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Abstract

In this paper, we describe an adaptive refinement strategy for LR B-splines. The presented strategy ensures,
at each iteration, local linear independence of the obtained set of LR B-splines. This property is then
exploited in two applications: the construction of efficient quasi-interpolation schemes and the numerical
solution of elliptic problems using the isogeometric Galerkin method.
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1. Introduction

Since the ’70s, curves and surfaces in engineering are usually expressed by means of computer aided design
(CAD) technologies such as B-splines and non-uniform rational B-splines (NURBS). Thanks to properties
like non-negativity, local support and partition of unity, they allow for an easy control and modification of
the geometries they describe, and this motivates their undisputed success as modeling tools for objects with
complex shapes in engineering; see, e.g., [22, 7, 19] and references therein. On the other hand, B-splines
also provide a very efficient representation of smooth piecewise polynomial spaces, and so are a popular
ingredient in the construction of approximation schemes; see, e.g., [3, 23, 18] and references therein.

More recently, the advent of isogeometric analysis (IgA) has integrated spline and CAD technologies into
finite element analysis (FEA); see, e.g., [14, 8, 2]. IgA aims to unify the geometric description of the domain
of the differential problem with its numerical resolution, in order to expedite the simulation process and
gain in accuracy. In addition to the properties listed above, B-splines and NURBS feature other qualities,
appreciated in this context, such as (local) linear independence and high global smoothness.

Tensor structures admit a simple but powerful multivariate extension of univariate splines and B-splines.
Unfortunately, they lack adequate local refinement, while the constantly increasing demand for higher preci-
sion in simulations and reverse engineering processes begs for adaptive local refinement strategies, in order to
reduce the approximation error at low computational costs. This request for adaptivity, triggered the interest
in new formulations of B-splines and NURBS, still based on local tensor structures [12, 24, 9, 13, 1, 10, 11].
All these new classes of functions are defined on locally refined meshes, in which T-vertices in the interior
of the domain are allowed, the so-called T-meshes.

Locally refined B-splines, or in short LR B-splines [10], are one of these new formulations, and their
definition is inspired by the knot insertion refinement process of tensor B-splines. These latter are defined
on global knot vectors, one per direction. The insertion of a new knot in a knot vector corresponds to a line
segment in the mesh crossing the entire domain. This refines all the B-splines whose supports are crossed.
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Instead, LR B-splines are defined on local knot vectors and the insertion of a new knot is always performed
with respect to a particular LR B-spline. As a consequence, the LR B-spline definition is consistent with
the tensor B-spline definition when the underlying mesh at the end of the process is a tensor mesh, and the
formulation of LR B-splines remains broadly similar to classical tensor B-splines even though they enable
local refinements. This makes them one of the most elegant extensions of univariate B-splines on local tensor
structures.

LR B-splines possess almost all the properties of classical tensor B-splines. Unfortunately, they are not
always linearly independent. Heretofore, it is not yet known what are the precise conditions on the locally
refined mesh to ensure a linearly independent set of LR B-splines. Nevertheless, some progress has been
made in this direction. In [10] an efficient algorithm to seek and destroy linear dependence relations has
been introduced, but it does not handle every possible locally refined mesh. In [21] a first analysis on the
necessary conditions for encountering a linear dependence relation has been presented. There, it has also
been proved that, for any bidegree, a linear dependence relation in the LR B-spline set involves at least eight
functions. In [4, 5] a characterization of the local linear independence of LR B-splines has been provided.
Such a strong property is guaranteed only on locally refined meshes with certain constraints on the lengths
and positions of the line segments that yield particular arrangements of the LR B-spline supports. On the
other hand, a practical adaptive refinement strategy to produce meshes with the local linear independence
property is still missing in the literature. To the best of our knowledge, the only mesh construction that
leads to a locally linearly independent set of LR B-splines can be found in [5]. Such a construction, however,
cannot be considered as a practical strategy because the regions to be refined and the maximal resolution,
i.e., the sizes of the smallest cells in the domain induced by the mesh, must be chosen a priori.

In this paper, we describe a practical refinement strategy ensuring the local linear independence of
the corresponding LR B-splines; the resulting mesh is called N2S2 LR-mesh. With examples we illustrate
that locally refined meshes can be achieved which are only slightly larger than standard refined (struc-
tured) LR-meshes without linear independence warranty; see Figure 11. The strong theoretical property
of local linear independence is appealing and admits, e.g., the construction of efficient local approximation
(quasi-interpolation) schemes and the unisolvency of sparse linear systems in isogeometric discretizations of
differential problems based on such LR B-splines.

As mentioned above, there are several alternative spline technologies based on local tensor structures that
are suited for adaptive refinement. The most popular are T-splines [24, 1], (truncated) hierarchical B-splines
[12, 13] and PHT-splines [9]. Numerical comparisons between LR B-splines and some of these alternatives
have been presented in [16]. Our refinement strategy is endowed with interesting theoretical features: it
ensures local linear independence of the basis functions and does not require any restriction on degree and
smoothness. Analysis-suitable (and dual-compatible) T-splines also enjoy both properties [2, Section 7], but
their structure entails a certain amount of non-local refinement propagation. Local linear independence is
not available for (truncated) hierarchical B-splines, while PHT-splines assume reduced regularity. In this
perspective, our refinement strategy strengthens LR B-splines as an attractive choice among adaptive spline
methods based on local tensor structures.

The remainder of the paper is divided into 5 sections. Section 2 contains the definition of LR B-splines
and a summary of their main properties. Section 3 describes the mesh refinement strategy and is the core
of the paper. Sections 4 and 5 present applications of the refinement strategy in the context of quasi-
interpolation and isogeometric Galerkin discretizations of elliptic problems. We end in Section 6 with some
concluding remarks.

Throughout the paper, we assume the reader to be familiar with the definition and main properties of
(univariate) B-splines, in particular with the knot insertion procedure. An introduction to this topic can be
found, e.g., in the review papers [19, 18] or in the classical books [3] and [23].

2. Locally refined B-splines

In this section, we introduce locally refined B-splines, or in short LR B-splines, and discuss several of
their properties, following the terminology from [21]. We denote by Πp the space of univariate polynomials
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Figure 1: Example of a box-partition E of a rectangle Ω in (a), and the mesh corresponding to E in (b). The meshlines are
identified by squares showing the associated multiplicities.

of degree less than or equal to p, and by Πppp the space of bivariate polynomials of degrees less than or equal
to ppp = (p1, p2) component-wise. Furthermore, we denote by B[xxx,yyy] the bivariate B-spline defined on the
(local) knot vectors xxx = (x1, . . . , xp1+2) and yyy = (y1, . . . , yp2+2), where xi ≤ xi+1 and yi ≤ yi+1 for all i.
The bidegree of B[xxx,yyy] is ppp = (p1, p2) and is implicitly specified by the length of xxx and yyy.

In order to define LR B-splines, we first introduce the concept of box-partition.

Definition 2.1. Given an axis-aligned rectangle Ω ⊆ R2, a box-partition of Ω is a finite collection E of
axis-aligned rectangles in Ω such that

1. β̊1 ∩ β̊2 = ∅ for any β1, β2 ∈ E, with β1 6= β2;
2.
⋃
β∈E β = Ω.

Given a box-partition E , we define the vertices of E as the vertices of its elements. A meshline is
an axis-aligned segment contained in an edge of an element of E , connecting two and only two vertices of
E located at its end-points. The collection of all the meshlines of the box-partition is called mesh, and
denoted by M. A meshline can be expressed as the Cartesian product of a point in R and a finite interval.
Let α ∈ R be the value of such a point and let k ∈ {1, 2} be its position in the Cartesian product. If k = 1
the meshline is vertical and if k = 2 the meshline is horizontal. We sometimes write k-meshline to specify
the direction of the meshline, and (k, α)-meshline to specify exactly on which axis-parallel line in R2 the
meshline lies. A vertex of E is called T-vertex if it is the intersection of two collinear meshlines and another
meshline, say γ, orthogonal to them. We call the T-vertex vertical if γ is vertical, and horizontal otherwise.

For defining splines of a certain bidegree ppp = (p1, p2) and smoothness across the meshlines, we also need
the notion of multiplicity of a meshline. This is a positive integer associated with every meshline in M.
For a k-meshline this number is assumed to be maximally pk + 1. A meshline inM has full multiplicity if
its multiplicity is maximal, and we say that M is open if every boundary meshline has full multiplicity. If
all the meshlines of the box-partition have the same multiplicity m we say thatM has multiplicity m. When
the T-vertices of E occur only on ∂Ω and all collinear meshlines have the same multiplicity, the corresponding
mesh is called tensor mesh. Figure 1 shows an example of a box-partition and its associated mesh.

Given a bivariate B-spline B[xxx,yyy], let xi1 , . . . , xir and yj1 , . . . , yjs be the distinct knots in xxx and yyy,
respectively. The mesh

M(xxx,yyy) := {{xi`} × [yjn , yjn+1
] : ` = 1, . . . , r; n = 1, . . . , s− 1}

∪ {[xin , xin+1
]× {yj`} : ` = 1, . . . , s; n = 1, . . . , r − 1}

(1)

is a tensor mesh in suppB[xxx,yyy]. The multiplicities of the meshlines inM(xxx,yyy) are given by the multiplicities
of the knots of B[xxx,yyy]. For instance, the (1, xi`)-meshlines {xi`} × [yjn , yjn+1

] for n = 1, . . . , s − 1 have all
the same multiplicity equal to the multiplicity of xi` in xxx.

Definition 2.2. Given a mesh M and a B-spline B[xxx,yyy], we say that B[xxx,yyy] has support on M if

• the meshlines in M(xxx,yyy) can be obtained as unions of meshlines in M, and
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Figure 2: Some supports of B-splines of bidegree (2, 2) on a meshM of multiplicity 1. The mesh is shown in (a). The B-splines
whose supports are depicted in (b) and (c) have minimal support on M. The tensor meshes defined by the B-spline’s knots
are highlighted with thicker lines. On the other hand, the B-spline in (d) does not have minimal support onM: the collection
of meshlines contained in the dashed line disconnects its support.

• their multiplicities are less than or equal to the multiplicities of the corresponding meshlines in M.

Furthermore, we say that B[xxx,yyy] has minimal support on M if

• it has support on M,
• the multiplicities of the interior meshlines inM(xxx,yyy) are equal to the multiplicities of the corresponding

meshlines in M, and
• there is no collection γ of collinear meshlines inM\M(xxx,yyy) such that suppB[xxx,yyy]\γ is not connected.

Figure 2 shows examples of supports of B-splines of bidegree (2, 2) on a mesh of multiplicity 1. In
particular, the B-splines in (b)–(c) have minimal support, while the support of the B-spline in (d) can be
disconnected by the collection of meshlines γ, visualized by dashed lines in the figure.

Given a meshM and a B-spline B[xxx,yyy] with support inM, assume that it does not have minimal support
on M. Then, there exists a collection of (k, α)-meshlines γ such that suppB[xxx,yyy]\γ is not connected and
either γ is in M\M(xxx,yyy) or γ ⊆ M(xxx,yyy), i.e., α is an internal knot of xxx for k = 1 or yyy for k = 2 but its
meshlines have lower multiplicities inM(xxx,yyy) than inM. Assume that the meshlines in γ have all the same
multiplicity m in M. Denoting by µ(α) ≥ 0 the number of times α appears in the knot vector of B[xxx,yyy] in
the k-th direction, then m − µ(α) is strictly positive as B[xxx,yyy] has support, but not minimal support, on
M. One could consider such α as an extra knot, of multiplicity m− µ(α), with respect to the knot vector
of B[xxx,yyy] in the k-th direction (in xxx if k = 1 and in yyy if k = 2), and perform knot insertion on B[xxx,yyy]. If
α was already a knot of B[xxx,yyy], so µ(α) ≥ 1, this means rising its multiplicity by m− µ(α). The resulting
generated B-splines will still have support onM and eventually they will also have minimal support onM.
As an example, the collection γ highlighted with dashed lines in Figure 2(d) is made of (2, α)-meshlines, for
some α, of multiplicity 1. Such α can be inserted as new knot of multiplicity 1 in the knot vector in the
y-direction of the considered B-spline to refine it in two B-splines via knot insertion.

The LR B-splines are generated by means of the above procedure. We start by considering a coarse tensor
mesh and we refine it by inserting collections of collinear meshlines, one at a time, of the same multiplicity.
On the initial mesh we consider the standard tensor B-splines and whenever a B-spline in our collection
has no longer minimal support during the mesh refinement process, we refine it by using the knot insertion
procedure. The LR B-splines will be the final set of B-splines produced by this algorithm. In the following
definitions we formalize this by describing the mesh refinement process in our framework.

Definition 2.3. Given a box-partition E and an axis-aligned segment γ, we say that γ traverses β ∈ E if
γ ⊆ β and the interior of β is divided into two parts by γ, i.e., β\γ is not connected. A split is a finite
union of contiguous and collinear axis-aligned segments γ = ∪iγi such that every γi either is a meshline of
the box-partition or traverses some β ∈ E. A mesh M has constant splits if each split in it is made of
meshlines of the same multiplicity.

Like for meshlines, we sometimes write k-split with k ∈ {1, 2} to specify the direction of the split or
(k, α)-split to specify on what axis-parallel line in R2 the split lies.
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Figure 3: Two meshes. Assume that the boundary has a multiplicity large enough so that it is possible to define a B-spline of
bidegree ppp on it. Then, the mesh in (a) is not an LR-mesh because it cannot be built through a sequence of split insertions.
Indeed, the initial coarse tensor mesh is formed by the boundary, and no other meshline traverses the only element of this
initial box partition. The mesh in (b) is an LR-mesh similar to the one in (a).

When a split γ is inserted in a box-partition E , any traversed β ∈ E is replaced with the two subrectangles
β1, β2 given by the closures of the connected components of β\γ. The resulting new box-partition will be
denoted by E + γ and its corresponding mesh by M + γ. We also assume that a positive integer µγ has
been assigned to any split γ. The multiplicities of the meshlines in M∩ (M + γ) and not contained in γ
are unchanged. Contrarily, the multiplicities of the meshlines in γ that were already in M are rised by µγ ,
and the new meshlines in γ have multiplicity equal to µγ on M+ γ.

The LR B-splines are defined on a class of meshes with constant splits, called LR-meshes. Thus, from
now on, we restrict our attention to meshes that have constant splits. In particular, we note that when
refining a mesh M by inserting a split γ, either γ is made solely of new meshlines or it is made solely of
meshlines already on M, in order for M+ γ to have constant splits.

Definition 2.4. Given a meshM with constant splits, a B-spline B[xxx,yyy] with support onM and a split γ, we
say that γ traverses B[xxx,yyy] if the interior of suppB[xxx,yyy] is divided into two parts by γ, i.e., suppB[xxx,yyy]\γ
is not connected and either γ is in M\M(xxx,yyy) or γ ⊆M(xxx,yyy) but the multiplicity of its meshlines is lower
in M(xxx,yyy) than in M.

We are now ready to define the mesh refinement process and the LR B-splines. The meshes generated
by this procedure will be called LR-meshes.

Definition 2.5. Given a bidegree ppp = (p1, p2), let M1 be a tensor mesh such that the set of standard tensor
B-splines of bidegree ppp on M1 is non-empty, and denote it by B1. We then define a sequence of meshes
M2,M3, . . . and corresponding function sets B2,B3, . . . as follows. For i = 1, 2, . . ., let γi be a split such that
Mi+1 :=Mi + γi has constant splits and such that the support of at least one B-spline in Bi is traversed by
a split in Mi+1. On this refined mesh Mi+1, the new set of B-splines Bi+1 is constructed by the following
procedure.

1. Initialize the set by Bi+1 ← Bi.
2. As long as there exists B[xxxj , yyyj ] ∈ Bi+1 with no minimal support on Mi+1:

(a) Apply knot insertion: ∃B[xxxj1, yyy
j
1], B[xxxj2, yyy

j
2] : B[xxxj , yyyj ] = α1B[xxxj1, yyy

j
1] + α2B[xxxj2, yyy

j
2].

(b) Update the set: Bi+1 ← (Bi+1\{B[xxxj , yyyj ]}) ∪ {B[xxxj1, yyy
j
1], B[xxxj2, yyy

j
2]}.

The mesh generated at each step is called LR-mesh and the corresponding function set is called LR B-
spline set.

Not every mesh is an LR-mesh. For instance, one could consider meshes that do not have constant splits
or meshes that cannot be built through a sequence of split insertions, as illustrated by the mesh depicted in
Figure 3(a). The LR-mesh in Figure 3(b) is generated by four split insertions and the order of insertion is
fixed in this case. In general, however, the mesh refinement process producing a given LR-mesh M =MN

is not unique because the split insertion ordering can often be changed. Nevertheless, the LR B-spline set
on M is well defined because it is independent of such insertion ordering, as proved in [10, Theorem 3.4].
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Figure 4: Example of linear dependence in the LR B-spline set. The parameterization of an LR-mesh M of multiplicity 1
is considered in (a), and the linear dependence relation among some of the LR B-splines of bidegree (2, 2) defined on M is
illustrated in (b). The LR B-splines are represented by means of their supports on the mesh and the tensor meshes induced by
their knots are highlighted with thicker meshlines.

Given an LR-mesh, the corresponding LR B-splines have several desirable properties for applications.
By their definition, it is clear that

• they are non-negative,
• they have minimal support, and
• they can be expressed by the LR B-splines on finer LR-meshes using non-negative coefficients (provided

by the knot insertion procedure).

Furthermore, it is possible to scale them by means of positive weights so that they also form a partition of
unity; see [10, Section 7].

Unfortunately, they are not always linearly independent. Figure 4 shows an example of linear dependence
among the LR B-splines of bidegree (2, 2) defined on an LR-mesh of multiplicity 1. Heretofore, it is not yet
known what are the precise conditions on the LR-mesh to ensure a linearly independent set of LR B-splines.

In [5] a characterization of the local linear independence of LR B-splines has been provided. Such a
strong property is guaranteed only on LR-meshes with certain constraints on the split lengths and positions
that yield particular arrangements of the LR B-spline supports. This last statement is formalized in the
following.

Definition 2.6. Given a mesh M, let B[xxx1, yyy1] and B[xxx2, yyy2] be two different LR B-splines defined on M.
We say that B[xxx2, yyy2] is nested in B[xxx1, yyy1], and we write B[xxx2, yyy2] � B[xxx1, yyy1], if

• suppB[xxx2, yyy2] ⊆ suppB[xxx1, yyy1], and
• any meshline γ of M in ∂suppB[xxx1, yyy1] ∩ ∂suppB[xxx2, yyy2] has a higher (or equal) multiplicity when

considered in M(xxx1, yyy1) than in M(xxx2, yyy2).

An open mesh where no LR B-spline is nested is said to have the non-nested support property, or in
short the N2S-property.

The definition of nested LR B-splines was formulated for the first time in [4]. Definition 2.6 is different
but equivalent to it (see Appendix A). Figure 5 shows an example of an LR B-spline nested into another.
The following result, presented in [5], relates the local linear independence of the LR B-splines to the
N2S-property of the mesh.

Theorem 2.7. Given a bidegree ppp = (p1, p2), let M be an open LR-mesh corresponding to a box-partition
E and let BLR(M) be the set of LR B-splines of bidegree ppp on M. The following statements are equivalent.

1. The elements of BLR(M) are locally linearly independent.
2. M has the N2S-property.
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Figure 5: Example of nested LR B-splines on the mesh M shown in (a). All the meshlines have multiplicity 1 except
those in the left edge of M, highlighted with a double line, which have multiplicity 2. In (b)–(d) three LR B-splines
(B[xxx1, yyy1], B[xxx2, yyy2], B[xxx3, yyy3], respectively) of bidegree (2, 2) with minimal support on M are represented by means of their
supports and the tensor meshes induced by their knots. All the knots of these LR B-splines have multiplicity 1 except
x3
1 which has multiplicity 2. Therefore, B[xxx2, yyy2] � B[xxx1, yyy1] but B[xxx3, yyy3] � B[xxx2, yyy2] and B[xxx3, yyy3] � B[xxx1, yyy1], despite

that suppB[xxx3, yyy3] ⊆ suppB[xxx2, yyy2] and suppB[xxx3, yyy3] ⊆ suppB[xxx1, yyy1], because the shared meshlines in the left edge
of suppB[xxx3, yyy3], suppB[xxx2, yyy2] and suppB[xxx1, yyy1] have multiplicity 2 in M(xxx3, yyy3) and multiplicity 1 in M(xxx2, yyy2) and
M(xxx1, yyy1).

3. For any element β ∈ E, the number of non-zero LR B-splines over β satisfies

#{B ∈ BLR(M) : suppB ⊇ β} = (p1 + 1)(p2 + 1).

4. The LR B-splines form a partition of unity, without the use of scaling weights.

An element of E for which item 3 of Theorem 2.7 holds is said to be non-overloaded. Note that
(p1 + 1)(p2 + 1) is the dimension of the polynomial space over the element.

In [5] one can also find an algorithm to construct LR-meshes so that the N2S-property is fulfilled. This
approach, however, has a relevant drawback for practical purposes: the regions to be refined and the maximal
resolution have to be chosen a priori. Moreover, the algorithm cannot be stopped prematurely, before having
inserted all the splits determined initially. In practice, one rarely knows in advance where the error will be
large and how fine the mesh has to be chosen to reduce it under a certain tolerance.

In the next section, we present an alternative way to generate LR-meshes so that the N2S-property is
guaranteed.

3. N2S-structured mesh refinement strategy

In this section, we define a local refinement strategy that ensures the N2S-property for the obtained
meshes. It consists of two steps. First, we apply the so-called structured mesh refinement, defined in [15],
to the LR B-splines whose contribution to the approximation error is larger than a given tolerance. Then,
we slightly modify the obtained mesh by prolonging some splits, to recover the N2S-property. The meshes
generated by this refinement are open meshes with internal meshlines of multiplicity one.

As opposed to the classical finite element method, in which the refinement is applied to the box-partition
elements, the structured mesh refinement is a refinement applied to the function space, i.e., we select
for refinement the LR B-splines contributing more to the approximation error rather than the box-partition
elements where a larger error occurs. This approach is justified by the fact that on an LR-mesh, any new
split inserted must traverse at least the support of one LR B-spline. If we choose to select the elements
where the error is larger, then the refinement has to be extended anyway to traverse the support of at least
one LR B-spline containing the elements, resulting in a refinement of the LR B-spline basis. Moreover, since
several LR B-splines contain such elements, those chosen for the refinement extension could be not those
contributing more to the error, resulting in a suboptimal refinement, or we could refine more LR B-splines
than necessary, wasting degrees of freedom.

Once the LR B-splines are selected, we refine them by halving the interval steps in their knot vectors.
This corresponds to the insertion of a net of meshlines in the B-spline supports on the mesh. We therefore
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(d) (e) (f)

Figure 6: Two iterations of the structured mesh refinement of bidegree (2, 2). We consider the initial open tensor mesh with
internal meshlines of multiplicity 1 in (a). Figure (b) shows the support of an LR B-spline selected for refinement. We refine
it by halving the interval steps in its knot vectors. This results in the insertion of a net of meshlines in the LR-mesh as shown
in (c). In (d) we select another LR B-spline in the new set of LR B-splines and we refine it as illustrated in (e). Figure (f)
depicts the final mesh obtained.

(a) (b) (c) (d)

Figure 7: An LR B-spline nested in another LR B-spline, which in turn is nested in another LR B-spline on a structured
LR-mesh for bidegree (2, 2). Consider again the mesh in Figure 6(f). In (a)–(c) we depict the supports of three LR B-splines
on this mesh. The support in (a) is contained in the interior of the support in (b) and (c), and the support in (b) is contained
in the interior of the support in (c), as shown in (d). Therefore, the LR B-spline considered in (a) is nested both in the LR
B-splines in (b) and (c), and the LR B-spline in (b) is nested in the LR B-spline in (c). Hence, the considered mesh does not
have the N2S-property.

perform the LR B-spline generation algorithm described in Definition 2.5. Every selected LR B-spline is
fragmented into LR B-splines of smaller support and replaced with them. The LR-mesh obtained in this
way will be called a structured LR-mesh.

In summary, the structured mesh refinement consists of two steps:

1. LR B-splines are selected to be refined and not box-partition elements;
2. the interval steps of their knot vectors are halved to obtain the new LR-mesh.

Figure 6 shows two iterations of such refinement. In general, the structured mesh refinement does not
generate LR-meshes with the N2S-property. The LR-mesh in Figure 6(f) is an example as explained in
Figure 7. Furthermore, the structured mesh refinement may produce linearly dependent sets of LR B-
splines. Figure 8 shows an example for bidegree (4, 4).
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Figure 8: A structured LR-mesh with a linear dependence relation among the LR B-splines of bidegree (4, 4) defined on the
highlighted region in (c). We start by considering an open tensor mesh with interior meshlines of multiplicity 1 as in (a).
Then, we apply two iterations of structured mesh refinement as shown in (b)–(c). The LR B-splines with support in the region
highlighted in (c) are linearly dependent. In particular, the region corresponds to the support of an LR B-spline that has
many nested LR B-splines in it. One can prove the existence of the linear dependence relation by computing the spline space
dimension and the number of LR B-splines defined on the mesh as explained in the examples of [21]. This configuration can
be reproduced for any bidegree (p1, p2) with pk ≥ 4 for k = 1, 2.

On the other hand, the standard B-splines defined on a plain tensor mesh are locally linearly independent,
and the meshes generated by the structured mesh refinement are locally tensor meshes far from the boundary
of the region where the structured mesh refinement is applied. The LR B-splines defined in these zones of the
mesh behave like the standard B-splines, and therefore are locally linearly independent. On the boundary
of the region where the refinement has been applied, LR B-splines of smaller support can be nested in LR
B-splines of larger support. Hence, in such case the resulting LR-mesh does not have the N2S-property.

The idea for our refinement strategy, which will be called N2S-structured mesh refinement, is
therefore to recover the N2S-property in the mesh by slightly modifying it in these transition regions.
When an LR B-spline B[xxx2, yyy2] is nested into another LR B-spline B[xxx1, yyy1], one could prolong the splits
in M(xxx2, yyy2) in some direction to traverse entirely suppB[xxx1, yyy1]. This, by Definition 2.5, would refine
B[xxx1, yyy1] in LR B-splines that turn out not to have nested LR B-splines in their supports anymore. This
last statement is formalized in Corollary 3.3. To this end, we first prove the N2S-property for LR-meshes
with a particular structure.

Definition 3.1. An LR-mesh M on the domain Ω is said to be tensorized in the k-th direction, for
k ∈ {1, 2}, if all the internal k-meshlines in M are contained in k-splits crossing Ω entirely, i.e., there are
no vertical, if k = 1, or horizontal, if k = 2, T-vertices in the interior of Ω.

Proposition 3.2. Let M be an LR-mesh tensorized in the k-th direction for some k ∈ {1, 2}. Then, the
LR B-splines defined on M are all non-nested.

Proof. Without loss of generality, we can assume thatM is tensorized in the first direction, i.e., the vertical
meshlines are all contained in vertical splits crossing the domain entirely. This means that inM no vertical
meshline ends in the interior of the domain and therefore in the interior of the support of any LR B-splines
defined on M. We now proceed by contradiction and assume that there exists an LR B-spline in M, say
B2 = B[xxx2, yyy2], nested in another, say B1 = B[xxx1, yyy1]; see Definition 2.6. Because of the tensorization in
the first direction, this can only happen if they share the same knot vector in the x-direction, xxx1 = xxx2.
In particular, their supports have the same extreme values in the x-direction. This implies that all the
horizontal splits, counting the multiplicities, of M traversing suppB2 must traverse suppB1 as well. Since
B2 is nested in B1 and B1 has minimal support (it is an LR B-spline), it follows that yyy1 = yyy2, and as a
consequence we have B1 = B2. This is a contradiction and concludes the proof.
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Corollary 3.3. Given an LR-mesh M, let B = B[xxx,yyy] and B1 = B[xxx1, yyy1], . . . , Bn = B[xxxn, yyyn] be LR
B-splines defined on M such that B1, . . . , Bn � B. Let N be the mesh defined by the restriction of M to
the meshlines of M(xxx,yyy),M(xxx1, yyy1), . . . ,M(xxxn, yyyn). Then,

1. there are at least one horizontal T-vertex and one vertical T-vertex of N in the interior of suppB;
2. by extending all the splits of N in some direction to cross suppB entirely, B is refined, by Defini-

tion 2.5, in LR B-splines that do not have any nested LR B-splines anymore.

Proof. We prove the two statements separately as follows.

1. Assume that there are no vertical T-vertices of N in the interior of suppB. Then, N would be
tensorized in the first direction. By Proposition 3.2, it would imply that all the LR B-splines defined
on N are non-nested, which is a contradiction. Analogously, one can prove that at least one horizontal
T-vertex of N must be in the interior of suppB.

2. Since B contains the support of other B-splines, N 6= M(xxx,yyy) and in particular there exist at least
one horizontal T-vertex and one vertical T-vertex by the previous item. We now focus on the vertical
T-vertices, but of course the same argument can also be carried out for the horizontal T-vertices.
We extend all the vertical splits in N to cross suppB entirely, and denote this new mesh as Ñ . By
Definition 2.5, the extensions trigger a refinement of B via knot insertions. Ñ is tensorized in the first
direction and, by Proposition 3.2, no LR B-spline defined on Ñ is nested into another.

The extension of the splits considered in item 2 of Corollary 3.3 will be called a one-directional tensor
expansion of B1, . . . , Bn in B. An example of such an expansion is shown in Figure 9.

The N2S-structured mesh refinement is defined algorithmically as follows. We start from a structured
mesh refinement to obtain a new set of LR B-splines. We then collect in a set B all those LR B-splines that
have nested LR B-splines in their supports. If B is non-empty, we select an LR B-spline B in B and we apply
a one-directional tensor expansion to it. This triggers a refinement of the LR B-spline set, and therefore it
changes also the set B. We repeat this procedure till B becomes empty. In Theorem 3.5 we shall prove that
this always happens in a finite number of steps. The complete algorithm is described by Algorithm 3.4.

Algorithm 3.4. N2S-structured mesh refinement.

1. B1 is the B-spline set on the open tensor mesh equal to the domain’s boundary;
2. for i = 1, 2, . . . do
3. perform a structured mesh refinement of Bi;
4. initialize Bi+1 as the LR B-spline set defined on the new LR-mesh;
5. define B = {B ∈ Bi+1 : ∃B′ ∈ Bi+1 with B′ � B};
6. while B 6= ∅ do
7. select B ∈ B;
8. perform a one-directional tensor expansion of the LR B-splines nested in B;
9. update Bi+1 as the LR B-spline set defined on the new LR-mesh;

10. update B = {B ∈ Bi+1 : ∃B′ ∈ Bi+1 with B′ � B};

The one-directional tensor expansions are performed by alternating the direction for i even and odd,
respectively, in order to bound the thinning of the box-partition elements in a specific direction and preserve
the uniformity of the mesh as much as possible. The LR-mesh obtained in this way will be called an
N2S-structured LR-mesh, or in short N2S2 LR-mesh.

Theorem 3.5. Given an axis-aligned rectangular domain Ω ⊆ R2, let B1 be the set of standard bivariate
B-splines defined on the open tensor mesh whose meshlines are the edges of ∂Ω. Then,

1. the LR B-spline sets Bi provided by Algorithm 3.4 are well defined, i.e., the set B of the algorithm
becomes empty in a finite number of iterations, for every index i ≥ 2;

2. all the LR B-splines in Bi are non-nested, for every i ≥ 1.

10



(a)

, , ,

, .

(b) (c)

, , , ,

, , .

(d)

Figure 9: Example of a vertical tensor expansion. We consider five LR B-splines of bidegree (2, 2), namely B and B1, . . . , B4,
with suppB1, . . . , suppB4 contained in the upper left corner of suppB. The mesh N , of multiplicity 1, generated by the
meshlines of B,B1, . . . , B4 is depicted in (a), and the supports of the LR B-splines are shown in (b). In (c) we perform a
vertical tensor expansion of B1, . . . , B4 in B, and in (d) the supports of the new set of LR B-splines are shown: none of them
has a nested LR B-spline anymore. Here local linear independence is achieved by replacing the LR B-spline B with the three
LR B-splines corresponding to the bottom row of (d).

Proof. Without loss of generality, we can assume that Ω = [0, 1] × [0, 1]. We proceed by induction on the
index of the B-spline set. For i = 1, B1 is the set of standard B-splines on the open tensor mesh equal to the
domain’s boundary and we know they are locally linearly independent. By Theorem 2.7 this is equivalent
to be all non-nested. Assume now that Bi for some i ≥ 1 is well defined and that the functions in it are all
non-nested. Let us then prove that also Bi+1 is well defined and there is no LR B-spline nested into another
LR B-spline of it. At every loop iteration in the algorithm, the LR B-splines that have a nested LR B-spline
in their support are collected in the set B. Therefore, whenever we can show that B becomes empty after a
certain iteration of the loop, we can immediately conclude both statements in the theorem.

By Corollary 3.3, all the one-directional tensor expansions performed to define the set Bi+1 can be done
in the same direction k ∈ {1, 2}, which is therefore fixed once and for all by the index i+ 1. The length of
the LR B-spline supports in the (3−k)-th direction at any iteration of the loop cannot become shorter than
2−(i+1) regardless of the number of one-directional tensor expansions applied until then. This is because the
(3− k)-splits on the LR-meshes defined in the loop are fixed by the structured mesh refinement performed
on Bi at the beginning of the process and the minimal length of the box-partition elements in the (3− k)-
th direction is 2−(i+1). Therefore, the split extensions applied when performing a one-directional tensor
expansion in the k-th direction have lengths bounded from below by 2−(i+1) in all the steps of the loop.
This means that in a finite number of one-directional tensor expansions a k-split could be extended up to the
domain’s boundary, if needed, to remove nestedness issues, as these extensions cannot become arbitrarily
small. In the worst case scenario, we must extend all the k-splits to cross entirely the domain. However,
in this case, the resulting LR-mesh would be tensorized in the k-th direction. By Proposition 3.2, there
are only non-nested LR B-splines on this LR-mesh and thus B becomes empty in a finite number of loop
iterations.

In practice, the loop related to B stops quickly and the N2S2 LR-meshes are far from being entirely
tensorized in one direction. In Figure 10 we depict (a) the structured LR-mesh, (b) the corresponding
N2S2 LR-mesh, and (c) the LR-mesh proposed in [5], obtained by performing seven iterations of diagonal
refinement in [0, 1]2, using bidegree (2, 2). For ease of comparison, we also indicate the number of LR B-
splines defined on each of these meshes. We recall that the LR B-splines are not locally linearly independent
on the structured LR-mesh, while they are on the N2S2 LR-mesh and the LR-mesh proposed in [5].

In Figure 10(b) and Figure 11 one can see how the refinement in the N2S2 LR-meshes propagates from
the region where the structured mesh refinement has been applied. In all the considered cases, the refinement
does not heavily spread out. It is important to highlight, however, that the prolongation of the splits needed
to recover the N2S-property is not unique. Indeed, when refining an LR B-spline to remove nestedness
issues, the inserted split prolongations refine not only the considered LR B-spline but in general also other
LR B-splines in the neighborhood. Then, some of the newly introduced neighboring LR B-splines might not

11



(a) 1430 LR B-splines (b) 1894 LR B-splines (c) 2243 LR B-splines

Figure 10: Visual comparison between meshes of bidegree (2, 2) obtained by performing seven iterations of different mesh
refinement strategies along the diagonal: (a) the structured LR-mesh, (b) the N2S2 LR-mesh, and (c) the LR-mesh proposed
in [5].

(a) 10281 LR B-splines (b) 13459 LR B-splines (c) 8608 LR B-splines

(d) 12438 LR B-splines (e) 15993 LR B-splines (f) 10841 LR B-splines

Figure 11: Meshes of bidegree (2, 2) obtained by performing eight iterations of mesh refinement on three different regions
resulting in a structured LR-mesh (top row) and an N2S2 LR-mesh (bottom row).

need a one-directional tensor expansion anymore and the ordering used for removing nestedness has thus an
effect on the resulting mesh.
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One might consider to treat all the LR B-splines “in parallel”, i.e., first collect all the split extensions
needed to remove nestedness in all the LR B-splines requiring a treatment and then insert all of them at the
same time to refine the function basis. This could result in a more uniform propagation of the refinement
out of the region where the structured mesh has been applied. On the other hand, by doing this, some split
extensions could be unnecessary for recovering the N2S-property. Therefore, in general, also the number of
LR B-splines on these meshes would be higher than the number obtained when treating one LR B-spline
at a time. In the examples presented in this paper we do not remove nestedness “in parallel”. Hence, the
resulting N2S2 LR-meshes depend on the order used when the one-directional tensor expansions are applied.
On the other hand, the number of LR B-splines will be closer to the number of LR B-splines obtained when
performing only the structured mesh refinement, i.e., closer to the “optimal” number of LR B-splines needed
to reduce the error while preserving the local linear independence.

We finally remark that one could also opt for full tensor expansions in the supports, instead of one-
directional tensor expansions, to solve nestedness issues. The proof of Theorem 3.5 can be rephrased for
the case of full tensor expansions. The key is that we only prolong splits provided by the structured mesh
refinement performed at the beginning of the process. Therefore, if we do full tensor expansions, in the
worst case scenario we would end up with a standard tensor mesh of size h = 2−(i+1) to define the set Bi+1,
instead of an LR-mesh tensorized in one direction. In such case, B would still become empty in a finite
number of loop iterations. However, we decided to do the expansion of the splits only in one direction at
a time because it results in fewer propagation. Our choice of alternating the direction in each refinement
step was motivated by the wish for preserving the uniformity of the mesh as much as possible. However,
this choice could be improved and optimized towards the specific problem to be addressed (for instance, to
achieve a certain amount of anisotropy).

4. Application I: Quasi-interpolation

A quasi-interpolation method is a procedure to compute the coefficients assigned to the basis elements
of a prescribed function space, with the aim of approximating a given arbitrary function or data set. The
resulting approximant is called a quasi-interpolant (QI). The computation of any of such coefficients may
depend only on the data/function restricted to the corresponding basis element’s support (local method),
and perhaps some neighboring other basis elements’ supports, or it may depend on the data/function in the
entire domain (global method), as in the least-squares method. Given a function f and an approximation
space, whose basis is denoted by B, we write a related QI in the form

Qf :=
∑
B∈B

λB(f)B, (2)

where λB(f) is the coefficient of the basis element B ∈ B computed by the selected method.

Definition 4.1. A quasi-interpolation method such that Qf = f for all f in a space V is said to reproduce
the space V .

When using spline spaces of bidegree ppp as approximation spaces, a common requirement is that the
polynomial space Πppp is reproduced by the quasi-interpolation method, in order to ensure good approximation
properties. A general recipe for constructing local quasi-interpolation methods for tensor spline spaces, with
the polynomial reproduction property, can be found in [17]. We summarize it for the convenience of the
reader.

Recipe 4.2. Let f be a given function defined on the rectangle Ω. Given a bidegree ppp, let M̃ be an open tensor
mesh on Ω, and let B(M̃) be the set of tensor B-splines of bidegree ppp on M̃. For every B = B[xxx,yyy] ∈ B(M̃),
we compute the coefficient λB(f) as follows.

1. Let U ⊆ R2 be an open set that intersects the interior of suppB (for instance, U can be a box-partition

element of M(xxx,yyy)), and let B(U) be the subset of B(M̃) consisting of all the tensor B-splines not
identically zero on U .
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2. Choose a local polynomial approximation method PU such that PUg = g for all g ∈ Πppp defined on U
(typical choices are least-squares or interpolation methods). Letting g|U be the restriction of g to U ,
we can write

(PUf)|U =
∑

B̃∈B(U)

bB̃(f)B̃|U ,

for some coefficients bB̃(f) provided by the chosen local approximation method.
3. Since B ∈ B(U), set λB(f) := bB(f).

Then, according to (2), the quasi-interpolant to f in the space spanned by B(M̃) is defined as

Qf :=
∑

B∈B(M̃)

λB(f)B.

Note that the choice of the local polynomial approximation method is an open ingredient in the above
recipe for tensor splines (step 2). Actually, it is even allowed to take different polynomial approximation

schemes for different B-splines B ∈ B(M̃). In the same spirit and similar to the local quasi-interpolation
strategy developed for THB-splines in [26, 25], we can formulate a general recipe for constructing QIs in the
space spanned by BLR(M) on a given open LR-mesh M as follows: for every LR B-spline B in BLR(M),
select any local tensor space containing B, and pick the coefficient corresponding to B in the expression of
any QI in such a tensor space. We have here the flexibility of choosing both the local space and the local
QI for determining the coefficient of an LR B-spline. In particular, when the smallest local tensor space is
considered, we arrive at the following recipe.

Recipe 4.3. Let f be a given function defined on the rectangle Ω. Given a bidegree ppp, let M be an open
LR-mesh on Ω, and let BLR(M) be the set of LR B-splines of bidegree ppp on M. For every B = B[xxx,yyy] ∈
BLR(M), we compute the coefficient λB(f) as follows.

1. Let M̃B be the open tensor mesh obtained by rising the boundary meshline multiplicities of MB =
M(xxx,yyy) to full multiplicity, and let B(M̃B) be the set of tensor B-splines defined on M̃B.

2. Consider a quasi-interpolation method in the space spanned by B(M̃B),

QBf =
∑

B̃∈B(M̃B)

bB̃(f)B̃,

reproducing all g ∈ Πppp (for instance, use Recipe 4.2).

3. Since B ∈ B(M̃B), set λB(f) := bB(f).

Then, according to (2), the quasi-interpolant to f in the space spanned by BLR(M) is defined as

Qf :=
∑

B∈BLR(M)

λB(f)B.

Since B ∈ B(M̃B) for any B ∈ BLR(M), the function Qf in Recipe 4.3 is well defined. Moreover, it will
reproduce polynomials on the entire domain if the LR-mesh has the N2S-property as stated in the following
proposition.

Proposition 4.4. Given a bidegree ppp, letM be an open LR-mesh and let BLR(M) be the set of LR B-splines
of bidegree ppp on M. Assume that M has the N2S-property, then

Qg = g, ∀g ∈ Πppp,

where the quasi-interpolation operator Q is defined in Recipe 4.3.
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Figure 12: The transcendental function (3) defined on [−1, 1]2.

dimension of LR B-spline space

tensor mesh 36 100 324 1156 4356 16900 66564

N2S2 LR-mesh 36 86 161 254 363 450 537

max error 5.686e-01 4.645e-01 2.575e-01 1.472e-01 5.955e-02 2.156e-02 1.415e-02

level 1 2 3 4 5 6 7

Table 1: Dimensions of LR B-spline spaces of bidegree (2, 2) used to approximate the transcendental function (3) on tensor
meshes and N2S2 LR-meshes for different levels of maximal resolution, and the corresponding optimal maximal errors.

Proof. From [4, Theorem 4.6], if M has the N2S-property, then for all g ∈ Πppp we have

g =
∑

B∈BLR(M)

gBB, gB ∈ R,

where for all B ∈ BLR(M), the coefficient gB only depends on g and on the knots defining the LR B-spline
B. Therefore, gB remains the same if we represent g in any set of tensor B-splines containing B. Since,
according to Recipe 4.3, any QB reproduces all polynomials in Πppp we have

gB = λB(g), ∀B ∈ BLR(M), g ∈ Πppp,

which completes the proof.

We have tested the quasi-interpolation strategy described in Recipe 4.3 on N2S2 LR-meshes to approx-
imate polynomials and transcendental functions. Given an N2S2 LR-mesh M, this recipe requires the
construction of a QI based on B(M̃B) for each of the LR B-splines B ∈ BLR(M) of bidegree ppp = (p1, p2).
Following Recipe 4.2, we have used interpolation as local approximation method in the computation of these
QIs. More precisely, we have selected a unisolvent set of (p1 + 1)(p2 + 1) interpolation points, organized in a

tensor grid over a single box-partition element of M̃B , and then we have set a linear system by evaluating
f and the tensor B-splines in B(M̃B) at these points. This guarantees polynomial reproduction (actually

spline reproduction) of the quasi-interpolation method in the spaces B(M̃B), for B varying in BLR(M).
Therefore, also the resulting quasi-interpolation method on BLR(M) has the polynomial reproduction prop-
erty thanks to Proposition 4.4. Indeed, in all the tests with polynomial functions of bidegree at most ppp, the
maximal error was in the order of the machine precision, regardless of the number of iterations performed
to construct the N2S2 LR-mesh. The maximal error was computed on a uniform 150 × 150 grid.

As test with a transcendental function, we have considered

f(x, y) =
2

3
e−
√

(10x−3)2+(10y−3)2 +
2

3
e−
√

(10x+3)2+(10y+3)2 +
2

3
e−
√

(10x)2+(10y)2 , (3)

which is characterized by three steep peaks on the square [−1, 1]2 located at (−0.3,−0.3), (0, 0) and (0.3, 0.3);
see Figure 12. This function has also been used in [26] to investigate the approximation power of a similar
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(a) level 1 (b) level 2 (c) level 3

(d) level 4 (e) level 5 (f) level 6

(g) level 7

Figure 13: N2S2 LR-meshes produced to approximate the transcendental function (3) for different levels of maximal resolution.

quasi-interpolation method developed for THB-splines. In Table 1 we compare the dimensions of LR B-spline
spaces of bidegree (2, 2) on global tensor meshes and local N2S2 LR-meshes for different levels of maximal
resolution. For level `, the smallest box-partition elements on the mesh have length 2−`. Each N2S2 LR-
mesh is obtained by refining the LR B-splines whose supports contain one of the three points where a peak
occurs via structured mesh refinement and then by recovering the N2S-property via one-directional tensor
expansions; see Figure 13. For a given maximal resolution level, the optimal maximal error, i.e., the maximal
error when using the global tensor mesh, is preserved by the N2S2 LR-mesh. However, the corresponding
spline dimensions (degrees of freedom) are significantly different and the discrepancy exponentially grows
with the maximal resolution level.
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Figure 14: Exact solution of the Poisson problem (4) defined on [0, 1]2.

5. Application II: Isogeometric analysis

Isogeometric analysis, or in short IgA [14], is a numerical technique to perform computational simulations
on complex geometries. The numerical solutions are represented by means of the same functions as used for
the domain modeling. Nowadays, complex geometries are expressed in terms of CAD technologies such as
B-splines, NURBS, and their generalizations to address adaptive refinements.

In this section, we adopt the IgA approach, using our refinement strategy for LR B-splines, to approximate
the solution of the Poisson problem on Ω = [0, 1]2,{

−∆u = f, in Ω̊,
u = uD, on ∂Ω,

(4)

whose exact solution is

u(x, y) = arctan
(

100
(√

(x− 1.25)2 + (y + 0.25)2 − π

3

))
;

see Figure 14. This example is a good benchmark for numerical schemes, as the sharp interior layer of the
exact solution highlights the approximation quality, and it has been used extensively in the literature; see,
e.g., [20, 15, 6].

In the context of Galerkin discretizations, two properties are desirable:

• (local) linear independence of the space generators,
• refinement adaptivity.

The linear independence of the functions used as building blocks of the numerical solution avoids the nu-
merical complexity posed by the singularity of the matrices associated to the problem discretization. The
refinement adaptivity is desired for balancing accuracy and computational cost as it allows for a higher
precision, only there where it is needed to reproduce fast variations of the exact solution. LR B-splines on
N2S2 LR-meshes are suitable candidates as both the (local) linear independence of the space generators and
the adaptivity of the refinement are guaranteed.

In Figure 15 we compare the L∞-norm and the L2-norm of the error (Figures 15(a) and 15(b), respec-
tively), using LR B-spline spaces of bidegree (2, 2) on global tensor meshes and local N2S2 LR-meshes for
different levels of maximal resolution to approximate the solution of the Poisson problem (4). Again, for
level `, the smallest box-partition elements on the mesh have length 2−`. Each N2S2 LR-mesh is computed
by first applying the structured mesh to the LR B-splines whose supports intersect the curve where the
sharp interior layer in the exact solution occurs, and then by performing one-directional tensor expansions
to recover the N2S-property; see Figure 16. The error norms, which are computed discretely on a uniform
grid of 1000 × 1000 points, are plotted in log-log scale with respect to the spline dimensions (degrees of
freedom). The solid line with circular markers shows the decay when using global tensor meshes, while the
dashed line with star markers shows the decay for the N2S2 LR-meshes. In the figures, the first marker
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Figure 15: Error versus spline dimension (degrees of freedom) when approximating the solution of the Poisson problem (4) with
LR B-splines of bidegree (2, 2) on tensor meshes (solid line) and N2S2 LR-meshes (dashed line) for different levels of maximal
resolution. The L∞-norm of the error is depicted in (a) and the L2-norm of the error in (b).

condition number and dimension of stiffness matrix

tensor mesh
4.00e00

16
5.22e00

64
1.98e01

256
7.81e01

1024
3.12e02

4096
1.24e03
16384

4.98e03
65536

N2S2 LR-mesh
4.00e00

16
5.79e00

59
3.02e01

163
9.44e01

390
2.73e02

835
9.86e02

1728
2.76e03

3515

level 2 3 4 5 6 7 8

Table 2: Condition numbers and dimensions of the stiffness matrices assembled to approximate the solution of the Poisson
problem (4) with LR B-splines of bidegree (2, 2) on tensor meshes and N2S2 LR-meshes for different levels of maximal resolution.

corresponds to the 4 × 4 tensor mesh, for maximal resolution level ` = 2, and it is the maximal level for
which the LR B-spline and standard tensor B-spline sets coincide. When considering a comparable number
of degrees of freedom, the N2S2 LR-mesh leads to a significant reduction of both the L∞-norm and the L2-
norm of the error with respect to the tensor mesh, thanks to the adaptivity of the refinement. In Table 2 we
show the 2-norm condition numbers and dimensions of the corresponding stiffness matrices. Note that the
dimension of the stiffness matrix does not take into account the degrees of freedom related to the boundary
condition.

6. Conclusion

LR B-splines are one of the most elegant extensions of univariate B-splines on local tensor structures
that allow for local refinement. They possess almost all the properties of classical B-splines, but they are not
always linearly independent. Recently, a characterization of LR-meshes ensuring local linear independence
of the corresponding LR B-splines has been presented in the literature [4, 5]. However, a practical adaptive
refinement strategy for LR-meshes that maintain such a property was missing. In this paper, we have filled
this gap by describing an adaptive refinement strategy that generates LR-meshes where the corresponding
LR B-splines are locally linearly independent. Subsequently, we have exploited the local linear independence
of the LR B-splines to construct efficient quasi-interpolation schemes and to solve elliptic problems using
the isogeometric Galerkin method.

Besides the structural properties of LR B-splines, the refinement strategy we have proposed relies on the
results in [4] which extend to any higher dimensional setting. It seems thus reasonable that our bivariate
construction can be generalized to the multivariate case with similar definitions and proofs; see also [5].
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(a) level 2 (b) level 3 (c) level 4

(d) level 5 (e) level 6 (f) level 7

(g) level 8

Figure 16: N2S2 LR-meshes produced to approximate the solution to the Poisson problem (4) for different levels of maximal
resolution.
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A. Nested LR B-splines

The purpose of this appendix is to show the equivalence of the definition of nestedness used in this
paper (Definition 2.6) and the original definition provided in [4, Definition 2.4] for LR B-splines. The latter
definition is formulated in terms of repeated knot insertion and, in view of [4, Proposition 2.5], it is equivalent
to the following definition.

Definition A.1. Let B[xxx1, yyy1] and B[xxx2, yyy2] be two different tensor B-splines. Let µxxxk(z) and µyyyk(z), for
k = 1, 2, denote the number of times z ∈ R occurs in the vectors xxxk and yyyk, respectively. Then, we say that
B[xxx2, yyy2] is nested in B[xxx1, yyy1], and we write B[xxx2, yyy2] � B[xxx1, yyy1], if

1.

{
µxxx2(z) ≥ µxxx1(z), ∀ z ∈ ]x21, x

2
p1+2[,

µyyy2(z) ≥ µyyy1(z), ∀ z ∈ ]y21 , y
2
p2+2[,

2.

{
µxxx2(z) ≤ µxxx1(z), ∀ z /∈ ]x11, x

1
p1+2[,

µyyy2(z) ≤ µyyy1(z), ∀ z /∈ ]y11 , y
1
p2+2[.

We now prove the equivalence of the two definitions for LR B-splines.

Proposition A.2. Given a mesh M, let B[xxx1, yyy1] and B[xxx2, yyy2] be two different LR B-splines defined on
M. For B[xxx1, yyy1] and B[xxx2, yyy2], Definition 2.6 is equivalent to Definition A.1.

Proof. Let B1 := B[xxx1, yyy1] and B2 := B[xxx2, yyy2] be two LR B-splines defined on the mesh M. Assum-
ing that they satisfy the conditions in Definition A.1, we prove that they also satisfy the conditions in
Definition 2.6. Let us first show that suppB2 ⊆ suppB1. This means that [x21, x

2
p1+2] ⊆ [x11, x

1
p1+2] and

[y21 , y
2
p2+2] ⊆ [y11 , y

1
p2+2]. Suppose x21 < x11. Then, µxxx1(x21) = 0 and µxxx2(x21) > 0, but this contradicts item 2 in

Definition A.1, and hence x21 ≥ x11. The other inequalities can be proved in a similar way to have the interval
inclusions. Let now γ ⊆ ∂suppB1 ∩ ∂suppB2. Assume without loss of generality that γ is a 1-meshline.
Then, γ is a (1, z)-meshlines for some z ∈ {x11, x1p1+2}. For any choice of such z, we have µxxx2(z) ≤ µxxx1(z),
by item 2 of Definition A.1, and, by the definition of multiplicity of γ in M(xxx1, yyy1) and M(xxx2, yyy2), this
implies that µ(γ) is higher (or equal) in M(xxx1, yyy1) than in M(xxx2, yyy2). Therefore, both the conditions in
Definition 2.6 are satisfied if those in Definition A.1 are satisfied.

Let us now show the converse. Assuming that the conditions in Definition 2.6 are fulfilled, we prove that
the conditions in Definition A.1 are satisfied as well. Let z ∈ ]x21, x

2
p1+2[. Since suppB2 ⊆ suppB1, we have

]x21, x
2
p1+2[ ⊆ ]x11, x

1
p1+2[. If z /∈ xxx1, then µxxx1(z) = 0 and therefore µxxx2(z) ≥ µxxx1(z) for any value of µxxx2(z). If

z ∈ xxx1, then it must be also in xxx2, otherwise the (1, z)-split {z}× [y11 , y
1
p2+2] would traverse B2, which would

not have minimal support. For the same reason, it must also hold that µxxx2(z) = µxxx1(z). This proves item 1 of
Definition A.1. Assume now z /∈ [x11, x

1
p1+2]. Since suppB2 ⊆ suppB1, we have x11 ≤ x21 and x2p1+2 ≤ x1p1+2.

Therefore, µxxx1(z) = µxxx2(z) = 0. If z ∈ {x11, x1p1+2} but z /∈ xxx2, then trivially µxxx2(z) ≤ µxxx1(z). If z ∈ xxx2, then
z corresponds to (1, z)-meshlines in ∂suppB1 ∩ ∂suppB2. By assumption, these meshlines have a higher
(or equal) multiplicity in M(xxx1, yyy1) than in M(xxx2, yyy2), which means µxxx2(z) ≤ µxxx1(z). The same line of
arguments also applies to the knots in the second direction. This proves item 2 of Definition A.1.
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