m . This shows that
the low-redshift AP effect is a very weak probe of ωm.
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Figure 4. The effect of varying the physical baryon (left panel) and cold dark matter (right panel)
densities on the shape of the linear matter power spectrum (at z = 0). In the first case we adjust ωcdm
to keep ωm fixed, while in the second case we put ωb → 0 to illustrate shape modifications exclusively
due to ωcdm. All other cosmological parameters are fixed to the Planck best-fit values [44]. The scale
rage that dominates the constraints presented in this paper is [0.01, 0.25] hMpc−1.

Since ωm is absolutely fixed by the shape information, DV reduces directly to H0. Overall,
the situation is very similar to the CMB temperature fluctuation spectrum, whose ωm −H0

degeneracy gets broken by the vertical shape information. Crucially, the degeneracy direction
between ωm and H0 in the galaxy BAO is more perpendicular to H0 than that of the CMB
acoustic scale, which results in better constraints even though at face value the precision of
LSS measurement is worse than that of the CMB. This fact was pointed out long ago in
refs. [92–94]. Let us explicitly illustrate this. Using the expressions (3.25) and (5.1), we get

∂ ln θs,LSS

∂ lnh

∣∣∣∣∣
z=0.38

= 0.78 ,
∂ ln θs,LSS

∂ lnωm

∣∣∣∣∣
z=0.38

= −0.14 . (5.6)

This implies that the acoustic peaks in the galaxy spectrum constrain the combination
hω−0.18

m . A similar calculation carried out for the CMB acoustic peak (5.3) gives hω0.8
m

(see ref. [87]). Clearly, unlike the CMB, the LSS acoustic angle is a very weak function of
ωm and hence it allows one to accurately measure h.

Importantly, the galaxy power spectrum contains additional geometric information on
top of the BAO wiggles. The first piece of this information is given by the angular position
of the power spectrum peak,

θeq = 1/(keqDV ) . (5.7)

The second piece of additional information beyond the BAO is given by the same sound
horizon scale θs,LSS, which also marks the location of the baryon free-streaming scale (see
the left panel of figure 4). Thus, in principle, one could derive constraints on H0 and Ωm even
if the BAO were not present in the matter power spectrum. This point will be illustrated in
a mock data analysis of the next subsection.

The power spectrum peak (turnover) itself gives a complementary way to break the
degeneracy between ωm and DV . Indeed, one can notice that the two angular scales (5.4)
and (5.7) have very different sensitivity to ωm and h. Indeed, the BAO angle constrains
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hω−0.18
m . However, the power spectrum turnover fixes a combination hω−1.14

m ,

∂ ln θeq

∂ lnh

∣∣∣∣∣
z=0.38

= 0.78 ,
∂ ln θeq

∂ lnωm

∣∣∣∣∣
z=0.38

= −0.89 . (5.8)

Therefore, the following two combinations of these angles would directly measure ωm and h,

θs,LSS

θeq
∝ ω0.75

m ,
θ6.4
s,LSS

θeq
∝ h4.2 . (5.9)

This shows that even in the case where the measurement of ωm from the slope is com-
plicated by marginalizing over the power spectrum tilt ns (see appendix C.2), ωm can still
be inferred from the power spectrum peak.

Finally, in order to get convinced that our constraints are indeed driven by the shape
we have performed the following exercise. We have taken the best-fit power spectrum from
the NGC high-z datasample (which has the biggest volume) and compared it to the spectrum
computed for a model with ωcdm shifted by 3σ away from the best-fit value. At face value,
this leads to an extremely large difference in χ2 because ωcdm enters various normalizations.
However, much of this difference is absorbed into the nuisance parameters and cosmological
parameters. Thus, we have refitted all the parameters of the “shifted” trial model. The results
are shown in figure 5, where one can see the two trial spectra and the difference between
them in terms of the statistical error on the power spectrum σP`(k). The difference between
χ2 values of the two models is ∆χ2 = 13.6. Clearly, the variation in ωcdm is detectable. It
cannot be undone by a simple shift in h: either the BAO wiggles or the slope will be wrong.

5.2 Mock data analysis

In this section we will be mainly focused on disentangling the shape, geometry and AP
information, which are most relevant for the constraints on Ωm and H0. To quantify the
amount of information coming from them we analyze several mock BOSS-like likelihoods.
We use our theoretical pipeline to generate datavectors for a random set of cosmological
and nuisance parameters extracted from the MCMC chains for the low-z NGC mocks.23

We analyze these mock spectra using the same pipeline in order to obtain the reference
posterior distribution. We assume the same priors as in our main analysis (see table 3), and
additionally put the following Gaussian prior on ωb:

ωb = (2.214± 0.015)× 10−2 , (5.10)

which is equivalent to the BBN (or Planck) prior on ωb used in our baseline analysis, but
centered at the fiducial value used in the mocks. The reference posterior contours are shown
in figure 6, the 1d marginalized limits are given in table 5. Note that they match the results
of our analysis of the mock catalogs and the real data for the same data chunk.

To estimate the information content of the BAO wiggles, we generate and analyze a
datavector without them. A similar approach was previously employed in refs. [56, 95].
To that end we use the same wiggly-smooth decomposition procedure that performs IR
resummation. These mock non-wiggly data are then analyzed with a modified pipeline that

23These are: ωb = 0.02215, ωcdm = 0.1194, σ8 = 0.867, b1 = 1.73, b2 =−0.34, bG2 = 0.06, c20 = 36.7[Mpc/h]2,
c22 = 53.3[Mpc/h]2, Pshot = 3.2·103 [Mpc/h]3, c̃= 382[Mpc/h]4. Note that these parameters are within 1σ-
distance from the fiducial values used in mock catalogs.
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Figure 5. Upper left panel: the high-z NGC data along with the best fitting theory curves (solid
lines) and a prediction of the test model with ωcdm shifted by 3σ (dotted lines), for which we have
refitted the other parameters. Upper right panel: the residuals between the two models ∆P` =
P`, shifted − P`, best−fit divided by the data errors. Lower panels: the residuals between the models
P`, best−fit (left panel), P`, shifted (right panel) and the data.

does not have the BAO wiggles in theoretical template too.24 The results of this analysis and
the reference posteriors are shown in figure 6. The 1d marginalized limits are given in table 5.

First, we see that the constraints on ωcdm are similar in the BAO and no-BAO cases.
This means that the BAO wiggles represent only a part of the shape information. However,
their presence is crucial for constraining H0 through the geometric information. To see this,
let us focus on the degeneracy directions seen in the ωcdm −H0 panel. These are ωcdm/H0

for the no-BAO case and ωcdm/H
2.5
0 with the BAO. The first one exactly corresponds to

the power spectrum shape (or the location of the power spectrum peak in units Mpc/h).
The second one is likely a combination of the location of the power spectrum peak and
BAO wiggles (set by ωcdm/H

5
0 , see (5.6)). As a consequence, in the realistic BAO case the

projection of the degeneracy contour onto the H0 plane is twice more narrow compared to
the no-BAO contour. We point out once again that in the BAO case the principle component
of the geometric information happens to be quite perpendicular to Ωm, which explains why
this combination of ωcdm and H0 is well constrained. Once we remove the BAO, the principal
component changes and the projection onto the Ωm plane becomes twice larger than before.

24We emphasize that we only removed the BAO wiggles from the power spectrum templates. All other
baryonic effects, e.g. the Jeans suppression, are present in our theory model.
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Reference best-fit mean ±1σ

ωcdm 0.1154 0.1157± 0.0105

H0 71.26 71.39± 3.15

Ωm 0.271 0.271± 0.021

Pnw only best-fit mean ±1σ

ωcdm 0.1207 0.1125± 0.0140

H0 69.06 69.28± 6.23

Ωm 0.291 0.284± 0.038

Fake AP best-fit mean ±1σ

ωcdm 0.1191 0.1157± 0.0108

H0 71.26 73.84± 4.55

Ωm,AP 0.277 0.189+0.066
−0.165

Ωm 0.278 0.255+0.025
−0.035

Table 5. The outcomes of our mock data analysis for a fiducial datavector with the NGC low-z
covariance. The shown are: the reference sample (upper left table) that corresponds to the actual
BOSS data, the sample without the BAO wiggles (‘Pnw only’, upper right table), and the results
obtained in the analysis of the reference sample assuming that the AP effect is controlled by a
separate parameter Ωm,AP, which has nothing to do with the real Ωm (‘fake AP’). H0 is quoted
in units [km/s/Mpc].

Now let us focus on the Alcock-Paczynski information. To quantify its amount we take
the reference datavector with the BAO wiggles and analyze it assuming the matter density
fraction that enters the geometric distances and the AP effect Ωm,AP to be different from the
true Ωm. Technically, it is equivalent to considering a model where the late-time geometric
expansion is controlled by an additional parameter, which is not related to the ones fixing
the shape of the matter power spectrum. We use the following flat prior on Ωm,AP:

Ωm,AP ∈ (0, 1) . (5.11)

The outcome of this analysis is also displayed in figure 6 and in table 5 (“fake AP”). One
first notices that the constraints on ωcdm are identical in the reference and the “fake AP”
cases, which implies that the shape information is not diluted by the AP distortions. This
result explicitly proves our intuition that ωcdm is measured directly from the power spectrum
shape regardless of the late-time expansion.

However, since the location of the BAO wiggles mainly constrains DV , the presence of an
additional parameter entering DV makes it harder to translate this constraint directly to H0.
This explains why the constraints on the physical Ωm andH0 degrade by∼ 50%. These limits,
however, are not significantly worse than the reference ones because the degeneracy between
H0 and Ωm,AP gets eventually broken by the quadrupole, which essentially constrains Ωm,AP

in our example.25 The reason why the coupling between DV and H0 does not dramatically
worsen the H0 measurement is that DV has a very weak sensitivity to Ωm,AP the redshifts of
interest, and at leading order26 DV ∼ H−1

0 even in our unphysical example with Ωm 6= Ωm,AP.
Note that the posterior distribution of Ωm,AP is highly asymmetric; its upper limit is set by
the quadrupole information (which decouples H and DA from DV ), while the lower limit is
prior-driven.

25To be more precise, the quadrupole constrains the combination H(zeff)DA(zeff) evaluated with Ωm,AP

instead of actual Ωm.
26At first non-vanishing order in Ωm,AP one finds DV ∝ h−1Ω−0.06

m,AP.
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Figure 6. The 2d and 1d posterior distributions for the parameters of the mock likelihood analysis.
Black dashed lines reflect the fiducial values used to generate the mock datavectors. See the text for
further details. H0 is quoted in units [km/s/Mpc].

The upshot of this discussion is the following. Our constraints on ωcdm are driven by
the power spectrum shape, H0 is set by the geometric information (extracted from DV ) and
Ωm is a combination of the two. As for the AP effect, it is absolutely superseded by the
shape and geometric information in ΛCDM. The situation is different for extensions of the
minimal ΛCDM, which we discuss now.

6 Distance measurements

This section has three main objectives:

(a) establish the connection between our method and the one commonly used in the pre-
vious BOSS full-shape analyses with scaling parameters (α-analysis in what follows),

(b) show that our analysis with the Planck priors on ωb, ωcdm is equivalent to the α-analysis
if one takes into account that DA(zeff) and H(zeff) are coupled in ΛCDM,

(c) show that the α-analysis is valid if one wants to constrain some generic late-time ex-
pansion models, for which the distance measurements become a leading source of in-
formation.
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The analyses performed in this section have a demonstrative character. They aim to
illustrate the relation between our method and the α-analysis in different settings. We present
results obtained for the BOSS NGC data samples only.

For the purposes of this section we have run an α-analysis using the same methodology
as the previous BOSS FS studies. The details of this analysis are given in appendix D. The
α-analysis computes the PS shape for a Planck-like cosmology and does not vary it in the
MCMC chains. The main idea behind the α-analysis is that once the physical densities of dark
matter and baryons are fixed, the leading response to a change in cosmological parameters
should be through rdH(zeff) and rd/DA(zeff). However, fixing the shape is equivalent to fixing
ωcdm and ωb, which also fix rd. Hence, the α-analysis and our method should technically
coincide if we fix rd in the α-analysis and ωb, ωcdm in our analysis. We stress that unlike
the pure BAO-studies, fixing the shape and treating rd as a free parameter in the full-
shape studies is unphysical. In any realistic model rd and the transfer functions’ shape are
controlled by the same parameters. Thus, the α-analysis of the full-shape power spectrum
actually measures the absolute distances DV and DA and not rd/DV or rd/DA, which would
be the case for the BAO-only study.

Another important observation is that the α-analysis assumes H(zeff) and DA(zeff) to
be completely independent from each other, while in reality they are related by construction,
see eq. (5.2). In ΛCDM a prior on ωcdm and ωb completely fixes the relation between DA

and H at any redshift. Once we impose this relation,27 the limits on H and DA from the
α-analysis coincide with the limits obtained with our method (modulo some small difference
which can be explained by the use of slightly different priors and theoretical models, see
appendix D for more detail). This can be seen in figure 7 and tables 6, 7.

One can notice that the ΛCDM priors have a very dramatic effect on the measurements
of H and DA, whose errorbars reduce by a factor of few compared to the basic α-analysis
without any priors. However, the effect on DV is not very strong.28 This reflects the obser-
vation that DV is the best measured combination of DA and H, which is extracted directly
from the monopole, while H and DA are measured from the quadrupole, which has signif-
icantly larger statistical errors and features much less pronounced BAO wiggles. In other
words, our analysis shows that the good constraints on H and DA obtained in ΛCDM are
prior-driven, these two parameters are not measured directly. DV is the only one actually
measured prior-independent distance in ΛCDM.

In order to explicitly illustrate that the principal distance best measured from our
analysis is always given by DV even in extended cosmological models, we analyze the BOSS
data assuming a generic dynamical dark energy (DDE) model, described by the following
Friedman equation:

H2(z) = H2
0

(
Ωm(1 + z)3 + ΩΛ + Ωde(1 + z)3(1+w0+wa

z
1+z )

)
. (6.1)

27To that end we have run mock MCMC chains that fitted DA and H from the Gaussian likelihood for rd
assuming ΛCDM. Then we found the principal component of these variables and imposed this as a prior in
the MCMC chains which sampled α parameters.

28It is useful to compare our limits with the ones obtained in the main BOSS Fourier-space BAO and FS
power spectrum analyses, see refs. [6, 96]:

DV (zeff = 0.38) = 1493± 28 [Mpc] , DV (zeff = 0.61) = 2133± 36 [Mpc] , (FS) ,

DV (zeff = 0.38) = 1479± 23 [Mpc] , DV (zeff = 0.61) = 2141± 36 [Mpc] , (pre-recon BAO) ,

DV (zeff = 0.38) = 1474± 17 [Mpc] , DV (zeff = 0.61) = 2144± 20 [Mpc] , (post-recon BAO) .

Note that these limits were obtained by using slightly different datasamples (NGC+SGC), kmax cuts and the
theoretical model, and hence should be compared to our results shown in this section with some caution.
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Figure 7. The posterior contours for H(zeff), DA(zeff), DV (zeff) for the NGC high-z (left panel)
and low-z (right panel) samples. We show the results of our analysis for ΛCDM and the dynamical
dark energy model, both with the Planck priors on ωb and ωcdm. We also show the results of the
model-independent α-analysis without any priors and with the ΛCDM prior that reflects the coupling
between DA and H. Dashed lines represent the Planck best-fit values. The values of H are quoted in
units of [km/s/Mpc], DA and DV in [Mpc].

We assume the following flat priors on wa and w0:

Ωde ∈ (0, 1) , w0 ∈ (−2,−0.33) , wa ∈ (−5, 5) , (6.2)

and keep the Planck priors on rd and ωb. As far as the other cosmological and nuisance
parameters are concerned, we use the same priors as in our baseline analysis, see table 3.
Note that a model similar to (6.1) has been constrained in the previous BOSS analyses,
e.g. [62].

The results for the NGC high-z and low-z data are presented in figure 7 and tables 6, 7.
The first relevant observation is that the background parametrization (6.1) is sufficient to
decouple the radial and angular distances, so that the errorbars on DA and H become
comparable to the ones obtained with a generic α-analysis, and these two distances are not
noticeably degenerate. The second important observation is that the limit on DV is the
same as in the ΛCDM case, which confirms that DV is an actually measured distance that
forms the principal component. Importantly, the relative precisions of its measurement from
separate chunks are 1.4% (low-z NGC) and 2% (high-z NGC), which is comparable to our
precision on H0 in the ΛCDM analysis. The comparison between the DDE and ΛCDM cases
presented in tables 6, 7 allows us to conclude that our precision on H0 in ΛCDM indeed
originates from the precise DV measurements.

As far as the angular diameter distance DA is concerned, its errorbars are the same in
two models, but the mean values are noticeably shifted compared to the ΛCDM case. This
shows that DA is fixed by the shape and geometric information in ΛCDM, but can take
different values in the non-minimal extensions of this model.

Our measurement of H and DA in the DDE model are prior-driven, as can be deduced
from comparing the corresponding DA − H contour with the one obtained from the α-
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α-parm. best-fit mean ±1σ

H(zeff) 96.69 94.11± 4.98

DA(zeff) 1395 1364± 47

FAP(zeff) 0.723 0.690± 0.054

DV (zeff) 2118 2109± 40

α-parm.+ΛCDM best-fit mean ±1σ

H(zeff) 97.28 97.34± 1.27

DA(zeff) 1393 1392± 26

FAP(zeff) 0.7278 0.7275± 0.0045

DV (zeff) 2115 2113± 36

DEE best-fit mean ±1σ

H(zeff) 96.03 94.05± 2.81

DA(zeff) 1379 1378± 37

FAP(zeff) 0.710 0.696± 0.028

DV (zeff) 2109 2123± 43

H0 72.9 75.9± 6.2

ΛCDM best-fit mean ±1σ

H(zeff) 96.32 96.85± 1.47

DA(zeff) 1412 1403± 31

FAP(zeff) 0.7304 0.7293± 0.0053

DV (zeff) 2141 2128± 42

H0 68.8 69.4± 2.0

Table 6. Distance measurements for the high-z NGC sample (zeff = 0.61). Upper panel: α-analysis
without and with the ΛCDM priors, in left and right tables, correspondingly. Lower panel: our
analysis for the dynamical dark energy model (left table) and ΛCDM (right table) with the Planck
priors on ωb and ωcdm. The values of H are quoted in units of [km/s/Mpc], DA and DV in [Mpc].

α-parm. best-fit mean ±1σ

H(zeff) 78.04 77.24± 3.12

DA(zeff) 1072 1069± 23

FAP(zeff) 0.385 0.380± 0.020

DV (zeff) 1473 1475± 22

α-parm.+ΛCDM best-fit mean ±1σ

H(zeff) 82.92 83.95± 1.07

DA(zeff) 1111 1094± 17

FAP(zeff) 0.4240 0.4225± 0.0014

DV (zeff) 1478 1457± 22

DDE best-fit mean ±1σ

H(zeff) 79.68 79.46± 2.19

DA(zeff) 1086 1089± 18

FAP(zeff) 0.398 0.398± 0.013

DV (zeff) 1475 1480± 21

H0 77.7 75.6± 4.7

ΛCDM best-fit mean ±1σ

H(zeff) 83.89 83.16± 1.11

DA(zeff) 1094 1107± 18

FAP(zeff) 0.4225 0.4236± 0.0015

DV (zeff) 1458 1473± 23

H0 68.6 67.7± 1.4

Table 7. Distance measurements for the low-z NGC sample (zeff = 0.38). Upper panel: α-analysis
without and with the ΛCDM priors, in left and right tables, correspondingly. Lower panel: our
analysis for the dynamical dark energy model (left table) and ΛCDM (right table) with the Planck
priors on ωb and ωcdm. The values of H are quoted in units of [km/s/Mpc], DA and DV in [Mpc].

analysis, which did not assume any priors.29 Indeed, the α-analysis reveals a clear degeneracy
between H and DA that corresponds to fixed DV , while our DDE posterior does not show any
significant degeneracy between DA and H whatsoever. This merely reflects the fact that the
quality of the quadrupole measurement is not good enough for a decent determination of these
distances separately. This is why our MCMC sampler hits the prior boundaries before it starts
seeing the DV degeneracy. Finally, it is worth pointing out that the constraints on H0 degrade

29The limits on the parameters of the DDE model are also prior-dominated, which is why we do not quote
them here.
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Figure 8. The constraints on the AP parameter (y-axis) and the filtered rms velocity fluctuation
fσ8 (x-axis) for two different redshift bins of the NGC BOSS data. The solid black line shows the
prediction of the best-fit Planck 2018 cosmology [44]. We show the results of the generic α-analysis
(in red) and our analysis of the base ΛCDM, which varies the PS shape (in blue).

significantly in the DDE model compared to the ΛCDM case as a consequence of increased
parameter space, which cannot be constrained using the available distance information.

Our study suggests that the model-independent α-parameterization might be too generic
for some purposes. Indeed, even in the case of a very general DDE model with quite loose
priors on its parameters (6.2) we were not able to cover all the parameter space sampled
by the α-analysis. Hence, one always has to impose proper priors on the α-parameters in
order to use the distance information for precision constraints on non-minimal cosmological
models. This is important for consistency when combining the BAO/FS data with external
likelihoods (e.g. CMB, SNe or weak lensing) that assumed certain priors on the ΛCDM
extensions, e.g. [44].

Finally, let us briefly comment on the so-called Alcock-Paczynski parameter,

FAP(z) = (1 + z)DA(z)H(z) , (6.3)

which is often used to present the results of galaxy clustering measurements. By construction
this quantity depends only on Ωm in ΛCDM. One can easily check that by definition FAP

must be roughly equal to z at low redshifts, where all cosmology dependence essentially
cancels. However, even for the BOSS high-z effective redshift FAP has only a logarithmic
dependence on Ωm. Thus, the use of this quantity for comparison might be misleading,
since in ΛCDM it always has a very small error because of a negligible small sensitivity to
cosmology. This is illustrated in figure 8, where we show the FAP − fσ8 diagram extracted
from our MCMC chains for the base ΛCDM. The situation changes in extensions of ΛCDM,
where FAP can reflect some non-trivial information.
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7 Conclusions and outlook

We have presented new limits on the cosmological parameters of the minimal ΛCDM from the
BOSS DR12 on the anisotropic redshift-space galaxy clustering. Our study features several
important improvements. They include the use of a complete theoretical model for the non-
linear power spectrum and the MCMC technique for parameter inference. In contrast to
previous Fourier-space galaxy clustering analyses of the power spectrum multipoles [5, 6, 86],
we consistently recompute the full likelihood as we sample different cosmological and nuisance
parameters.

Our analytic model for the galaxy power spectrum is based on one-loop perturbation
theory. It includes the non-linearities in the underlying dark matter field, bias expansion,
and redshift-space mapping. In addition, it properly takes into account the damping of the
BAO produced by large-scale bulk flows, which is described by means of IR resummation.
Finally, our model incorporates corrections due to backreaction of short-scale modes, which
cannot be reliably modeled within perturbation theory itself. These effects are captured
by a number of so-called “counterterms”, whose shape is fixed by symmetries and whose
amplitude is characterized by free coefficients, which are treated as nuisance parameters in
this work. Another feature of this work is the use of the novel FFTLog algorithm [42], which
made computations of the non-linear galaxy power spectra and related likelihoods highly
efficient and robust. We implemented this algorithm in the Boltzmann code CLASS [43],
which enabled us to quickly produce theoretical templates for a given cosmology. This code
can be easily interfaced with common cosmological MCMC samplers like Montepython [45, 81]
or cobaya.30 Thus, the present work is the first practical application of many recent efforts
in large-scale structure theory.

The main outcome of our work is that the so-called shape priors are not actually neces-
sary in the full-shape power spectrum analysis. The BOSS power spectrum data alone can
be used to constrain the late-time matter density and the Hubble parameter with precision
similar to that of the Planck CMB measurements. Our study shows that the power spectrum
shape contains a considerable amount of information in addition to the BAO wiggles and
the Alcock-Paczynski distortions, which were the main focus of previous anisotropic galaxy
clustering analyses. We stress that even though our baseline analysis does not directly use
the CMB data, it assumes informative priors on the power spectrum tilt, the physical baryon
density, and the total neutrino mass. On the one hand, they can be seen as theoretical priors
strongly motivated by the CMB measurements. On the other hand, they can be viewed as a
minimal input from the CMB, which allows one to fix some degeneracies poorly constrained
by the BOSS data itself. In this regard, our baseline priors are similar, by spirit, to the
FIRAS prior on the CMB monopole temperature, and the minimal neutrino mass allowed by
the oscillation experiments, which are the key external priors of the base Planck ΛCDM [44].

The parameters of ΛCDM measured in this work are consistent with the results of the
Planck CMB observations [44] and the DES survey [50]. It would be interesting to see how
much the cosmological parameter constraints can be improved by combining the data from
these experiments with our full-shape power spectrum likelihood. Our method can also be
easily applied to the eBOSS quasar clustering data [97, 98].

The main factor limiting the range of scales used in our analysis was the fingers-of-God
effect. This effect forced us to increase the number of nuisance parameters and eventually pre-
vented us from employing the modes with comoving wavenumbers bigger than 0.25h/Mpc.

30https://github.com/CobayaSampler/cobaya.
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We believe that this problem can be alleviated by using the redshift-space wedges [7], which
can extend the regime of validity of our theoretical model without having to compute higher-
order corrections. Another aspect that requires improvement is the covariance matrix treat-
ment. Ultimately, it is desirable to use an analytic expression which can be easily recalculated
for a new cosmology e.g. if the estimated cosmological parameters happen to be different from
the ones used to generate the covariance matrix for the initial analysis. The validation of our
results with different covariance matrices represents a necessary consistency check. Finally,
it would be interesting to see how the analysis can be improved by including the theoretical
error, e.g. [56, 61]. These questions are left for future investigations.

Note added. When the CLASS module for fast perturbation theory calculations used in this
paper was being developed, we became aware of the work [99], which was applying a similar
theoretical model to analyze the BOSS data. This inspired us to use our code for the BOSS
data analysis. We thank the authors of [99] for discussions and sharing with us their prelimi-
nary results. The methodology and theoretical model used in ref. [99] are very similar to ours,
but the numerical implementation is completely different. Note that compared to us, ref. [99]
uses slightly different data selections and prior choices. When overlap, our results agree.
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A Theory model

Our model for galaxy power spectrum in redshift space is given by

Pg(k, µ) = Z2
1 (k)Plin(k) + 2

∫
q
Z2

2 (q,k− q)Plin(|k− q|)Plin(q)

+ 6Z1(k)Plin(k)

∫
q
Z3(q,−q,k)Plin(q)

− 2c̃0k
2Plin(k)− 2c̃2fµ

2k2Plin(k)− 2c̃4f
2µ4k2Plin(k) ,

− c̃f4µ4k4(b1 + fµ)2Plin(k) + Pshot ,

(A.1)
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where the redshift-space kernels are given by [22],

Z1(k) = b1 + fµ2 , (A.2a)

Z2(k1,k2) =
b2
2

+ bG2

(
(k1 · k2)2

k2
1k

2
2

− 1

)
+ b1F2(k1,k2) + fµ2G2(k1,k2)

+
fµk

2

(
µ1

k1
(b1 + fµ2

2) +
µ2

k2
(b1 + fµ2

1)

)
, (A.2b)

Z3(k1,k2,k3) = 2bΓ3

[
(k1 · (k2 + k3))2

k2
1(k2 + k3)2

− 1

] [
F2(k2,k3)−G2(k2,k3)

]
+ b1F3(k1,k2,k3) + fµ2G3(k1,k2,k3) +

(fµk)2

2
(b1 + fµ2

1)
µ2

k2

µ3

k3

+ fµk
µ3

k3

[
b1F2(k1,k2) + fµ2

12G2(k1,k2)
]

+ fµk(b1 + fµ2
1)
µ23

k23
G2(k2,k3)

+ b2F2(k1,k2) + 2bG2

[
(k1 · (k2 + k3))2

k2
1(k2 + k3)2

− 1

]
F2(k2,k3) +

b2fµk

2

µ1

k1

+ bG2fµk
µ1

k1

[
(k2 · k3)2

k2
2k

2
3

− 1

]
, (A.3)

where k = k1 + k2 + k3 and the kernel Z3 has to be symmetrized over its arguments.
Now let us discuss our implementation of IR resummation. We follow the approach

streamlined in refs. [28, 30], which was developed in the context of time-sliced perturbation
theory [100]. IR resummation splits the matter linear power spectrum into the smooth and
the wiggly parts,31

Plin = Pnw(k) + Pw(k) , (A.4)

where Pnw is a broadband power-law function, and Pw contains the BAO wiggles. The IR
resummed anisotropic power sepectrum at leading order takes the following form,

PLO(k, µ) ≡ Pnw(k, µ) + e−k
2Σ2

tot(µ)Pw(k, µ) , (A.5)

where we introduced the anisotropic damping factor,

Σ2
tot(µ) = (1 + fµ2(2 + f))Σ2 + f2µ2(µ2 − 1)δΣ2 , (A.6)

that depends on the following contributions

Σ2 ≡ 4π

3

∫ kS

0
dqPnw(q)

[
1− j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
,

δΣ2 ≡ 4π

∫ kS

0
dqPnw(q)j2

(
q

kosc

)
,

(A.7)

kosc is the BAO wavelenght ∼ 110h/Mpc, kS is the separation scale controlling the modes
which are to be resummed, and jn are the spherical Bessel function of order n. In principle, kS
is arbitrary, and any dependence on it should be treated as a theoretical error. Following [28]
we define it to be kS = 0.2h/Mpc, which gives the same result as an alternative choice
kS = k/2, adopted in [26].

31In practice, we use the wiggly-smooth decomposition technique introduced in ref. [95].
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In general, IR resummation in redshift space at next-to-leading (one-loop) order requires
a computation of anisotropic loop integrals which cannot be reduced to one-dimensional ones.
One can simplify these integrals by splitting the one-loop contribution itself into a smooth
and wiggly part. More precisely, one first computes the one-loop integrals with a smooth
part only. At a second step one evaluates these integrals with one insertion of the wiggly
power spectrum and suppresses the output with a direction-dependent damping factor (A.6)
to get

Pg(k, µ)→Pnw, lin(k, µ) + Pnw, 1-loop(k, µ)

+ e−k
2Σ2

tot(µ)
(
Pw, lin(k, µ)(1 + k2Σ2

tot(µ)) + Pw, 1-loop(k, µ)
)
,

(A.8)

where P1-loop[Plin] is treated as a functional of the input linear power spectrum, and

Pnw, 1-loop(k, µ) ≡ P1-loop[Pnw] ,

Pw, 1-loop(k, µ) ≡ P1-loop[Pnw + Pw]− P1-loop[Pnw] .
(A.9)

The IR-resummed anisotropic power spectrum should then be used to compute the multipoles
in eq. (3.2).

To account for the AP effect one has to compute the observable galaxy power spectrum,

Pobs(kobs, µobs) = Pg(ktrue[kobs, µobs], µtrue[kobs, µobs]) ·
D2
A,fidHtrue

D2
A,trueHfid

, (A.10)

where ktrue and µtrue are related to wavevectors and angles in the true cosmology, whereas
kobs and µobs refer to quantities obtained for a given set of assumed cosmological parameters.
The relation between the true and observed wavevectors is given by

k2
true = k2

obs

[(
Htrue

Hfid

)2

µ2
obs +

(
DA,fid

DA,true

)2

(1− µ2
obs)

]

µ2
true =

(
Htrue

Hfid

)2

µ2
obs

[(
Htrue

Hfid

)2

µ2
obs +

(
DA,fid

DA,true

)2

(1− µ2
obs)

]−1

.

(A.11)

During MCMC analysis one tries to find Htrue and DA,true given Hfid and DA,fid that are
fixed by the reference cosmological model used to create galaxy catalogs. The eventual galaxy
multipoles with the AP effect are given by

P`,AP(k) =
2`+ 1

2

∫ 1

−1
dµobs Pobs(kobs, µobs) · P`(µobs) . (A.12)

B Tests on mock catalogs

In this appendix we show the tests of our pipeline on mock catalogs. First, we will apply our
pipeline to the high-resolution mock catalogs based on the N-body simulation LasDamas,
which are characterized by the gigantic volume of (∼ 553 (Gpc/h)3). These are mocks of
Luminous Red Galaxies that are desinged to match the sample observed by SDSS [101].
Second, we will test our pipeline on MultiDark patchy mock catalogs [64]. On the one
hand, they are based on approximate gravity solvers and HOD models. On the other hand,
they are designed to closely reproduce the data and have the same selection, window function,
and fiber collision effects implemented.
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B.1 Tests on LasDamas N-body simulations

We will fit the monopole and quadrupole of the galaxy power spectrum of LasDamas Oriana
simulations at redshift z = 0.34. This redshift is lower than the ones used in our analysis and
therefore it provides a more stringent test of our theoretical model because the non-linear
effects are stronger. The cosmological parameters used to generate mock catalogs are h = 0.7,
Ωm = 0.25, Ωb = 0.04, σ8 = 0.8 (As = 2.22 · 10−9), ns = 1, and

∑
mν = 0. The details of

LasDamas simulation can be found at.32

We fit the mean of power spectra extracted from 40 independent simulation boxes, whose
volume is (2400 Gpc/h)3 each. This totals to 553 (Gpc/h)3 volume, which is almost 100 times
bigger than the cumulative volume of BOSS. However, the statistical error corresponding to
this tremendous volume is so small that the two loop corrections supersede cosmic variance
already on very large scales. The situation is different for low-volume surveys like BOSS,
where the statistical error is expected to be bigger than the systematic one down to very
high kmax. Hence, in order to be realistic, we will assume a covariance that corresponds to
the BOSS survey and not to the actual Las Damas volume. Since 40 realizations are not
enough to accurately estimate the covariance, we will use a theoretical prediction obtained
in the Gaussian approximation (see, e.g. [56]),

C
(00)
ij =

2

Nk

(
P 2

0 +
1

5
P 2

2

)
δij , C

(02)
ij = C

(20)
ij =

2

Nk

(
2P0P2 +

2

7
P 2

2

)
δij ,

C
(22)
ij =

2

Nk

(
5P 2

0 +
20P0P2

7
+

15P 2
2

7

)
δij ,

(B.1)

where we introduced the number of modes Nk = 4πk2∆kV , the binning step of Las Damas
simulations ∆k = 0.0025 h/Mpc and the survey volume V . Note that the monopole moment
P0 includes the shot-noise contribution, which is equal to n̄−1 = 1.0 × 104 [Mpc/h]3 for the
LasDamas mocks. We will consider two particular choices,

VBOSS−like = 6 (Gpc/h)3 and V10×BOSS−like = 60 (Gpc/h)3 . (B.2)

VBOSS−like is the total volume of the BOSS survey across all redshifts and sky parts, whereas
V10×BOSS−like is simply a 10 times bigger volume, which will be used to better pin down
the theory systematic error. Using an approximate Gaussian covariance also provides an
additional challenge to our approach: neglecting the off-diagonal terms artificially reduces
the error and makes one reject the true model more often than it should be.

To make a closer contact to our analysis, we will keep ωb, ns and
∑
mν = 0 fixed to the

true values and scan over ωcdm, H0, A1/2 = (As/As, fid)1/2 in our analysis. We use the same
nuisance parameters and assume the same priors for them as in our baseline analysis.

Our results are presented in figure 9 and in table 8. In figure 9 we show the contours
obtained for two choices of kmax = 0.2 h/Mpc and kmax = 0.25 h/Mpc. Table 8 displays
the marginalized one-dimensional limits for kmax = 0.25 h/Mpc, which will be eventually
selected as a baseline data cut.

Let us focus on the case corresponding to the total BOSS volume VBOSS−like (left panel
of figure 8). One can see that our pipeline correctly extracts the cosmological parameters
within 1σ for both choices of kmax. Remarkably, the errobars are very similar to the ones
obtained in the analysis of the real data. The difference between the two choices of kmax is

32http://lss.phy.vanderbilt.edu/lasdamas/overview.html.
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Figure 9. Results of our analysis of the galaxy power spectrum of the LasDamas N-body simulations
with the errorbars scaled to the total BOSS volume (left panel) and 10× the total BOSS volume (right
panel). Dashed lines represent the true values used in simulations. The values of kmax are quoted in
units of h/Mpc, H0 in units [km/s/Mpc].

VBOSS best-fit mean ±1σ

A 1.126 1.15+0.15
−0.17

H0 70.05 69.4± 1.3

ωcdm 0.1044 0.09871+0.0053
−0.0056

b1 ×A1/2 2.161 2.164+0.047
−0.046

b2 ×A1/2 −1.418 −1.927+0.69
−0.94

bG2 ×A1/2 −0.1763 −0.1598+0.13
−0.21

c2
0 −0.0208 1.548+34

−28

c2
2 38.2 15.0+39

−27

c̃ 681 857+210
−260

10−3Pshot 1.344 4.485+2
−3.8

σ8 0.857 0.830± 0.057

Ωm 0.2527 0.2457+0.0085
−0.0087

10× VBOSS best-fit mean ±1σ

A 1.157 1.160± 0.059

H0 69.95 69.86+0.46
−0.4

ωcdm 0.1024 0.1017+0.0025
−0.0018

b1 ×A1/2 2.173 2.165+0.017
−0.015

b2 ×A1/2 −1.462 −1.664+0.38
−0.3

bG2 ×A1/2 −0.2252 −0.194+0.035
−0.05

c2
0 −2.0 −3.125+9.7

−8.8

c2
2 41.6 32+15

−10

c̃ 355 541+200
−288

10−3Pshot 0.9192 2.094+0.7
−1.9

σ8 0.861 0.853± 0.020

Ωm 0.2494 0.2486+0.0033
−0.0028

Table 8. The results of our MCMC analysis for the LasDamas mock data with kmax = 0.25h−1Mpc.
H0 is quoted in units [km/s/Mpc]. The parameters c20 and c22 are quoted in units [Mpc/h]2, c̃ in
units [Mpc/h]4, Pshot in units [Mpc/h]3. The fiducial values for cosmological parameters used in the
simulations are H0 = 70, Ωm = 0.25 (ωcdm = 0.1029), σ8 = 0.8 (A = 1).
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marginal, which merely reflects the fact that the errorbars cannot be further improved due
to the shot noise. Given that the results for kmax = 0.25 h/Mpc are somewhat better, we
prefer to adopt it as our standard cut. We have checked that going to kmax = 0.30 h/Mpc
gives very minor improvement on the errorbars and produces posteriors that are more shifted
w.r.t. the true values. Given this reason, we prefer to stick to kmax = 0.25 h/Mpc in order
to be more conservative.

Finally, to better understand the validity of our model we have repeated our analysis
with a covariance reduced by a factor of 10. The results are shown in the right panel of figure 9
and table 8. One can see that even in this case our model correctly reproduces the input
parameters of the simulations. At kmax = 0.2 h/Mpc all the parameters are recovered within
1σ of the reduced errors, whereas for kmax = 0.25 h/Mpc we observe a 2σ shift in σ8, while
the H0 and Ωm are accurately recovered. However, one may notice that at kmax = 0.2 h/Mpc
the means of the posteriors for H0 and Ωm are more shifted with respect to the true values
as compared to the kmax = 0.25 h/Mpc case. At the same time, the best-fit parameters are
very close to the true ones. This implies that the observed shifts of the posterior means are
caused by parameter marginalization (parameter volume) effects. Comparing this with the
results for the actual BOSS volume we see that the means of the distributions are even further
shifted w.r.t. the true values. This shows that for the BOSS errorbars the marginalization
effects are more significant than the theory-systematic error.

B.2 Tests on Patchy mocks

Now let us focus on Patchy mocks and consider the NGC mock datasets, which have bigger
volumes. We fit the mean of 2048 mock power spectra with the covariance matrix of a single
simulation box. This allows us to significantly reduce the statistical scatter among different
realizations. For the analysis we assumed the same base ΛCDM priors as the ones discussed
above (see table 3), along with the Gaussian prior ωb = 0.02214 ± 0.00015. Note that we
excluded the neutrino masses from the fit as the simulations were run for massless neutrinos.
The multipoles of the mock catalogs were produced assuming a fiducial cosmology with
Ωm = 0.31, which is different from the true value used in the simulations. This is designed
to introduce an additional anisotropy to be constrained through the AP effect.

We focused on four different choices of kmax = 0.15, 0.20, 0.25, 0.30 h/Mpc. Similarly to
the case of LasDamas, our analysis suggests that at kmax = 0.3 h/Mpc the systematic error
becomes comparable to the statistical one, whereas at kmax = 0.15 h/Mpc our model has too
much freedom, and thus requires more narrow priors on the nuisance parameters in order to
reduce the eventual errorbars. Given these reasons, we focus on kmax = 0.20, 0.25 h/Mpc in
what follows. The posterior distribution obtained with our MCMC analysis is displayed in
figure 10. The marginalized limits for the cosmological and bias parameters obtained in our
mock catalog analysis for kmax = 0.25 h/Mpc (which is used in our baseline analysis) are
displayed in table 9.

One observes that for kmax = 0.25 h/Mpc the best-fit and mean values of the inferred
cosmological parameters are within 1σ from the true values, but some ∼ 0.5σ shifts w.r.t. the
true value are clearly visible. There are two sources of these shifts. First, there is a parameter
projection effect, which can drive the mean values away from the best-fit along degeneracy
directions. Put simply, these effects reflect that fact that the statistical error of the data is
not good enough to break certain degeneracies among model parameters. We stress that this
effect is somewhat different from the so-called prior volume effect. This effect takes place
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Figure 10. Mocks for high-z (left panel) and low-z (right panel) NGC samples: 2d posterior contours
and 1d marginalized distribution for cosmological parameters. Dashed lines represent the true values
used in simulations. The values of kmax are quoted in units of h/Mpc, H0 in units [km/s/Mpc].

high-z NGC best-fit mean ±1σ

A 1.300 1.186+0.192
−0.249

H0 67.0 67.3± 2.3

102ωb 2.213 2.214± 0.015

ωcdm 0.1104 0.1111± 0.0095

b1 ×A1/2 1.9412 1.951± 0.065

b2 ×A1/2 −1.99 −1.81+0.81
−1.77

bG2 ×A1/2 −0.13 −0.0014+0.25
−0.43

c2
0 17.2 17.4+37.8

−30.2

c2
2 28.6 21.3+52.7

−29.9

c̃ 230 286+124
−164

10−3Pshot 4.39 4.54+2.44
−3.00

σ8 0.900 0.855± 0.074

Ωm 0.295 0.294± 0.022

low-z NGC best-fit mean ±1σ

A 1.110 1.031+0.200
−0.250

H0 67.7 67.2± 2.4

102ωb 2.211 2.214± 0.015

ωcdm 0.1132 0.1093± 0.0100

b1 ×A1/2 1.775 1.791± 0.068

b2 ×A1/2 −1.197 −1.467+0.93
−1.62

bG2 ×A1/2 −0.129 −0.016+0.203
−0.375

c2
0 22.4 22.3+34.5

−30.3

c2
2 39.2 16.9+55.0

−26.9

c̃ 355 541+200
−288

10−3Pshot 3.28 4.92+2.74
−2.96

σ8 0.847 0.788± 0.081

Ωm 0.296 0.291± 0.020

Table 9. The results of our MCMC analysis for the high-z (left table) and low-z (right table) NGC
patchy mocks data samples with kmax = 0.25h−1Mpc. H0 is quoted in units [km/s/Mpc]. The
parameters c20 and c22 are quoted in units [Mpc/h]2, c̃ in units [Mpc/h]4, Pshot in units [Mpc/h]3.
The fiducial values for cosmological parameters used in the simulations are H0 = 67.77, Ωm =
0.307115 (ωcdm = 0.118911), 102ωb = 2.214, σ8 = 0.8288 (A = 1).
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if the constraints on some parameters are prior-dominated, so that the mean values shift in
certain directions allowed by the priors.

To study the projection effect we have run the same analysis with the survey volume
of the mock covariances increased by a factor of 9. Just like in the LasDamas case, we have
found the inferred means of H0 and Ωm to be much closer to the true values, but still offset at
the level ∼ 1σ of the new variance, which is reduced by a factor of 3 compared to the actual
BOSS volume. Another test was described in section 5, where we analyzed mock datavectors
generated with our theoretical model. Although the best-fit parameters obtained with our
MCMC scans coincide with the input values, the means of some parameters (e.g. Ωm and σ8)
were noticeably shifted. This suggests that the parameter projection effects are inevitable
for the BOSS covariance, but can be reduced in future surveys with bigger volumes.

The second effect responsible for the shifts is a real systematic error related to higher-
order corrections omitted in our theoretical model. We have found that our theoretical model
can correctly recover the true cosmology of the mock data at kmax = 0.20 h/Mpc even for
survey volumes ∼ 10 times bigger than the actual BOSS survey. However, it gives a biased
estimate of σ8 if we go to higher kmax’s. This shift reaches ∼ 5% at kmax = 0.25 h/Mpc,
which is still marginally smaller than our final statistical error on this parameter obtained by
combining all the BOSS data samples. The systematic shifts observed in the estimated Ωm

and H0 are negligible (see the discussion above). Given these reasons, we decided stick to
kmax = 0.25 h/Mpc because in this case the total marginalized error (statistical + systematic,
added in quadratures) on the cosmological parameters is smaller than the similar error at
kmax = 0.20 h/Mpc, which is dominated by the statistical component.

Note that once we inflate the error to match the actual BOSS volume, the systematic
error couples with volume effects, which shift the inferred value of Ωm instead of σ8 along
the degeneracy direction between them. This correlation explains why the shifts of σ8 are
negligible in figure 10, but become a leading systematic effect once we increase the survey
volume in the covariance for the mock catalogs. The observed picture is, essentially, the same
at kmax = 0.20h/Mpc for both redshift bins of the BOSS data.

All in all, we believe that the choice of kmax = 0.25, h/Mpc represents a good balance
between systematic and statistical errors. We emphasize that the 1d marginalized limits
presented in this paper should not be over-interpreted beyond the level of ∼ 1σ uncertainty
related to the inaccuracies of the theoretical modeling and parameter projection effects. Our
tests on LasDamas mocks with higher volumes suggest that the shifts in the full parameter
space (before marginalization) are actually much smaller than 1σ for the BOSS covariance.

C Supplementary material

In this appendix we present some additional material. It includes full parameter constrain
tables and corner plots for the baseline analysis, along with the results of the extended
analyses that waived priors on the primordial power spectrum tilt ns and the neutrino mass.
Finally, we show that are constraints are not sensitive to the data on very large scales, which
are susceptible to systematics.

C.1 Full triangle plot and constraint tables

Let us present some additional material related to the baseline analysis with the Planck
prior on ωb. The results for the BBN priors are the same. The full triangle plot for four
non-overlapping BOSS data chunks can be found in figure 11. We do not show the contours
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Figure 11. The triangle plot for cosmological and nuisance parameters of four independent BOSS
datasets.

for mν and ωb as they are prior-dominated. The corresponding 1d marginalized limits can
be found in table 10. For completeness, we also show the spectra for the SGC datasets along
with the best-fit theoretical curves in figure 12. Similar plots for the NGC data were shown
in figure 1.

Note that the reduced χ2 is a very inaccurate metric for the goodness of fit. First,
it does not include the covariance between different k-bins. Second, the naive reduced χ2

does not take into account that the cosmological constraints are always driven by the biggest
wavenumbers used in the analysis. This is important to keep in mind when interpreting
our results. Indeed, some of the values quoted in table 10 (e.g. for the high-z SGC sample)
are noticeably bigger than unity, which naively implies a bad fit. However, if we com-
pute the reduced χ2 for the same parameters but using, e.g. kmin = 0.05h/Mpc instead of
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high-z NGC best-fit mean ±1σ

A 0.744 0.697+0.123
−0.178

h 0.704 0.703± 0.023

102ωb 2.242 2.237± 0.015

ωcdm 0.1334 0.1294± 0.012

mν 0.122 0.119+0.033
−0.057

b1 ×A1/2 1.926 1.907+0.068
−0.058

b2 ×A1/2 −2.77 −2.27+0.40
−1.70

bG2 ×A1/2 0.47 0.49+0.42
−0.71

c2
0 −53.44 20.5+55.0

−49.3

c2
2 −21.0 −22.5+59.3

−43.0

c̃ 187 243± 123

10−3Pshot 1.32 3.78+2.38
−3.06

σ8 0.744 0.699± 0.070

Ωm 0.320 0.310± 0.023

χ2
best-fit/Ndof = 106.9/(100− 12) = 1.21

low-z NGC best-fit mean ±1σ

A 1.442 1.289+0.231
−0.302

h 0.662 0.661± 0.016

102ωb 2.240 2.237± 0.015

ωcdm 0.1054 0.1033± 0.0097

mν 0.154 0.120± 0.040

b1 ×A1/2 1.895 1.891± 0.060

b2 ×A1/2 −2.57 −2.64+0.54
−1.0

bG2 ×A1/2 −0.15 −0.12+0.32
−0.44

c2
0 −22.9 −14.7+34.2

−29.2

c2
2 15.8 7.06+40.8

−31.1

c̃ 479 579+224
−263

10−3Pshot 2.68 4.15+1.79
−3.44

σ8 0.866 0.808± 0.073

Ωm 0.296 0.290± 0.017

χ2
best-fit/Ndof = 126.7/(100− 12) = 1.44

high-z SGC best-fit mean ±1σ

A 0.934 0.753+0.181
−0.302

h 0.639 0.665+0.022
−0.047

102ωb 2.234 2.237± 0.015

ωcdm 0.1135 0.1120+0.0119
−0.0163

mν 0.077 0.120± 0.041

b1 ×A1/2 2.109 2.059+0.140
−0.099

b2 ×A1/2 −1.61 −1.32+0.93
−2.63

bG2 ×A1/2 0.13 0.26+0.58
−0.86

c2
0 −14.1 29.2+61.7

−77.0

c2
2 23.0 −0.17+76.8

−43.0

c̃ 203 319± 195

10−3Pshot 0.97 3.80+1.10
−3.80

σ8 0.744 0.646± 0.107

Ωm 0.334 0.309+0.041
−0.032

χ2
best-fit/Ndof = 130.2/(100− 12) = 1.48

low-z SGC best-fit mean ±1σ

A 0.996 0.875+0.229
−0.385

h 0.683 0.697+0.029
−0.048

102ωb 2.236 2.237± 0.015

ωcdm 0.1082 0.1026+0.0100
−0.0136

mν 0.170 0.122+0.055
−0.027

b1 ×A1/2 1.885 1.904+0.120
−0.108

b2 ×A1/2 −3.00 −1.90+0.65
−2.10

bG2 ×A1/2 0.43 0.61+0.56
−0.78

c2
0 −18.1 39.0+62.3

−74.3

c2
2 −12.2 25.0+80.3

−46.9

c̃ 209 414+496
−388

10−3Pshot 5.56 5.56+3.72
−1.99

σ8 0.734 0.658+0.106
−0.126

Ωm 0.284 0.262+0.031
−0.026

χ2
best-fit/Ndof = 95.1/(100− 12) = 1.08

Table 10. The results of our MCMC analysis for different data samples. The neutrino mass is
quoted in units of [eV], H0 in [km/s/Mpc], parameters c20 and c22 are quoted in units [Mpc/h]2, c̃
in units [Mpc/h]4, Pshot in units [Mpc/h]3. Note that the limits on ωb, mν , b2A

1/2 and Pshot are
prior-dominated.
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Figure 12. Comparison of the data for the monopole and the quadrupole with the best-fit models,
whose parameters are listed in table 10. The goodness of fit can be assessed by the reduced χ2 given
in table 10.

zeff = 0.61 best-fit mean ±1σ

fσ8(zeff) 0.47135 0.4689+0.0070
−0.0045

H(zeff) 95.58 95.16+0.55
−0.29

DA(zeff) 1425.4 1438.9+8.9
−17.1

FAP(zeff) 0.7317 0.7353+0.0025
−0.0045

DV (zeff) 2160.0 2176.7+11.1
−21.4

zeff = 0.38 best-fit mean ±1σ

fσ8(zeff) 0.4769 0.4766+0.0062
−0.0053

H(zeff) 83.319 82.69+0.80
−0.43

DA(zeff) 1102.49 1114.81+8.17
−15.60

FAP(zeff) 0.42284 0.42429+0.0010
−0.0018

DV (zeff) 1468.2 1478.6+9.77
−18.6

Table 11. Planck results for distances to the BOSS galaxy samples in the base ΛCDM with massive
neutrinos. The values of H are quoted in units of [km/s/Mpc], DA and DV in [Mpc].

0.0025h/Mpc employed in our analysis, we find different numbers: 61.7/(80 − 12) = 0.91,
97.4/(80−12) = 1.43, 75.5/(80−12) = 1.11, 69.6/(80−12) = 1.02 for the high-z NGC, low-z
NGC, high-z SGC, and low-z SGC samples, respectively. Note a significant improvement for
the high-z datasamples.

Note that the choice of kmin within some reasonable range has a very mild effect on the
parameter estimates (less than 1σ). This illustrates that the values quoted in table 10 only
give a very rough idea on the quality of the fit and hence should be taken with a grain of salt.

It is instructive to convert our results into the triplet fσ8 −DA −H at zeff commonly
used in the large-scale structure literature. We focus on the results obtained with the Planck
prior on ωb. The corresponding 2d posterior distribution projections are displayed in figure 13
(upper panels), 1d marginalized limits are given in table 12. For comparison, in table 11 we
quote the limits extracted from the Planck MCMC chains run for ΛCDM with a free neutrino
mass. Overall, we see that the BOSS distance information is superseded by Planck, which
gives much better constraints on H(zeff) and DA(zeff). One can notice a significant correlation
between DA and H in the corresponding panels. This degeneracy direction simply reflects
the fact that in ΛCDM these two quantities are related by definition, see eq. (5.2), such
that the product DAH is nearly constant. We stress that the constraints on the distance
parameters shown in table 12 do not use the Planck prior on rd.

Finally, we show distance measurements in the case of the joint Planck prior on ωb and
ωcdm, which are presented in table 13 and displayed in figure 13 (lower panels).
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Figure 13. The posteriors for fσ8 − DA − H as extracted from our baseline MCMC chains with
Planck priors on ωb (upper panels) and Planck priors on both ωb and ωcdm (lower panels) at zeff = 0.61
(left panels) and zeff = 0.38 (right panels). The values of H are quoted in units of [km/s/Mpc], DA

in [Mpc].

C.2 Full likelihood including the power spectrum tilt

Our baseline analysis was performed for the fixed power spectrum tilt ns. In this appendix we
present the results of varying the full power spectrum likelihood. As in the baseline analysis,
we keep the BBN prior on ωb (3.23) and the prior on the neutrino masses (3.20), but do not
assume any prior on ns whatsoever (i.e. we use a plat prior in the range (−∞,∞)). The
results are displayed in table 14 and in figure 14.

One observes that including ns to the fit notably worsens the precision of the ωcdm
measurement. This is to be expected as both these parameters are extracted from the power
spectrum slope. The correlation between ωcdm and ns backfires on the posterior distribution
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high-z best-fit mean ±1σ

fσ8(zeff) 0.393 0.394± 0.034

H(zeff) 96.53 96.84± 2.33

DA(zeff) 1409 1405± 36

FAP(zeff) 0.7307 0.7303± 0.0057

DV (zeff) 2137 2130± 53

low-z best-fit mean ±1σ

fσ8(zeff) 0.4308 0.434± 0.038

H(zeff) 80.23 80.35± 1.8

DA(zeff) 1138 1137± 25

FAP(zeff) 0.4202 0.4203± 0.0018

DV (zeff) 1487 1486± 33

Table 12. The distances and the fluctuation growth parameter for the high-z (left table), low-z (right
table) data samples for the base ΛCDM with the Planck prior on ωb. The values of H are quoted in
units of [km/s/Mpc], DA and DV in [Mpc].

high-z best-fit mean ±1σ

Ωm 0.3007 0.3026± 0.0172

H0 69.13 69.00± 1.93

σ8 0.702 0.686± 0.060

fσ8(zeff) 0.403 0.394± 0.035

H(zeff) 96.64 96.57± 1.38

DA(zeff) 1406 1409± 30

FAP(zeff) 0.7300 0.7305± 0.0052

DV (zeff) 2133 2136± 40

low-z best-fit mean ±1σ

Ωm 0.3032 0.3057± 0.0082

H0 68.99 68.46± 1.07

σ8 0.913 0.783± 0.061

fσ8(zeff) 0.530 0.456± 0.035

H(zeff) 84.32 83.82± 0.91

DA(zeff) 1089 1096± 15

FAP(zeff) 0.4225 0.4229± 0.0011

DV (zeff) 1419 1428± 17

Table 13. The distances and the fluctuation growth parameter for the high-z (left table), low-z (right
table) data samples for the base ΛCDM with the Planck priors on ωb and ωcdm. The values of H are
quoted in units of [km/s/Mpc], DA and DV in [Mpc].

BBN ωb best-fit mean ±1σ

ωcdm 0.1267 0.1268± 0.0099

H0 68.61 68.55± 1.47

ns 0.874 0.876± 0.076

σ8 0.724 0.728± 0.052

Ωm 0.320 0.321± 0.018

Table 14. The results for cosmological parameters from the full BOSS likelihoods with all relevant
cosmological parameters varied. H0 is quoted in units [km/s/Mpc]. We do not show the limits on ωb
and

∑
mν as they are prior-dominated.

for Ωm, which shifts to a higher value almost by 1σ w.r.t. our baseline analysis (with fixed
ns). In turn, Ωm pulls H0 up and somewhat widens its marginalized posterior. Overall, the
shift in H0 is not very significant (. 0.5σ). Note that the independent measurement of ns is
consistent within 1σ with the Planck CMB result.
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Figure 14. 2d posterior distribution and 1d marginalized curves for Ωm, H0, σ8 and ns (gray contours)
obtained with the BBN prior on ωb and the tight prior on

∑
mν . Analogous contours obtained for

a fixed ns = 0.9649 are shown in blue. They correspond to our baseline analysis. For comparison,
we also display the Planck 2018 CMB results (in red) for the same cosmological model (ΛCDM with
varied neutrino masses).

C.3 Effect of neutrino masses

In this appendix we present results of our analysis of the low-z NGC datasample without
informative priors on the neutrino mass

∑
mν ≡Mtot. Other than that, our methodology and

priors are the same as in the baseline analysis. In particular, we assume the BBN prior on ωb
and fix ns to the Planck best-fit value. The results are presented in table 15 and in figure 15.

The first relevant observation is that our constraints on H0 and σ8 are almost insen-
sitive to the neutrino mass. This must be contrasted with the Planck constraints on these
parameters [44], which depend strongly on the neutrino masses. The second observation is
that Ωm is, obviously, correlated with the neutrino mass and in this sense cannot be treated
as an independent parameter. However, our limit on the late-time cold dark matter and
baryon density fraction Ωcb is almost the same in our baseline analysis and in the analysis
with totally free Mtot. Thus, the measurements of Ωcb, H0, σ8 from the BOSS data are quite
robust w.r.t. the priors on the neutrino mass.

Overall, we conclude that BOSS alone are not very sensitive to the neutrino mass,
and even very large Mtot around 1 eV is allowed. These values are already excluded by other
cosmological probes, e.g. by the Lyα-forest data alone (which sets a limit Mtot < 0.71 eV [49]),
as well as by the particle physics laboratory experiments like KATRIN [102].

C.4 Effect of large scales

The BOSS spectra feature some spurious excess of power on scales k < 0.01 hMpc−1. In
figure 16 we show the results obtained from two analyses of the low-z NGC data: using all
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low-z NGC, Baseline + Mtot best-fit mean ±1σ

A 1.68 1.38+0.23
−0.34

ωcdm 0.0986 0.1061+0.09
−0.011

H0 65.26 66.6± 1.7

Mtot 0.262 < 1.17 (95% CL)

σ8 0.862 0.786± 0.077

Ωm 0.291 0.3013+0.019
−0.023

Ωcb 0.285 0.290± 0.018

Table 15. The results for cosmological parameters obtained in our baseline analysis without imposing
a prior on the total neutrino mass Mtot (in eV). H0 is quoted in units [km/s/Mpc]. Ωcb is the current
fractional density of the cold dark matter and baryons. For comparison, its value inferred in our
baseline analysis with the tight prior on Mtot is Ωcb = 0.288± 0.017 (best-fit Ωcb = 0.292).

the k-bins and having imposed the cut k > 0.01 hMpc−1. The marginalized posteriors for H0

and σ8 are identical to the ones obtained in our baseline analysis, whereas the mean value of
Ωm is shifted upwards by 0.1σ when imposing the cut. Clearly, the signal is dominated by
wavenumbers k > 0.01 hMpc−1.

D Scaling parameter analysis

In this section we give some details on our analysis in which we followed the standard pa-
rameterization and parameter estimation routine adopted in the previous BOSS FS analyses.
We try to reproduce the analyses performed in refs. [5, 6] as close as we could without a
drastic modification of our pipeline. Our α-analysis performed in this paper is only meant to
capture some main qualitative features of the standard pipeline. It is not aimed at accurately
reproducing the previous results.

To match the standard methodology we modified our theoretical model to agree with
the one used in the previous analyses. Specifically, we use

Pg(k, µ) = e−(fµσvk)2
P 1-loop, SPT, IR resummed
g (k, µ) , (D.1)

and do not introduce any RSD counterterms. The fingers-of-God effect is then described by
only one parameter — the velocity dispersion σv. We have computed the theoretical power
spectra for a fiducial cosmology with

ns = 0.96 σ8 = 0.8 , h = 0.676 ,

Ωbh
2 = 0.022 , Ωm = 0.31 ,

∑
mν = 0.06 eV ,

(D.2)

which matches the parameters used in the most recent BOSS FS analysis [6]. We account
for the AP effect by means of the scaling parameters α‖, α⊥, defined as

α‖ =
Hfid

H

∣∣∣∣∣
zeff

, α⊥ =
DA

DA, fid

∣∣∣∣∣
zeff

. (D.3)
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Figure 15. 2d posterior distribution and 1d marginalized curves for the cosmological parameters of
ΛCDM obtained from our baseline analysis without imposing a prior on the neutrino mass.

Overall, the cosmology-dependence of this model is parameterized by α‖, α⊥ and fσ8. The
non-linear bias and redshift-space distortion effects are parameterized by coefficients b1σ8,
b2σ8, Pshot and the velocity dispersion σv. We fix the tidal bias to the value suggested by the
coevolution model [16],

bG2 = −4

7
(b1 − 1) . (D.4)

We use the same priors on the bias parameters as in our main analysis, except for Pshot,
which is allowed to vary in the range [−104, 104] [Mpc/h]3. This is done in order to agree
with the analysis of ref. [6], which finds preferred values of the shot noise to be negative.

We studied two different choices of kmax: 0.15 and 0.25 h/Mpc. The results of these
analyses are shown in figure 17, where we display the marginalized posterior contours for low-z
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Figure 16. Corner plot for the cosmological parameters of ΛCDM obtained in our baseline analysis.
The shown are results from the data with all k-bins (in blue) and with the momentum cut k >
0.01 hMpc−1 (in red).
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The values of kmax are quoted in units [h/Mpc].

– 49 –



J
C
A
P
0
5
(
2
0
2
0
)
0
4
2

high-z best-fit mean ±1σ

kmax = 0.15

fσ8(zeff) 0.391 0.392± 0.068

α‖ 1.019 1.027± 0.082

α⊥ 0.964 0.964± 0.042

FAP(zeff) 0.688 0.693± 0.072

H(zeff) 93.42 93.22± 6.76

DA(zeff) 1370.89 1382± 60

DV (zeff) 2120.62 2135± 48

kmax = 0.25

fσ8(zeff) 0.430 0.395± 0.054

α‖ 0.985 1.015± 0.057

α⊥ 0.972 0.952± 0.033

FAP(zeff) 0.723 0.690± 0.054

H(zeff) 96.69 94.11± 4.98

DA(zeff) 1393 1364± 47

DV (zeff) 2118 2109± 40

low-z best-fit mean ±1σ

kmax = 0.15

fσ8(zeff) 0.478 0.467± 0.072

α‖ 1.026 1.051± 0.063

α⊥ 1.004 0.994± 0.037

FAP(zeff) 0.414 0.402± 0.033

H(zeff) 80.86 79.19± 4.66

DA(zeff) 1112.71 1101.77± 40.56

DV (zeff) 1492.12 1493.22± 34.88

kmax = 0.25

fσ8(zeff) 0.452 0.440± 0.048

α‖ 1.063 1.075± 0.044

α⊥ 0.967 0.964± 0.020

FAP(zeff) 0.385 0.380± 0.020

H(zeff) 78.04 77.24± 3.12

DA(zeff) 1072 1069± 23

DV (zeff) 1473 1475± 22

Table 16. The results of our α-analysis for the high-z NGC (left panel, zeff = 0.61) and low-z NGC
(right panel, zeff = 0.38) data samples. The values of H are quoted in units of [km/s/Mpc], DA and
DV in [Mpc].

(left panel) and high-z (right panel) NGC samples. The 1d marginalized limits are presented
in table 16. One clearly sees that the inferred distance parameters become shifted w.r.t. the
fiducial values at kmax = 0.25h/Mpc. Moreover, the inferred values of the H(zeff), DA(zeff)
are more than 1σ-away from the Planck mean values. The distance measurements obtained
with our α-parametrization should be compared with the analysis of the DDE model, which
found H, DA to be very close to the Planck values. We believe that this difference is mainly
produced by our choice of priors and the use of a different theoretical model.
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[60] M. Schmittfull, M. Simonović, V. Assassi and M. Zaldarriaga, Modeling Biased Tracers at the
Field Level, Phys. Rev. D 100 (2019) 043514 [arXiv:1811.10640] [INSPIRE].
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