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A basic version of the Pólya-Szegő inequality states that if Φ
is a Young function, the Φ-Dirichlet energy—the integral of 
Φ(‖∇f‖)—of a suitable function f ∈ V(Rn), the class of non-
negative measurable functions on Rn that vanish at infinity, 
does not increase under symmetric decreasing rearrangement. 
This fact, along with variants that apply to polarizations 
and to Steiner and certain other rearrangements, has nu-
merous applications. Very general versions of the inequality 
are proved that hold for all smoothing rearrangements, those 
that do not increase the modulus of continuity of functions. 
The results cover all the main classes of functions previ-
ously considered: Lipschitz functions f ∈ V(Rn), functions 
f ∈ W 1,p(Rn) ∩ V(Rn) (when 1 ≤ p < ∞ and Φ(t) = tp), 
and functions f ∈ W 1,1

loc (Rn) ∩V(Rn). In addition, anisotropic 
versions of these results, in which the role of the unit ball is 
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played by a convex body containing the origin in its interior, 
are established. Taken together, the results bring together all 
the basic versions of the Pólya-Szegő inequality previously 
available under a common and very general framework.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

A familiar version of the Pólya-Szegő inequality states that if 1 ≤ p ≤ ∞ and f ∈
W 1,p(Rn) ∩ V(Rn), then f# ∈ W 1,p(Rn) and

∫
Rn

‖∇f#(x)‖p dx ≤
∫
Rn

‖∇f(x)‖p dx. (1.1)

See, e.g., [3, Theorem 3.20 and p. 113]; when p = ∞, the integrals of pth powers are 
replaced by the essential suprema over Rn. Here f# denotes the symmetric decreasing 
rearrangement of f (another common notation is f�) and V(Rn) is the class of non-
negative measurable functions on Rn that vanish at infinity, a natural class for which 
this rearrangement is defined. Most of our definitions and terminology can be found in 
Sections 2 and 3. However, since we have no need for a precise definition of f# (see, 
e.g., [3, Definition 1.29], [23, p. 9], [26, p. 80]), we lean on a vivid description of Sperner 
[38, Abstract]: Imagine the subgraph of f as a lump of clay on a potter’s wheel, which 
on turning is molded into a perfectly symmetrical shape, maintaining the height of each 
particle of clay. The molded shape then represents the subgraph of f#. The map that 
takes f to f# is the primary example of a rearrangement on V(Rn). In general, if X
is a class of measurable functions on Rn containing the characteristic functions of sets 
in Ln, the Hn-measurable sets of finite measure, a rearrangement T on X is an essen-
tially monotonic (i.e., monotonic up to sets of Hn-measure zero) and equimeasurable 
(preserving the Hn-measure of superlevel sets) map T : X → X.

Inequality (1.1) has its roots in studies of symmetrization of sets and rearrangements 
of functions that go back to Jakob Steiner’s work on the isoperimetric inequality around 
1836. (The isoperimetric inequality can actually be deduced from the case p = 1 of (1.1).) 
With extra assumptions on f , it was first proved for n = p = 2 by G. Faber and E. Krahn 
independently, and then for all n and p = 2 by Krahn, all in the 1920s. In fact, (1.1) was 
a key ingredient in the solution by Faber and Krahn of Lord Rayleigh’s 1884 conjecture 
that the disk has the lowest fundamental frequency of vibration of all membranes of a 
given area. References are given by Daners [14] in his detailed commentary focusing on 
Krahn’s solution, and by Mondino and Semola [30], who provide a lucid account of this 
early history. (The latter also describe extensions of (1.1) to non-Euclidean settings, but 
the present paper is set entirely in Rn.) The many sources that outline the recent history 
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of (1.1) often contradict each other. Pólya and Szegő’s classic text [32] on isoperimetric 
inequalities in mathematical physics is always cited, but (1.1) is not explicitly stated 
there, and the setting is different. They work with smooth surfaces A0 and A1 in R3

with A0 in the interior of A1, and functions equal to 0 on A0, 1 on A1, and between 0 
and 1 in the region bounded by A0 and A1. Their arguments in [32, pp. 154–156], with 
additional work, lead to (1.3) below when f is smooth with compact support, n = 3, and 
T is the (2, 3)-Steiner rearrangement (explained below) with respect to the xy-plane. 
This and the approximation of Schwarz rearrangement by a sequence of (2, 3)-Steiner 
rearrangements sketched in [32, pp. 157] yield (1.3), and hence (1.1) for 1 < p < ∞, 
with the same restrictions on f and n. We believe Baernstein [3, Section 3.8] is correct 
in giving credit to Sperner [38] for proving (1.1) when f is Lipschitz (though he cites the 
wrong paper) and Hildén [22] for the result as stated above when p < ∞.

Diverse variants and applications of the Pólya-Szegő inequality (often called the Pólya-
Szegő principle) have generated a very substantial literature, surveyed by Talenti [40, 
Sections 1.3 and 1.5], [41, Section 5], who in [41, p. 126] provides over fifty references. The 
main themes are: Pólya-Szegő inequalities on spheres, hyperbolic, or other spaces, and 
for other functionals of the gradient; weighted versions involving other measures; ver-
sions invariant under affine transformations; anisotropic inequalities; the examination of 
equality cases; connections with capacitary inequalities; and applications to mathemat-
ical physics, PDEs, and function spaces.

Like (1.1), this paper has also arisen from earlier work on symmetrization and rear-
rangement, including our previous investigations [4–6]. As in those articles, the attention 
is less on particular symmetrizations or rearrangements than on general properties that 
allow results for those special cases to be extended and unified. For the classes X of 
measurable functions considered, such as V(Rn), each rearrangement T is essentially 
determined by an associated map ♦T : Ln → Ln defined by ♦TA = {x : T1A(x) = 1}, 
where 1A is the characteristic function of A, satisfying

{x : Tf(x) ≥ t} = ♦T {x : f(x) ≥ t},

essentially, for t > ess inf f ; see Proposition 3.5 below. Another such map may then be 
defined by ♦∗

TA = (♦TA)∗, where E∗ denotes the set of density points of E. We focus 
here on smoothing rearrangements, those for which

(♦∗
TA) + dBn ⊂ ♦∗

T (A + dBn), (1.2)

essentially, for each d > 0 and bounded measurable set A. Several equivalent variations 
of this definition, which stems from that of Sarvas [35, p. 11], are given in Lemma 4.4. 
The use of density points on the left of (1.2) is crucial and a feature of our methods, 
which differ from those in related studies of rearrangements by Brock and Solynin [9]
and Van Schaftingen and Willem [46]. See [6, Appendix] and the remarks around (3.13)
and at the beginning of Section 4 below for commentary about the various approaches.



4 G. Bianchi et al. / Journal of Functional Analysis 287 (2024) 110422
It turns out that for the main classes X of interest, smoothing rearrangements are 
precisely the rearrangements T : X → X that reduce the modulus of continuity of 
functions in X, that is, are such that ωd(Tf) ≤ ωd(f) for d > 0 and f ∈ X, where

ωd(f) = ess sup
‖x−y‖≤d

|f(x) − f(y)|.

This result, a consequence of Corollary 4.12, relies on several others, such as Theo-
rems 4.8 and 4.11, which collectively generalize (even in the special case when K = Bn) 
the theorem of Brock and Solynin [9, Theorem 3.3]. Corollary 4.12 also shows that 
the equivalence of smoothing and reduction of the modulus of continuity is true when 
only the continuous functions, or indeed the contractions, in X, are considered. Via 
this equivalence and results in the literature, it can be seen that the class of smoothing 
rearrangements on V(Rn) includes the symmetric decreasing rearrangement (see, e.g., 
[3, Theorem 2.12]); more generally, the Schwarz or (k, n)-Steiner rearrangement with 
respect to a k-dimensional subspace in Rn [3, Theorem 6.10], [9, Corollary 6.1] (here the 
axis of the potter’s wheel is (n − k+1)-dimensional in Rn+1, 1 ≤ k ≤ n, with k = n cor-
responding to the symmetric decreasing rearrangement); and polarization with respect 
to a hyperplane, defined by (1.5) below [3, Proposition 1.37], [9, Lemma 5.1]. Further 
examples, inspired by an idea of Pólya and Szegő [32, Note B] in collaboration with 
M. Shiffman, we shall call Brock rearrangements in view of the significant extension and 
analysis of Brock [7, Section 3], [8, Remark 2.3]. Others still, the SC 1-symmetrizations 
[37, Lemma 4.4 and Definition 4.4] and their generalizations [37, Section 9], which we 
refer to as Solynin rearrangements, originate from an idea of McNabb [29]. Brock and 
Solynin rearrangements result from processes called continuous symmetrization and par-
tial symmetrization (neither of which are in general true symmetrizations), respectively, 
that provide infinite families of rearrangements indexed by a parameter.

The Pólya-Szegő inequality (1.1) holds for each of the just-mentioned rearrangements. 
(For the symmetric decreasing rearrangement, references were provided above, while 
proofs for the Schwarz rearrangement, polarization (when (1.1) becomes an equality), 
Brock rearrangements, and Solynin rearrangements can be found in [3, Theorem 6.19], 
[9, Lemma 5.3], [8, Theorem 3.2 and Remark 3.3], and [37, Theorem 10.2], respectively.) 
One of the main purposes of this paper is to prove (1.1) for all smoothing rearrangements 
on V(Rn); see Corollary 6.5. The initial goal in this direction, achieved in Theorem 5.8, 
is to show that if T : V(Rn) → V(Rn) is a smoothing rearrangement, Φ : [0, ∞) → [0, ∞]
is left-continuous and convex with Φ(0) = 0 (i.e., what we call a Young function), and 
f ∈ V(Rn) is Lipschitz, then∫

Rn

Φ (‖∇Tf(x)‖) dx ≤
∫
Rn

Φ (‖∇f(x)‖) dx, (1.3)

where the integrals may be infinite. (For real-valued Φ, this result for the special rear-
rangements discussed above can be found in [3, Theorem 3.11], [3, Theorem 6.16], [3, 
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Proposition 3.12], with polarization again giving an equality even when Φ : [0, ∞) →
[0, ∞) is an arbitrary Borel function, and [37, Theorem 10.4], respectively.) The core of 
the proof of (1.3) is an inequality (see (5.10) below) between the (n + 1)-dimensional 
measure of the Minkowski sum of the part of the subgraph KTf of Tf above a fixed 
height and a suitable convex body C ⊂ Rn+1, on the one hand, and the corresponding 
quantity for the subgraph Kf of f , on the other. (The inequality follows from a contain-
ment relation in Lemma 5.2 between horizontal sections of these two sets, that comes 
from (1.2) and other properties of T .) This yields an inequality between the (upper) 
outer Minkowski contents of the two sets (Lemma 5.3). Some results from geometric 
measure theory, in particular a formula of Lussardi and Villa [27], allow us to express 
this inequality in terms of integrals over the graphs of Tf and of f of the support function 
of C of the outer unit normal (Lemma 5.5). The last main step is to prove that C can 
be chosen so that it represents Φ (Lemma 5.6), i.e., so that the mentioned inequalities 
transform into (1.3). We also use the McShane-Whitney extension theorem for Lipschitz 
functions (Lemma 5.7).

In Theorem 6.3, we present a far-reaching version of (1.3) in W 1,1
loc (Rn). Specifically, 

we show that if T : V(Rn) → V(Rn) is a smoothing rearrangement, Φ is a Young 
function, f ∈ W 1,1

loc (Rn) ∩ V(Rn), and 
∫
Rn Φ(‖∇f(x)‖) dx < ∞, then Tf ∈ W 1,1

loc (Rn)
and (1.3) holds. This generalizes the results for Schwarz and Solynin rearrangements in 
[9, Theorem 8.3] and [37, Theorem 10.4]. The passage from Theorem 5.8 to Theorem 6.3
requires overcoming some technical difficulties, made all the more challenging because we 
do not assume that Φ is an N-function. In particular, we approximate Φ by a real-valued 
Young function Φr such that the Orlicz space LΦr(Rn) is equivalent to L1(Rn) +L∞(Rn), 
the largest Orlicz space, and use both the necessary and the sufficient condition of the 
so-called de La Vallée-Poussin criterion. The necessary background on Orlicz spaces is 
provided at the beginning of Section 6. Since W 1,p(Rn) ⊂ W 1,1

loc (Rn) for 1 ≤ p < ∞, 
Theorem 6.3 immediately yields Corollary 6.5, the classical version (1.1) of the Pólya-
Szegő inequality, but now for every smoothing rearrangement.

Finally, anisotropic versions of Theorems 5.8 and 6.3, in which the role of the unit 
ball Bn is replaced by a convex body K ⊂ Rn containing the origin in its interior, are 
proved in Theorems 7.1 and 7.3. Here the rearrangement T : V(Rn) → V(Rn) is assumed 
to be K-smoothing (i.e., (1.2) holds with Bn replaced by K), and then, with Φ and f
as in Theorem 5.8 or Theorem 6.3, respectively, the conclusion is that∫

Rn

Φ (h−K(∇Tf(x))) dx ≤
∫
Rn

Φ (h−K(∇f(x))) dx, (1.4)

where hK is the support function of K. When K = Bn, (1.4) becomes (1.3). This type 
of Pólya-Szegő inequality was introduced by Alvino, Ferone, Trombetti, and Lions [1, 
Theorem 3.1] when K is o-symmetric and Φ(t) = tp, p ≥ 1, but for all f ∈ W 1,p

0 (Rn). In 
their anisotropic framework, Schwarz symmetrization is replaced by one they call convex 
symmetrization; in the potter’s wheel description above, each horizontal slice of clay 
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would be molded into a dilate of the convex body K. See Example 4.3(ii) below, where 
we call the process when it is extended to functions a K-Schwarz rearrangement and note 
that it is K-smoothing. These concepts, which align with that of Wulff shape in crystal-
lography (see, e.g., [36, Section 7.5]), were generalized by Van Schaftingen in a process 
he calls partial anisotropic symmetrization in [44], where he proves a corresponding gen-
eralization of [1, Theorem 3.1]. In the rearrangements resulting from partial anisotropic 
symmetrizations, which we may consistently also call K-Schwarz rearrangements, K is 
a k-dimensional convex body in Rk and the axis of the potter’s wheel is (n − k + 1)-
dimensional in Rn+1, 1 ≤ k ≤ n. We also introduce in (3.4) below the K-modulus of 
continuity of a function, and show in Theorem 4.8 that when X = V(Rn), for example, 
a rearrangement T : X → X that reduces the K-modulus of continuity of functions in 
X is K-smoothing. The converse is true when K is o-symmetric (see Theorem 4.11), but 
Example 4.13 shows that the K-Schwarz rearrangement does not generally reduce the 
K-modulus of continuity of functions in X when K is not o-symmetric.

Different anisotropic extensions of the Pólya-Szegő inequality were found by Klimov 
[24] and Van Schaftingen [44]. Our methods can be used to prove Klimov’s inequality 
for the K-Schwarz rearrangement of symmetrizable functions.

Known proofs of (1.1) and its variants seem to follow one of two approaches. The 
first, adopted in the present paper, proceeds via isoperimetric inequalities applied to 
(super-) level sets, while the second uses approximation by special rearrangements, prin-
cipally polarizations. The second approach does not provide information about the cases 
of equality and moreover does not help with the anisotropic case, but otherwise can be 
extremely efficient. The standard polarization process, sometimes called two-point sym-
metrization, with respect to an oriented (n − 1)-dimensional (linear) subspace H, takes 
a function f : Rn → R and replaces it by

PHf(x) =
{

max{f(x), f(x†)}, if x ∈ H+,
min{f(x), f(x†)}, if x ∈ H−,

(1.5)

where † denotes the reflection in H and where H+, H−, are the two closed half-spaces 
bounded by H and determined by its orientation. For background and references, see [6, 
Introduction], where it is explained in exactly what sense all Schwarz rearrangements, in-
cluding the symmetric decreasing rearrangement, can be approximated by polarizations, 
a result due to Brock and Solynin [9] and refined by Van Schaftingen [43,45]. Solynin 
[37, Lemmas 7.4 and 9.2] proved that his rearrangements can also be approximated by 
polarizations. We conjecture that this is not true of all smoothing rearrangements, and 
have some partial results in this direction.

An obvious question is whether the smoothing or K-smoothing assumptions are neces-
sary for our Pólya-Szegő inequalities, though Example 6.6 shows that this is not the case 
when p = 1. (Example 6.6 also shows that the smoothing assumption cannot generally 
be omitted in Theorems 5.8 and 6.3 and Corollary 6.5.) Also left for a future investiga-
tion are the cases of equality. Even for the symmetric decreasing rearrangement, this is 
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challenging; see [12] and the references given there, which go back to the initial study of 
Brothers and Ziemer [10].

When p = 2, the Pólya-Szegő inequality (1.1) can be derived from the Riesz-Sobolev 
inequality (also called the Riesz rearrangement inequality) for the symmetric decreas-
ing rearrangement [3, Theorem 8.4], [26, Theorem 3.7]; for a proof of this fact, see [26, 
Lemma 7.17]. This inequality holds for all Schwarz rearrangements but not for polariza-
tions (see [44, Corollary 4.3]), and therefore is not true for all smoothing rearrangements. 
On the other hand, it is pointed out in [9, p. 1763] that a very special case of the Riesz-
Sobolev inequality, the Hardy-Littlewood inequality [3, p. 54], [26, Theorem 3.4], is a 
simple consequence of Proposition 3.7 below, and therefore holds for all rearrangements.

We are very grateful to a referee for drawing our attention to [7] and [8].

2. Preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space Rn. 
Unless stated otherwise, we assume throughout that n ≥ 2. The standard orthonormal 
basis for Rn is {e1, . . . , en} and the Euclidean norm is denoted by ‖ · ‖. The term ball
in Rn will always mean a closed n-dimensional ball unless otherwise stated. The unit 
ball in Rn will be denoted by Bn and B(x, r) is the ball with center x and radius r. We 
write Dn for the open unit ball in Rn. If x, y ∈ Rn we write x · y for the inner product 
and [x, y] for the line segment with endpoints x and y. If x ∈ Rn \ {o}, then x⊥ is 
the (n − 1)-dimensional subspace orthogonal to x and 〈x〉 is the 1-dimensional subspace 
spanned by x. Throughout the paper, the term subspace means a linear subspace.

If A is a set, we denote by clA, intA, and dimA the closure, interior, and dimension
(that is, the dimension of the affine hull) of A, respectively. If H is a subspace of Rn, 
then A|H is the (orthogonal) projection of A on H and x|H is the projection of a vector 
x ∈ Rn on H.

If A and B are sets in Rn and t ∈ R, then we denote by tA = {tx : x ∈ A} the dilate
of A by the factor t, and by

A + B = {x + y : x ∈ A, y ∈ B}

the Minkowski sum of A and B. We write −A = (−1)A for the reflection of A in the 
origin and call A origin symmetric or o-symmetric if −A = A.

We write Hk for k-dimensional Hausdorff measure in Rn, where k ∈ {1, . . . , n}. When 
dealing with relationships between sets in Rn or functions on Rn, the term essentially
means up to a set of Hn-measure zero.

The Grassmannian of k-dimensional subspaces in Rn is denoted by G(n, k).
We denote by Cn, Gn, Bn, Mn, and Ln the class of nonempty compact sets, open sets, 

bounded Borel sets, Hn-measurable sets, and Hn-measurable sets of finite Hn-measure, 
respectively, in Rn.
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Let Kn be the class of nonempty compact convex subsets of Rn and let Kn
n be the class 

of convex bodies, i.e., members of Kn with interior points. We write Kn
(o) for subclass of 

Kn
n whose members contain the origin in their interiors. If K ∈ Kn, then

hK(x) = sup{x · y : y ∈ K} (2.1)

for x ∈ Rn, defines the support function hK of K. The texts by Gruber [21] and Schneider 
[36] contain a wealth of useful information about convex sets and related concepts such 
as the intrinsic volumes Vj , j ∈ {1, . . . , n} (see also [20, Appendix A]). In particular, if 
K ∈ Kn and dimK = n then 2Vn−1(K) is the surface area of K. If dimK = k, then 
Vk(K) = Hk(K) is the volume of K. By κn we denote the volume Hn(Bn) of the unit 
ball in Rn.

If K ∈ Kn
(o), the polar body K◦ of K is defined by

K◦ = {x ∈ Rn : x · y ≤ 1 for y ∈ K}. (2.2)

Then (K◦)◦ = K and (see [36, (1.52), p. 57])

ρK(x)hK◦(x) = hK(x)ρK◦(x) = 1 for x ∈ Rn \ {o}, (2.3)

where

ρK(x) = max{λ ≥ 0 : λx ∈ K} (2.4)

for x ∈ Rn \{o}, is the radial function of K. We shall also find use for the gauge function
of K, defined by

‖x‖K = inf{λ ≥ 0 : x ∈ λK} = hK◦(x) (2.5)

for x ∈ Rn. The previous equality follows from (2.3) and (2.4), or see [36, Lemma 1.7.13]. 
Despite the notation, ‖ · ‖K is a norm if and only if K is o-symmetric; in general it is 
sublinear but does not satisfy ‖ − x‖K = ‖x‖K for all x ∈ Rn. When K = Bn, ‖ · ‖K is 
the Euclidean norm.

It will be convenient to call a function f : Rn → R a K-contraction if

|f(x) − f(y)| ≤ ‖x− y‖K (2.6)

for all x, y ∈ Rn. Note that when K = Bn, a K-contraction is a contraction in the 
usual sense of the term. Note also that f is a K-contraction if and only if it is a −K-
contraction, since (2.6) is equivalent to |f(y) − f(x)| ≤ ‖x − y‖K for all x, y ∈ Rn, 
and hence to |f(x) − f(y)| ≤ ‖y − x‖K = ‖x − y‖−K for all x, y ∈ Rn. Clearly, every 
K-contraction is continuous.
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From (2.1) and (2.3), it is easy to see that

x · y ≤ hK(x)hK◦(y) (2.7)

for x, y ∈ Rn (see [36, (1.40), p. 54]) and that equality holds when x, y �= o if and only 
if x is an outer normal to K at ρK(y)y = y/hK◦(y) ∈ ∂K.

Given A ∈ Mn, let M∗(A) and M∗(A) denote, respectively, its upper and lower outer 
Minkowski content, i.e.,

M∗(A) = lim sup
ε→0+

Hn(A + εBn) −Hn(A)
ε

and

M∗(A) = lim inf
ε→0+

Hn(A + εBn) −Hn(A)
ε

.

(2.8)

See [11, p. 69] and [2], whose notation and terminology differs from ours, and note that 
the limits in (2.8) are unchanged if Bn is replaced by Dn. We shall also need the following 
generalization of these concepts. If C ∈ Kn

(o) and A ∈ Mn, let M∗
C(A) and M∗C(A)

denote, respectively, the upper and lower anisotropic outer Minkowski content of A with 
respect to C, obtained by replacing Bn in (2.8) by C. When the two limits coincide we 
denote them by MC(A), and again, the limits are unchanged if C is replaced by intC.

Let A ∈ Mn. We shall write S(A) for the perimeter of A. For the definition of this 
widely-used term, see, for example, [17, p. 170], [25, p. 107], [28, p. 122], or [31, p. 34]. 
When K is a convex body, its perimeter is equal to its surface area, defined in that case 
as

S(K) = lim
ε→0+

Hn(K + εBn) −Hn(K)
ε

,

its outer Minkowski content. It is for this reason that we prefer not to use the more 
common P (A) for the perimeter of A.

Let M(Rn) (or M+(Rn)) denote the set of real-valued (or nonnegative, respectively) 
measurable functions on Rn and let S(Rn) denote the set of functions f in M(Rn)
such that Hn({x : f(x) > t}) < ∞ for t > ess inf f . By V(Rn), we denote the set of 
functions f in M+(Rn) such that Hn({x : f(x) > t}) < ∞ for t > 0. The four classes of 
functions satisfy V(Rn) ⊂ S(Rn) ⊂ M(Rn) and V(Rn) ⊂ M+(Rn) ⊂ M(Rn). Members 
of S(Rn) have been called symmetrizable (see, e.g., [9]) and those of V(Rn) are often 
said to vanish at infinity. Note that the constant functions are symmetrizable but do not 
vanish at infinity unless they are identically zero.

We shall define a Young function as a left-continuous and convex function Φ : [0, ∞) →
[0, ∞] such that Φ(0) = 0, and say that such a function is nontrivial if Φ �≡ 0 and Φ �≡ ∞
on (0, ∞). Note that a real-valued Young function is both continuous and increasing 
(which will always mean non-decreasing in this paper). In [16, Definition 2.1.1], the term 
Orlicz function is used for a nontrivial Young function. Both terms have other definitions 
in the literature.
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Our notation for Sobolev spaces such as W 1,p(Rn) is standard. Definitions can be 
found in many texts, such as [26].

If f ∈ M(Rn), we denote its graph by Gf and define its subgraph Kf ⊂ Rn+1 by

Kf = {(x, t) ∈ Rn ×R : f(x) ≥ t}. (2.9)

If T : X → X, where X is one of the function classes given above, we shall usually 
write Tf instead of T (f). If T0, T1 : X → X are maps, we say that T0 is essentially equal
to T1 if for f ∈ X, T0f(x) = T1f(x) for Hn-almost all x ∈ Rn, where the exceptional set 
may depend on f .

If f is a locally integrable function on Rn, define

f∗(x) = lim
r→0+

1
Hn(B(x, r))

∫
B(x,r)

f(y) dy (2.10)

when the limit exists and f∗(x) = 0 otherwise. The limit exists and equals f(x)
Hn-almost everywhere in Rn, by the Lebesgue differentiation theorem (see, e.g., [25, 
Proposition 3.5.4]). Evans and Gariepy [17, p. 46] call f∗ the precise representative of f . 
If A is a measurable set,

Θ(A, x) = 1∗A(x) = lim
r→0+

Hn(A ∩B(x, r))
Hn(B(x, r)) , (2.11)

is the density of A at x, provided the limit exists.
If A ∈ Mn, define

A∗ = {x ∈ Rn : Θ(A, x) = 1∗A(x) = 1}.

Elements of A∗ are called Lebesgue density points, or simply density points, of A. Note 
that A∗ = A, essentially, by the Lebesgue density theorem (see, e.g., [31, Theorem 1.5.2]). 
Since it follows immediately from the definition of perimeter as a supremum of integrals 
of divergences (see, for example, [31, p. 34]) that if two measurable sets are essentially 
equal, their perimeters are equal, we have

S(A∗) = S(A) (2.12)

for A ∈ Mn.

Lemma 2.1. Let A, B ∈ Mn.
(i) If A ⊂ B, essentially, then A∗ ⊂ B∗.
(ii) If A = B, essentially, then A∗ = B∗.
(iii) (A∗)∗ = A∗.
(iv) If K ⊂ Rn is a convex body, then A∗ + K = A∗ + intK is open.
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Proof. (i) If A ⊂ B, essentially, then 1A ≤ 1B , essentially. Therefore, if x ∈ A∗, then

1 = 1∗A(x) = lim
r→0+

1
Hn(B(x, r))

∫
B(x,r)

1A(y) dy ≤ lim inf
r→0+

1
Hn(B(x, r))

∫
B(x,r)

1B(y) dy

≤ lim sup
r→0+

1
Hn(B(x, r))

∫
B(x,r)

1B(y) dy ≤ 1

and hence 1∗B(x) = 1. Therefore A∗ ⊂ B∗.
Parts (ii) and (iii) follow easily.
(iv) Let x ∈ A∗+K and choose y ∈ A∗ such that x ∈ y+K. Choose r > 0 and an open 

cone C with vertex at o such that x +(C ∩ rDn) ⊂ y+ intK. Note that if w ∈ C ∩ rDn, 
then x ∈ y−w+intK. Since Hn(−C ∩ rDn) > 0, y ∈ A∗, and A = A∗, essentially, there 
is a w0 ∈ C ∩ rDn such that y − w0 ∈ A∗. Hence x ∈ y − w0 + intK ⊂ A∗ + intK and 
it follows from the definition of A∗ that A∗ + intK is open since intK is open. �

A function f ∈ M(Rn) is approximately continuous at x ∈ Rn if for each ε > 0,

lim
r→0+

Hn (B(x, r) ∩ {y : |f(x) − f(y)| < ε})
Hn(B(x, r)) = 1. (2.13)

We shall use the fact that each f ∈ M(Rn) is approximately continuous at Hn-almost 
all x ∈ Rn; see, for example, [17, Theorem 3, Section 1.7.2].

Note that a measurable characteristic function 1A is approximately continuous at x if 
and only if the limit in (2.10) with f = 1A exists and equals 1A(x), that is, if and only 
if either x ∈ A and 1∗A(x) = 1 or x /∈ A, the limit in (2.10) exists, and 1∗A(x) = 0. This 
means that the set of points of approximate continuity can change even when a function 
is only changed on a set of measure zero. Moreover, if 1A is approximately continuous 
at x, then 1A(x) = 1A∗(x) and 1A∗ is also approximately continuous at x. Hence, the 
set of approximate continuity points of 1A∗ is the largest set of approximate continuity 
points of any 1B for which A and B essentially coincide. In particular, if A = Bn, 
essentially, then 1A is not approximately continuous at any unit vector. This precludes 
the possibility of finding a representative of each f ∈ M(Rn) that is approximately 
continuous everywhere and agrees with f for Hn-almost all x ∈ Rn.

3. Properties of maps

Let i ∈ {1, . . . , n − 1} and let H ∈ G(n, i) be fixed. We consider a map ♦ : E ⊂ Ln →
Ln and define

♦∗A = (♦A)∗ (3.1)

for each A ∈ E . We assume (here and throughout the paper) that the properties listed 
below hold for all A, B ∈ E and that the class E is appropriate for the property concerned.
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1. (Monotonic or strictly monotonic) A ⊂ B ⇒ ♦A ⊂ ♦B, essentially (or ⇒ ♦A ⊂
♦B, essentially, and A �= B ⇒ ♦A �= ♦B, essentially, respectively).

2. (Measure preserving) Hn(♦A) = Hn(A).
3. (Maps balls to balls) If K = B(x, r), then ♦K = B(x′, r′), essentially.
4. (Continuous from the inside) If (Am) is an increasing sequence of sets in E such 

that ∪m∈NAm ∈ E , then ♦(∪m∈NAm) = ∪m∈N ♦Am, essentially.
5. (Continuous from the outside) If (Am) is a decreasing sequence of sets in E such 

that ∩m∈N Am ∈ E , then ♦(∩m∈NAm) = ∩m∈N ♦Am, essentially.
6. (Smoothing and K-smoothing) If K ∈ Kn

(o), we say that ♦ is K-smoothing if 
whenever d > 0,

(♦∗A) + dK ⊂ ♦∗(A + dK) = ♦(A + dK), (3.2)

essentially, for each bounded A ∈ E with A + dK ∈ E , where ♦∗A is defined by (3.1). 
Then ♦ is called smoothing if it is K-smoothing with K = Bn.

Information concerning relations between the first three properties listed above and 
others besides may be found in [6, Sections 3 and 6]. The terms “continuous from the 
inside,” “continuous from the outside,” and “smoothing” are employed by Sarvas [35, 
p. 11], although his definitions differ slightly from those above.

In the definition of K-smoothing, one can equivalently require a pointwise inclusion 
in (3.2). To see this, note that by Lemma 2.1(iv) with A and K replaced by ♦A and 
dK, respectively, (♦∗A) + dK = (♦∗A) + d intK is open. Then the essential inclusion in 
(3.2) and parts (i) and (iii) of Lemma 2.1 give

(♦∗A) + dK = ((♦∗A) + dK)∗ ⊂ (♦∗(A + dK))∗ = ♦∗(A + dK).

Lemma 3.1. If ♦ : E ⊂ Ln → Ln is monotonic and measure preserving, then ♦ is 
continuous from the inside and from the outside.

Proof. Let (Am) be an increasing sequence of sets in E such that ∪m∈NAm ∈ E . Since 
♦ is monotonic, we have ♦Am ⊂ ♦(∪m∈NAm) for m ∈ N, essentially, and hence 
∪m∈N ♦Am ⊂ ♦(∪m∈NAm), essentially. The continuity of measures of increasing se-
quences and the fact that ♦ preserves measure yield

Hn (♦(∪m∈NAm)) = Hn (∪m∈NAm) = lim
m→∞

Hn(Am) = lim
m→∞

Hn(♦Am)

= Hn (∪m∈N ♦Am) .

It follows that ♦(∪m∈NAm) = ∪m∈N ♦Am, essentially, and hence that ♦ is continuous 
from the inside.

The proof of the continuity from the outside is similar. �
Let X ⊂ M(Rn), where we assume henceforth that X contains the characteristic 

functions of sets in Ln. Let T : X → X and if A ∈ Ln, let
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♦TA = {x : T1A(x) = 1}

and let

♦∗
TA = (♦TA)∗. (3.3)

By Proposition 3.3(i) below, the induced map ♦T : Ln → Ln is well defined when 
X = M(Rn), M+(Rn), S(Rn), or V(Rn). Of course, ♦∗

T : Ln → Ln is well defined 
whenever ♦T : Ln → Ln is.

If X ⊂ M(Rn), we consider the following properties of a map T : X → X, where the 
first four properties are assumed to hold for all f, g ∈ X:

1. (Equimeasurable)

Hn({x : Tf(x) > t}) = Hn({x : f(x) > t})

for t ∈ R.
2. (Monotonic) f ≤ g, essentially, implies Tf ≤ Tg, essentially.
3. (Lp-contracting) ‖Tf − Tg‖p ≤ ‖f − g‖p when f − g ∈ Lp(Rn).
4. (Modulus of continuity reducing and K-modulus of continuity reducing) If d > 0

and K ∈ Kn
(o), we define the K-modulus of continuity of f ∈ X by

ωK, d(f) = ess sup
‖x−y‖K≤d

|f(x) − f(y)| = ess sup
x−y∈dK

|f(x) − f(y)|. (3.4)

The equivalence of these two expressions follows easily from the left-hand equality in 
(2.5). Then T reduces the K-modulus of continuity if ωK,d(Tf) ≤ ωK,d(f) for all d > 0
and f ∈ X. When K = Bn, we refer simply to the modulus of continuity of f ∈ X and 
drop the suffix K, i.e.,

ωd(f) = ess sup
‖x−y‖≤d

|f(x) − f(y)|,

and say that T reduces the modulus of continuity if ωd(Tf) ≤ ωd(f) for all d > 0 and 
f ∈ X.

5. (Continuous from the inside (or outside)) The induced map ♦T is well defined 
on Ln and continuous from the inside (or outside, respectively) when E = Ln.

6. (Smoothing and K-smoothing) If K ∈ Kn
(o), we say that T is K-smoothing if the 

induced map ♦T is well defined on Ln and K-smoothing when E = Ln, i.e.,

(♦∗
TA) + dK ⊂ ♦∗

T (A + dK) = ♦T (A + dK), (3.5)

essentially, for each d > 0 and bounded A ∈ Mn. Then T is called smoothing if it is 
K-smoothing with K = Bn.

The map T is called a rearrangement if it is equimeasurable and monotonic.



14 G. Bianchi et al. / Journal of Functional Analysis 287 (2024) 110422
In their somewhat different setting, versions of Properties 5 and 6 (for K = Bn) were 
also considered by Brock and Solynin [9, p. 1764]. In particular, their definition of a 
smoothing rearrangement T : S(Rn) → S(Rn) corresponds to requiring (♦TA) +dDn ⊂
♦T (A + dDn), for each d > 0 and A ∈ Ln. However, A + dDn �∈ Ln, in general, when 
A ∈ Ln. Moreover, their definition is sensitive to changing T on a set of Hn-measure 
zero. For example, if T0f = f is the identity map and T1f = max{f, 1Qn}, then T0 = T1, 
essentially, while ♦T0A = A and ♦T1A = A ∪Qn implies that T0 is smoothing but T1 is 
not under their definition.

Our definitions of smoothing and K-smoothing are examined further in Lemma 4.4
below. See also the remarks at the beginning of Section 4.

For the convenience of the reader, we now state five results proved in [6] as Lemmas 4.1, 
4.5, 4.7, Theorem 4.8 and the remarks that follow it, and Theorem 4.9, respectively.

Proposition 3.2. (i) If T : S(Rn) → S(Rn) is equimeasurable, then ess inf Tf = ess inf f
for f ∈ S(Rn).
(ii) If T : M(Rn) → M(Rn) is a rearrangement, then ess inf Tf ≥ ess inf f for f ∈
M(Rn). Hence, T : S(Rn) → S(Rn).
(iii) In either case, T : V(Rn) → V(Rn) and T is essentially the identity on constant 
functions.

Proposition 3.3. Let X = M(Rn), M+(Rn), S(Rn), or V(Rn), and let T : X → X be 
equimeasurable.
(i) The induced map ♦T : Ln → Ln given by

♦TA = {x : T1A(x) = 1} (3.6)

for A ∈ Ln is well defined and measure preserving.
(ii) If X = M+(Rn), S(Rn), or V(Rn), then T essentially maps characteristic functions 
of sets in Ln to characteristic functions of sets in Ln, in the sense that for each A ∈ Ln,

T1A = 1♦TA, (3.7)

essentially.

Proposition 3.4. Let X = S(Rn) or V(Rn) and let T : X → X be a rearrangement. For 
X = S(Rn), A ∈ Ln, and α, β ∈ R with α ≥ 0, we have

T (α1A + β) = αT1A + β, (3.8)

essentially. When X = V(Rn), (3.8) holds, essentially, if β = 0.

Proposition 3.5. Let X = M(Rn), M+(Rn), S(Rn), or V(Rn) and let T : X → X be a 
rearrangement.
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(i) The map ♦T : Ln → Ln defined by (3.6) is monotonic.
(ii) If X = S(Rn) or V(Rn) and f ∈ X, then

{x : Tf(x) ≥ t} = ♦T {x : f(x) ≥ t} and {x : Tf(x) > t} = ♦T {x : f(x) > t}, (3.9)

essentially, for t > ess inf f . Moreover, T is essentially determined by ♦T , since

Tf(x) = max {sup{t ∈ Q, t > ess inf f : x ∈ ♦T {z : f(z) ≥ t}}, ess inf f} , (3.10)

essentially.

Proposition 3.6. Let T : S(Rn) → S(Rn) be a rearrangement and let f ∈ S(Rn). If 
ϕ : R → R is right-continuous and increasing (i.e., non-decreasing), then ϕ ◦ f ∈ S(Rn)
and

ϕ(Tf) = T (ϕ ◦ f), (3.11)

essentially.

The following result was first proved, without the assumption that j is nonnegative, 
by Crowe, Zweibel, and Rosenbloom [13] for Schwarz rearrangement. Versions of it have 
been stated for general rearrangements in [9, Theorem 3.1], [42, Proposition 3.3.9], and 
[46, Corollary 1]; however, these works take a different approach to rearrangements, so 
we provide a proof and brief commentary in the Appendix.

Proposition 3.7. Let j : R → [0, ∞) be convex with j(0) = 0. If T : V(Rn) → V(Rn) is a 
rearrangement, then ∫

Rn

j(Tf(x) − Tg(x)) dx ≤
∫
Rn

j(f(x) − g(x)) dx (3.12)

for f, g ∈ V(Rn) such that either integral exists. In particular, T has the Lp-contracting 
property.

Lemma 3.8. Let X = M(Rn), M+(Rn), S(Rn), or V(Rn). If T : X → X is a rear-
rangement, then the maps ♦T , ♦∗

T : Ln → Ln are well defined, measure preserving, and 
monotonic (pointwise monotonic, in the case of ♦∗

T , i.e., A ⊂ B ⇒ ♦∗
TA ⊂ ♦∗

TB). 
Moreover, T and ♦∗

T are continuous from the inside and from the outside.

Proof. The induced map ♦T : Ln → Ln is well defined, measure preserving, and mono-
tonic by Propositions 3.3(i) and 3.5(i). It follows that ♦∗

T : Ln → Ln is well defined 
and measure preserving by the Lebesgue density theorem, and pointwise monotonic by 
Lemma 2.1(i).
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Lemma 3.1 with E = Ln and ♦ replaced by ♦T shows that T is continuous from the 
inside and from the outside. The fact that ♦∗

T is also continuous from the inside and 
from the outside is then an easy consequence of the Lebesgue density theorem. �

It is convenient to state the following lemma for the induced maps ♦T of a rearrange-
ment T , but it holds more generally for any monotonic map ♦ : E ⊂ Ln → Ln and 
A, B ∈ E .

Lemma 3.9. Let X = M(Rn), M+(Rn), S(Rn), or V(Rn), let T : X → X be a rear-
rangement, and let A, B ∈ Ln.
(i) If A ⊂ B, essentially, then ♦∗

TA ⊂ ♦∗
TB.

(ii) If A = B, essentially, then ♦∗
TA = ♦∗

TB.
(iii) ♦∗

TA = ♦∗
TA

∗.
(iv) ♦∗

TA = ♦TA = ♦TA
∗, essentially.

(v) For f ∈ X and s ≥ t > ess inf f , we have ♦∗
T {z : f(z) ≥ s} ⊂ ♦∗

T {z : f(z) ≥ t}.

Proof. (i) Since ♦T is monotonic by Lemma 3.8, we have ♦TA ⊂ ♦TB, essentially. The 
conclusion follows from (3.3) and Lemma 2.1(i).

Parts (ii) and (iii) follow easily, the latter using the fact that A = A∗, essentially. The 
latter equality and the monotonicity of ♦T yield the second equality in (iv), while the 
first is a consequence of (3.3) and ♦TA = (♦TA)∗, essentially.

Part (v) follows from (i) and the fact that {z : f(z) ≥ s} ⊂ {z : f(z) ≥ t} for 
s ≥ t > ess inf f . �

Let X = S(Rn) or V(Rn) and let T : X → X be a rearrangement. Using (3.10), the 
Lebesgue density theorem and the fact that the supremum is over a countable set of 
values, and Lemma 3.9(v), we obtain

Tf(x) = max {sup{t ∈ Q, t > ess inf f : x ∈ ♦T {z : f(z) ≥ t}}, ess inf f}

= max {sup{t ∈ Q, t > ess inf f : x ∈ ♦∗
T {z : f(z) ≥ t}}, ess inf f}

= max {sup{t ∈ R, t > ess inf f : x ∈ ♦∗
T {z : f(z) ≥ t}}, ess inf f} , (3.13)

essentially. This shows that by substituting ♦∗
T for ♦T in (3.10), we may take the supre-

mum over R and thus bring the formula into line with those in [9] and [46]; see the 
discussion in [6, Appendix].

4. Smoothing rearrangements and reduction of the modulus of continuity

Before embarking on the main goal of this section, we prove the inequalities (4.1)
below for smoothing rearrangements. These will not be needed for the sequel, but seem 
interesting and follow fairly easily from what we know so far.
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Lemma 4.1. Suppose that Kn
n ⊂ E ⊂ Ln and that ♦ : E → Ln is measure preserving and 

smoothing. Then S(♦K) ≤ S(K) for K ∈ Kn
n and hence ♦ maps balls to balls.

Proof. Let K ∈ Kn
n. For ε > 0, the assumed properties of ♦ imply that

Hn((♦∗K) + εBn) ≤ Hn(♦(K + εBn)) = Hn(K + εBn)

and Hn(♦∗K) = Hn(K). It follows, using (2.12) with A = ♦K and the relation 
between the (lower) outer Minkowski content (defined by (2.8)) and perimeter [11, The-
orem 14.2.1], that

S(♦K) = S(♦∗K) ≤ M∗(♦∗K) = lim inf
ε→0+

Hn((♦∗K) + εBn) −Hn(♦∗K)
ε

≤ lim
ε→0+

Hn(K + εBn) −Hn(K)
ε

= S(K).

Consequently, ♦K has finite perimeter. The fact that ♦ maps balls to balls is now a 
direct consequence of the isoperimetric inequality for sets in Ln of finite perimeter and 
its equality condition (see [28, p. 165]). �

Recall that M∗(A) and M∗(A) are the upper and lower outer Minkowski content of 
A, defined by (2.8).

Theorem 4.2. Let X = M(Rn), M+(Rn), S(Rn), or V(Rn) and suppose that T : X → X

is a rearrangement. If T is smoothing, then

M∗(♦∗
TA) ≤ M∗(A∗) and M∗(♦∗

TA) ≤ M∗(A∗) (4.1)

for bounded A ∈ Mn. Moreover, S(♦TK) ≤ S(K) for K ∈ Kn
n and hence ♦T maps balls 

to balls.

Proof. Let A ∈ Mn be bounded and let ε > 0. Then the fact that ♦∗
TA = ♦∗

TA
∗ by 

Lemma 3.9(iii), (3.5) with A replaced by A∗, Lemma 3.9(iv) with A replaced by A∗+εBn, 
and the equimeasurability of T imply that

Hn((♦∗
TA)+ εBn) ≤ Hn(♦∗

T (A∗ + εBn)) = Hn(♦T (A∗ + εBn)) = Hn(A∗ + εBn) (4.2)

and

Hn(♦∗
TA) = Hn(♦TA) = Hn(A) = Hn(A∗). (4.3)

We obtain the inequalities (4.1) directly from (2.8), (4.2), and (4.3).
The second statement in the lemma follows directly from Lemma 4.1 with ♦ replaced 

by ♦T , which is valid by Lemma 3.8. �
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Example 4.3. (i) Let H = e⊥n and define ♦ : Kn
n → Kn

n by ♦K = MHK, the Minkowski 
symmetral of K (see [4, Section 3]). Then ♦ is smoothing but not measure preserving 
and does not satisfy S(♦K) ≤ S(K) for each K ∈ Kn

n. This shows that the measure-
preserving assumption in Lemma 4.1 cannot be dropped.

(ii) Let K ∈ Kn
(o) and define ♦ : Ln → Kn

n by ♦A = rAK, where rA =
(Hn(A)/Hn(K))1/n. This map, which corresponds to the convex symmetrization in [1], 
is monotonic and measure preserving and, using (3.2) and the Brunn-Minkowski inequal-
ity [19], it is easy to see that it is K-smoothing. Clearly, ♦ maps balls to balls if and 
only if K is a ball, and we claim that it is smoothing if and only if K is an o-symmetric 
ball. To see this, note that by definition, ♦ is smoothing if

Hn(A)1/nK + dHn(K)1/nBn ⊂ Hn(A + dBn)1/nK

for all A ∈ Ln. If A = K, this implies that

Hn(K)1/n(K + dBn) ⊂ Hn(K + dBn)1/nK.

Since the sets on both sides of this inclusion have the same volume, the inclusion must 
be an equality and hence

Hn(K)1/nK + Hn(K)1/ndBn = Hn(K)1/nK +
(
Hn(K + dBn)1/n −Hn(K)1/n

)
K.

The cancelation law [36, p. 139] for Minkowski addition yields

Hn(K)1/ndBn =
(
Hn(K + dBn)1/n −Hn(K)1/n

)
K,

which holds if and only if K = rBn for some r ≥ 0. Thus, the smoothing assumption 
cannot be omitted in Lemma 4.1.

Now suppose that X = S(Rn) or V(Rn) and T : X → X is the rearrangement given, 
for all x ∈ Rn, by (3.10) or (3.13) with ♦T = ♦. Then the superlevel sets of Tf are 
dilates of K, so T is the K-Schwarz rearrangement mentioned in the Introduction, and 
again, unless K is an o-symmetric ball, T is K-smoothing but not smoothing. Therefore 
the smoothing assumption in Theorem 4.2 cannot be replaced by K-smoothing for any 
non-spherical convex body K.

See Example 4.13 for more information about the rearrangement T . �
In the rest of this section, we study the relationship between the K-smoothing and 

reduction of the K-modulus of continuity properties of a rearrangement T : X → X, 
where X = M(Rn), M+(Rn), S(Rn), or V(Rn). When K = Bn, some information of 
this type was obtained by Brock and Solynin in [9, Theorem 3.3], which states that a 
rearrangement (in their sense of the term) that is continuous from the inside is smoothing 
if and only if it reduces the modulus of continuity of continuous functions in S(Rn). A 
comparison of their approach to rearrangements and ours can be found in [6, Appendix].
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When K = Bn, it is possible to use [9, Theorem 3.3] to obtain the same result for our 
rearrangements, i.e., the equivalence (ii)⇔(iii) of Corollary 4.12 below. To see this, note 
firstly that the continuity from the inside assumption is not necessary in our context, 
by Lemma 3.8. If T : S(Rn) → S(Rn) is a rearrangement, then by Lemma 3.8, the set 
transformation ♦∗

T : Ln → Ln is a rearrangement in the sense of [9, p. 1762], since it is 
pointwise monotonic. If T : S(Rn) → S(Rn) denotes the rearrangement map induced by 
♦∗

T via [9, (3.1), p. 1762], then (3.13) yields T = T , so [9, Theorem 3.3] is valid for T .
However, even when K = Bn, Theorems 4.8 and 4.11 below are more general than [9, 

Theorem 3.3], since they apply to much wider classes of functions.
In (ii) of the following lemma, we assume that A ∈ Mn is bounded to ensure that 

A + d intK ∈ Ln when d > 0. This seems unavoidable since A + d intK �∈ Ln when A is 
unbounded, in which case ♦∗

T (A + d intK) is not defined.

Lemma 4.4. Let X = M(Rn), M+(Rn), S(Rn), or V(Rn), let T : X → X be a rear-
rangement, and let K ∈ Kn

(o). The following statements are equivalent.
(i) T is K-smoothing.
(ii) For each d > 0 and bounded A ∈ Mn, we have

(♦∗
TA) + d intK ⊂ ♦∗

T (A + d intK). (4.4)

(iii) For each d > 0 and bounded A ∈ Mn, (4.4) holds essentially.
(iv) For each d > 0 and A ∈ Ln, we have

(♦∗
TA) + d intK ⊂ ∪{♦∗

TE : E ∈ Ln, E ⊂ A + d intK}, (4.5)

essentially.

Proof. (i)⇒ (iii) Let d > 0, let A ∈ Mn be bounded, and choose N ∈ N so that 1/N < d. 
Using the K-smoothing property of T and the continuity of ♦∗

T from the inside provided 
by Lemma 3.8, we obtain

(♦∗
TA) + d intK = ∪∞

m=N ((♦∗
TA) + (d− 1/m)K) ⊂ ∪∞

m=N ♦∗
T (A + (d− 1/m)K)

= ♦∗
T (∪∞

m=N (A + (d− 1/m)K)) = ♦∗
T (A + d intK),

essentially. This proves (4.4).
(iii)⇒ (ii) Let d > 0 and let A ∈ Mn be bounded. From the fact that (♦∗

TA) +d intK
is open, the essential inclusion (4.4), and parts (i) and (iii) of Lemma 2.1, we obtain

(♦∗
TA) + d intK = ((♦∗

TA) + d intK))∗ ⊂ ♦∗
T (A + d intK),

proving (ii).
(ii)⇒(i) Let d > 0 and let A ∈ Mn be bounded. We use (4.4) and the continuity of 

♦∗
T from the outside from Lemma 3.8 to get
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(♦∗
TA) + dK ⊂ ∩m∈N ((♦∗

TA) + (d + 1/m) intK) ⊂ ∩m∈N ♦∗
T (A + (d + 1/m) intK)

= ♦∗
T (∩m∈N(A + (d + 1/m) intK)) = ♦∗

T (A + dK),

essentially, so T is K-smoothing.
(iii)⇒(iv) Let d > 0, let A ∈ Ln, and define Am = A ∩m intK for m ∈ N. Since ♦∗

T

is continuous from the inside by Lemma 3.8, we obtain

(♦∗
TA) + d intK = (♦∗

T (∪m∈NAm)) + d intK

= (∪m∈N ♦∗
TAm) + d intK = ∪m∈N(♦∗

TAm + d intK)

⊂ ∪m∈N ♦∗
T (Am + d intK) ⊂ ∪{♦∗

TE : E ∈ Ln, E ⊂ A + d intK},

essentially, and (4.5) follows.
(iv)⇒(iii) Let d > 0 and let A ∈ Mn be bounded. Applying (4.5), we immediately 

obtain (4.4). �
Recall the definition (2.13) of approximate continuity.

Lemma 4.5. Let d > 0, let f ∈ M(Rn), and let C be the set of points of approximate 
continuity of f . If K ∈ Kn

(o), then

ωK,d(f) = ess sup
‖x−y‖K≤d

|f(x) − f(y)| = sup
‖x−y‖K≤d; x,y∈C

|f(x) − f(y)|.

Proof. Let d, f , and C be as in the statement of the lemma. Since C = Rn, essentially, 
we have

ωK,d(f) = ess sup
‖x−y‖K≤d; x,y∈C

|f(x) − f(y)|.

Moreover, it is clear that

ess sup
‖x−y‖K≤d; x,y∈C

|f(x) − f(y)| ≤ sup
‖x−y‖K≤d; x,y∈C

|f(x) − f(y)| = s,

say. To prove the reverse of the previous inequality, we may assume that s > 0, since if 
s = 0, it is trivial. Let 0 < ε < s/2. It suffices to show that

H2n ({(x, y) ∈ C × C : ‖x− y‖K ≤ d and |f(x) − f(y)| > s− ε}) > 0. (4.6)

To this end, choose x̄, ȳ ∈ C with d̄ = ‖x̄− ȳ‖K ≤ d, such that

|f(x̄) − f(ȳ)| > s− ε/2,

and note that d̄ > 0. For x ∈ Rn and r > 0, let
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Ax,r = {y ∈ B(x, r) ∩ C : |f(x) − f(y)| < ε/8}.

If (x, y) ∈ Ax̄,r ×Aȳ,r, then

|f(x) − f(y)| ≥ |f(x̄) − f(ȳ)| − ε/4 > s− ε. (4.7)

Define Ed = {(x, y) ∈ R2n : ‖x −y‖K ≤ d}. We aim to prove that H2n((Ax̄,r×Aȳ,r

)
∩

Ed

)
> 0 for small r > 0. Since

(Ax̄,r ×Aȳ,r) ∩ Ed = (Ax̄,r ×Aȳ,r) \
(
(Ax̄,r ×Aȳ,r) \ Ed

)
and

(Ax̄,r ×Aȳ,r) \ Ed ⊂ (B(x̄, r) ×B(ȳ, r)) \ Ed,

we have

H2n ((Ax̄,r ×Aȳ,r) ∩ Ed) ≥ H2n(Ax̄,r ×Aȳ,r)

−H2n(B(x̄, r) ×B(ȳ, r)) + H2n ((B(x̄, r) ×B(ȳ, r)) ∩ Ed) . (4.8)

The approximate continuity of f at x̄ and ȳ yields

lim
r→0

H2n(Ax̄,r ×Aȳ,r)
H2n(B(x̄, r) ×B(ȳ, r)) = lim

r→0

Hn(Ax̄,r)
Hn(B(x̄, r)) lim

r→0

Hn(Aȳ,r)
Hn(B(ȳ, r)) = 1. (4.9)

Let Δ = {(x, x) : x ∈ Rn} be the diagonal in R2n. Now ‖x − y‖K ≤ d̄ if and only if 
x ∈ d̄K + y, which holds if and only if (x, y) ∈

(
d̄K × {o}

)
+ (y, y). It follows that

Ed̄ =
(
d̄K × {o}

)
+ Δ (4.10)

is a 2n-dimensional convex cylinder in R2n as d̄ > 0. Since d̄ = ‖x̄ − ȳ‖K , we have 
(x̄, ȳ) ∈

(
∂
(
d̄K

)
× {o}

)
+ (ȳ, ȳ) and hence (x̄, ȳ) ∈ ∂Ed̄. By the convexity of Ed̄,

lim
r→0

H2n ((B(x̄, r) ×B(ȳ, r)) ∩ Ed̄)
H2n (B(x̄, r) ×B(ȳ, r)) ≥ lim

r→0

H2n (B((x̄, ȳ), r) ∩ Ed̄)
H2n (B(x̄, r) ×B(ȳ, r))

= a = a (x̄, ȳ) > 0, (4.11)

as the density of Ed̄ at the boundary point (x̄, ȳ) is positive. Since d̄ ≤ d, we have 
Ed̄ ⊂ Ed and (4.11) implies that

lim H2n ((B(x̄, r) ×B(ȳ, r)) ∩ Ed)
2n ≥ a. (4.12)
r→0 H (B(x̄, r) ×B(ȳ, r))
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From (4.8), (4.9), and (4.12), we conclude that

lim
r→0

H2n ((Ax̄,r ×Aȳ,r) ∩Ed)
H2n(B(x̄, r) ×B(ȳ, r)) ≥ a > 0. (4.13)

Finally, (4.7) and (4.13) imply (4.6). �
Lemma 4.6. Let A ⊂ Rn, let d > 0, and let K ∈ Kn

(o). For x ∈ Rn, define

dK(x,A) = inf{‖x− y‖K : y ∈ A} = inf{λ ≥ 0 : x ∈ λK + y for some y ∈ A}

and

fA(x) = (d− dK(x,A))+, (4.14)

where s+ is the nonnegative part of s ∈ R. Then fA is a K-contraction as defined in 
(2.6).

Proof. Let x, y ∈ Rn. If x, y �∈ A + dK, then (4.14) implies that |fA(x) − fA(y)| = 0 ≤
‖x − y‖K . Otherwise, we may, by relabeling if necessary, assume that x ∈ A + dK and 
dK(x, A) ≤ dK(y, A). Let δ > 0 and choose x′ ∈ A such that ‖x − x′‖K < dK(x, A) + δ. 
Then

|fA(x) − fA(y)| ≤ dK(y,A) − dK(x,A) < ‖y − x′‖K − ‖x− x′‖K + δ ≤ ‖y − x‖K + δ.

Therefore |fA(x) − fA(y)| ≤ ‖y − x‖K = ‖x − y‖−K . As was noted directly after (2.6), 
this proves that fA is a K-contraction. �
Lemma 4.7. (i) If T : M(Rn) → M(Rn) is a rearrangement, then (3.7) holds, essentially.
(ii) Let X = M(Rn) or M+(Rn) and suppose that T : X → X is a rearrangement. If 
α > 0 and β = 0, then (3.8) holds, essentially.
(iii) Let X = M(Rn) or M+(Rn) and suppose that T : X → X is a rearrangement. 
Then (3.8) holds, essentially, if α = 0 and β ∈ R when X = M(Rn), and also if α = 0
and β ≥ 0 when X = M+(Rn) and T reduces the K-modulus of continuity for some 
K ∈ Kn

(o).

Proof. (i) By Proposition 3.2(iii), T : V(Rn) → V(Rn). Let A ∈ Ln. Since 1A ∈ V(Rn), 
the result follows from Proposition 3.3(ii).

(ii) By (i), (3.7) holds, essentially, when X = M(Rn). With this in hand, the second 
paragraph of the proof of Proposition 3.4 can be followed verbatim.

(iii) If X = M(Rn), the result follows from Proposition 3.2(iii). The latter fails when 
X = M+(Rn), by [6, Example 4.3], but if β ≥ 0, T reduces the K-modulus of continuity 
for some K ∈ Kn

(o), and f = β, essentially, then ωK,d(Tf) = ωK,d(f) = 0 for all d > 0. 
This and the equimeasurability of T give Tf = β, essentially. �
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Theorem 4.8. Let X = M(Rn), M+(Rn), S(Rn), or V(Rn), and let K ∈ Kn
(o). If 

T : X → X is a rearrangement that reduces the K-modulus of continuity of each K-
contraction in X, then T is K-smoothing.

Proof. Let d > 0, let A ∈ Mn be bounded, and let fA be defined by (4.14). By 
Lemma 4.6, fA ∈ V(Rn) is a K-contraction, so ωK,d(fA) ≤ d for all d > 0, by the 
definition (3.4) of the K-modulus of continuity. If N0 is the complement of the set of 
points of approximate continuity of TfA, then Hn(N0) = 0. Lemma 4.5 implies that

|TfA(x) − TfA(y)| ≤ ωK, ‖x−y‖K
(TfA) ≤ ‖x− y‖K

for x, y ∈ Rn \ N0, so TfA is a K-contraction on Rn \ N0. Since T is monotonic and 
d1A+d intK ≥ fA ≥ d1A, we have

T (d1A+d intK)(x) ≥ TfA(x) ≥ T (d1A)(x)

for x ∈ Rn \N1, where Hn(N1) = 0.
By Proposition 3.3(ii) and Lemma 4.7(i), there is a set N2 with Hn(N2) = 0 such that

T1A+d intK(x) = 1♦T (A+d intK)(x) (4.15)

for x ∈ Rn\N2. By Proposition 3.4 and Lemma 4.7(ii), there is a set N3 with Hn(N3) = 0
such that (3.8) holds everywhere on Rn \ N3 when α = d, β = 0, and A = A or 
A = A + d intK. Let N = ∪{Ni : i = 0, 1, 2, 3}.

Let x0 ∈ ((♦∗
TA) + d intK) \N . There is a y0 ∈ (♦TA) \N such that ‖x0 − y0‖K =

d′ < d. As TfA is a K-contraction on Rn \N , TfA(x0) ≥ TfA(y0) − d′ > TfA(y0) − d. 
Using (3.8), we obtain

d T1A+d intK(x0) = T (d1A+d intK)(x0) ≥ TfA(x0)

> TfA(y0) − d ≥ T (d1A)(y0) − d = d T1A(y0) − d = d− d = 0,

since T1A(y0) = 1 due to y0 ∈ ♦TA and (3.6). Thus T1A+d intK(x0) > 0 and then x0 ∈
♦T (A +d intK), by (4.15). This shows that (♦∗

TA) +d intK ⊂ ♦T (A +d intK) = ♦∗
T (A +

d intK), essentially. Therefore (4.4) holds and T is K-smoothing by Lemma 4.4. �
Lemma 4.9. Let d > 0, let f ∈ M(Rn), let K ∈ Kn

(o), and let t ∈ R. Then

{x : f(x) ≥ t + ωK, d(f)}∗ + d intK ⊂ {x : f(x) ≥ t}∗.

Proof. If N is the complement of the set of points of approximate continuity of f , then 
Hn(N) = 0 and, by Lemma 4.5,

ωK, d(f) = ess sup |f(x) − f(y)| = sup |f(x) − f(y)|

‖x−y‖K≤d ‖x−y‖K≤d; x,y �∈N
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for any d > 0. Now fix d > 0 and let y ∈ {x : f(x) ≥ t +ωK, d(f)}∗+d intK. By (2.5), we 
can choose z ∈ {x : f(x) ≥ t +ωK, d(f)}∗ and ε = ε(y) > 0 such that ‖y− z‖K + 2ε < d. 
Let y′ ∈ (εK + y) \ N and z′ ∈ ({x : f(x) ≥ t + ωK, d(f)} ∩ (−εK + z)) \ N . Then 
‖y′ − y‖K ≤ ε and ‖z − z′‖K ≤ ε, so ‖y′ − z′‖K ≤ ‖y − z‖K + 2ε < d. Since y′, z′ �∈ N , 
we have |f(y′) − f(z′)| ≤ ωK, d(f). Hence

f(y′) ≥ f(z′) − ωK, d(f) ≥ t.

This implies that (εK + y) ⊂ {x : f(x) ≥ t}, essentially. Thus the latter set essentially 
contains an open neighborhood of y, and the desired conclusion follows easily. �
Lemma 4.10. If α > 0, d > 0, g ∈ M(Rn), and an o-symmetric K ∈ Kn

(o) are such that

{x : g(x) ≥ t + α}∗ + d intK ⊂ {x : g(x) ≥ t}∗, (4.16)

essentially, for t > ess inf g, then ωK, d(g) ≤ α.

Proof. Note firstly that the inclusion in (4.16) actually holds pointwise, a fact we shall 
use later in the proof. This is because the set G = {x : g(x) ≥ t +α}∗+d intK is open, so 
G∗ = G, and the pointwise inclusion then follows from parts (i) and (iii) of Lemma 2.1.

Suppose that ωK, d(g) > α. Let Ed = {(y, z) ∈ Rn ×Rn : ‖y − z‖K ≤ d}, let

F = {(y, z) ∈ Rn ×Rn : g(y), g(z) ≥ ess inf g and |g(y) − g(z)| > α},

and let A = Ed ∩ F . Then ωK, d(g) > α implies that H2n(A) > 0. The o-symmetry of K
yields ‖z− y‖K = ‖y− z‖K , so (z, y) ∈ A if and only if (y, z) ∈ A. For k ∈ N and q ∈ Q

with q > ess inf g, let

Vk,q = Ed−1/k ∩ {(y, z) ∈ Rn ×Rn : g(y) ≥ q + α, and ess inf g ≤ g(z) < q},

let Wk,q = Vk,q ∪ {(z, y) : (y, z) ∈ Vk,q}, and let W = ∪{Wk,q : k ∈ N, q ∈ Q}. 
Clearly W ⊂ A. Let Z = {(y, z) ∈ Rn × Rn : ‖y − z‖K = d}. By Fubini’s theorem, 
H2n(Z) = 0. For each (y, z) ∈ A \ Z, we can find k ∈ N such that ‖y − z‖K ≤ d − 1/k
and |g(y) − g(z)| > α, and hence also a q ∈ Q such that q > ess inf g and

ess inf g ≤ g(z) < q < q + α ≤ g(y)

(or the same with y and z interchanged). This means that A \ Z ⊂ W and therefore 
H2n(W ) = H2n(A) > 0. It follows that there are k0 ∈ N and q0 ∈ Q with q0 > ess inf g
such that H2n(Wk0,q0) > 0 and hence, without loss of generality, H2n(Vk0,q0) > 0. 
By the Lebesgue density theorem, there exists (y0, z0) ∈ Vk0,q0 such that y0 ∈ {x :
g(x) ≥ q0 + α}∗ and z0 ∈ {x : g(x) < q0}∗. Since ‖z0 − y0‖K = ‖y0 − z0‖K < d, we 
have z0 ∈ int dK + y0. The pointwise inclusion in (4.16) with t = q0 then implies that 
z0 ∈ {x : g(x) ≥ q0}∗, a contradiction that completes the proof. �
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Theorem 4.11. Let X = S(Rn) or V(Rn), let K ∈ Kn
(o), and let T : X → X be a 

K-smoothing rearrangement.
(i) If K is o-symmetric, then T reduces the K-modulus of continuity of each f ∈ X.
(ii) If d > 0, f ∈ X, and rBn ⊂ K ⊂ RBn for 0 < r ≤ R, then ωdr(Tf) ≤ ωdR(f).

Proof. (i) Let d > 0, let f ∈ X, and let K be o-symmetric. If ωK,d(f) = 0, then clearly f
is essentially constant, and hence, by Proposition 3.2(iii), Tf is also essentially constant. 
Then ωK,d(Tf) = 0 = ωK,d(f). Therefore we may assume that ωK,d(f) > 0.

Let t > ess inf f and recall that ess inf Tf = ess inf f , by Proposition 3.2(i). Then, 
using (3.9), Lemma 3.9(iii), (4.5) with A = {x : f(x) ≥ t + ωK,d(f)}∗, Lemma 3.9(i), 
Lemma 4.9, and Lemma 3.9(iii) and (3.9) again, we obtain

{x : Tf(x) ≥ t + ωK,d(f)}∗ + d intK

= (♦∗
T {x : f(x) ≥ t + ωK,d(f)}) + d intK

= (♦∗
T {x : f(x) ≥ t + ωK,d(f)}∗) + d intK

⊂ ∪{♦∗
TE : E ∈ Ln, E ⊂ {x : f(x) ≥ t + ωK,d(f)}∗ + d intK}

⊂ ♦∗
T {x : f(x) ≥ t}∗ = ♦∗

T {x : f(x) ≥ t} = {x : Tf(x) ≥ t}∗,

essentially. The conclusion ωK,d(Tf) ≤ ωK,d(f) follows from the o-symmetry of K and 
Lemma 4.10 with g = Tf and α = ωK,d(f).

(ii) The proof is an easy modification of that of part (i). Let d > 0 and let f ∈ X. If 
ωdR(f) = 0, then as at the beginning of the proof of (i), we conclude that ωdr(Tf) =
0 = ωdR(f). Therefore we may assume that ωdR(f) > 0. The inclusion K ⊂ RBn implies 
that ωK, d(f) ≤ ωRBn, d(f) = ωdR(f), so Lemma 4.9 yields

{x : f(x) ≥ t + ωdR(f)}∗ + d intK ⊂ {x : f(x) ≥ t}∗ (4.17)

for t ∈ R. Arguing as above with A = {x : f(x) ≥ t + ωdR(f)}∗ and using (4.17) instead 
of Lemma 4.9, we obtain

{x : Tf(x) ≥ t + ωdR(f)}∗ + d intK ⊂ {x : Tf(x) ≥ t}∗,

essentially, as this does not require K to be o-symmetric. Since rdDn ⊂ d intK, the 
conclusion ωdr(Tf) ≤ ωdR(f) follows from Lemma 4.10 with K = Bn, g = Tf , α =
ωdR(f), and d replaced by dr. �
Corollary 4.12. Let X = S(Rn) or V(Rn), let K ∈ Kn

(o) be o-symmetric, and let T : X →
X be a rearrangement. The following are equivalent.
(i) T reduces the K-modulus of continuity.
(ii) T reduces the K-modulus of continuity of each K-contraction in X.
(iii) T is K-smoothing.
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Proof. The implication (i)⇒(ii) is obvious on noting that each K-contraction is continu-
ous, while (ii)⇒(iii) and (iii)⇒(i) follow from Theorems 4.8 and 4.11(i), respectively. �

The following example shows that the o-symmetry assumption on K in Theo-
rem 4.11(i) and Corollary 4.12 (the implications (iii)⇒ (i) and (iii)⇒ (ii)) cannot be 
omitted.

Example 4.13. Let K ∈ Kn
(o), let X = S(Rn) or V(Rn), and let T : X → X be the 

K-Schwarz rearrangement defined in Example 4.3(ii). If f ∈ X, the superlevel sets of Tf
are dilates of K. Since T is K-smoothing, it follows from Theorem 4.11 that when K is 
o-symmetric, T reduces the K-modulus of continuity of functions in X. However, this is 
not generally the case if K is not o-symmetric. To see this, let o �= x0 ∈ Dn = intBn, let 
K = Bn + x0, and let f be defined by f(x) = 1 −‖x‖ if x ∈ Bn and f(x) = 0 otherwise. 
Define v = x0/‖x0‖ and

M = max
u∈Sn−1

ρK(u) = ρK(v) = 1 + ‖x0‖.

Then ωK,d(f) = dM for small d > 0. (For ωK,d(f) ≥ dM , it suffices to take y = o

and x = dMv; then ‖x − y‖K = d, because this is equivalent to x ∈ y + d∂K, and 
|f(x) − f(y)| = ‖x‖ = dM for small d > 0. The reverse inequality comes from the 
observation that f is Lipschitz with Lipschitz constant 1, and from ‖x −y‖ ≤ M‖x −y‖K .)

Now we claim that ωK,d(Tf) > dM . It suffices to prove |Tf(o) − Tf(−dMv)| > dM , 
since ‖o − (−dMv)‖K = d. For t ∈ (0, 1), the statement

−dMv ∈ (1 − t)(Bn + x0) = ♦T {z : f(x) ≥ t} = ♦∗
T {z : f(x) ≥ t}

is true if and only if t ≤ 1 − dM/(1 − ‖x0‖). By (3.13), this implies that Tf(−dMv) =
1 −dM/(1 −‖x0‖). With similar but simpler arguments we argue that Tf(o) = 1. These 
two facts yield |Tf(o) − Tf(−dMv)| = dM/(1 − ‖x0‖) > dM , as required. �

When X = M(Rn) or M+(Rn), the implication (ii)⇒(iii) in Corollary 4.12 remains 
true, by Theorem 4.8, but the following example, a modification of [6, Example 4.4], 
shows that (iii)⇒(ii) does not hold generally.

Example 4.14. If K ∈ Kn
(o) and X = M(Rn) or M+(Rn), there are K-smoothing rear-

rangements T : X → X that do not reduce the K-modulus of continuity. To see this, 
call f ∈ X of type I if Hn({x : f(x) > t}) = ∞ for t ≥ ess inf f and of type II otherwise, 
i.e., if there is a t0 ≥ ess inf f such that Hn({x : f(x) > t}) < ∞ for t > t0. Then define

Tf =
{
f + 1Bn , if f is of type I,
f, if f is of type II.
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Clearly, T : X → X is equimeasurable. If f ≤ g, then either f and g are of the same 
type, or f is of type II and g is of type I. It follows that Tf ≤ Tg and hence that T is a 
rearrangement. The associated mapping ♦T is the identity on Ln, so T is K-smoothing. 
The function f0(x) = ex1 is continuous but its image Tf0 is not. Hence, T does not 
reduce the K-modulus of continuity of continuous functions. �
5. The Pólya-Szegő inequality for Lipschitz functions

Recall that the subgraph Kf ⊂ Rn+1 of a function f ∈ M(Rn) is defined by (2.9).

Lemma 5.1. If f ∈ M(Rn) and s ∈ R, then

K∗
f ∩ {xn+1 = s} ⊂ (Kf ∩ {xn+1 = s})∗ , (5.1)

where the set of Lebesgue density points on the right is formed with respect to the hyper-
plane {xn+1 = s} = Rn + sen+1, identified with Rn.

Proof. Let x ∈ {xn+1 = s}. If x �∈ (Kf ∩ {xn+1 = s})∗, there exists 0 < a < 1 such that 
if r0 > 0, there is an 0 < r < r0 such that

Hn (Kf ∩ {xn+1 = s} ∩B(x, r)) < (1 − a)κnr
n, (5.2)

where B(x, r) is the (n +1)-dimensional ball with center x and radius r. If y ∈ e⊥n+1 and 
y+sen+1 �∈ Kf ∩{xn+1 = s} ∩B(x, r), then by the definition (2.9) of Kf , y+ten+1 �∈ Kf

for each t > s. Therefore, by (5.2) and Fubini’s theorem, Hn+1(Kf ∩ B(x, r)) is largest 
when

Kf ∩ {xn+1 = s} ∩B(x, r) ⊂ {xn+1 = s} ∩B
(
x, (1 − a)1/nr

)
,

in which case

Kf ∩B(x, r) ⊂
(((

(1 − a)1/nrBn
)
× [0, s)

)
∪ (rBn × (−∞, s])

)
∩B(x, r). (5.3)

Let

E(a, n, r) = rBn+1 \
((

(1 − a)1/nrBn
)
×R

)
be the region in Rn+1 between the sphere with center o and radius r and an infinite 
o-symmetric cylinder with radius (1 − a)1/nr. From (5.3), we see that

Hn+1(B(x, r) \Kf ) ≥ Hn+1(E(a, n, r))/2 ≥ c(a, n)rn+1,

where c(a, n) = Hn+1(E(a, n, 1))/2 > 0. It follows that x �∈ K∗
f . �
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Let X = M(Rn), M+(Rn), S(Rn), or V(Rn), let T : X → X be a rearrangement, 
and let E be a subset of the hyperplane {xn+1 = t} = Rn + ten+1 in Rn+1, such that 
E | Rn ∈ Ln. Slightly abusing notation, we shall define

♦TE = (♦T (E |Rn)) + ten+1, (5.4)

thereby extending the action of ♦T to horizontal hyperplanes in Rn+1. The action of ♦∗
T

can be extended in a similar fashion. Note that by (3.9), (2.9), and (5.4), for X = S(Rn)
or V(Rn) we have

KTf ∩ {xn+1 = t} = {x ∈ Rn : Tf(x) ≥ t} + ten+1

= (♦T {x ∈ Rn : f(x) ≥ t}) + ten+1

= ♦T (Kf ∩ {xn+1 = t}),

essentially, for t > ess inf f . By Lemma 2.1(ii), this yields the pointwise identity

(KTf ∩ {xn+1 = t})∗ = ♦∗
T (Kf ∩ {xn+1 = t}) (5.5)

for t > ess inf f , where here and below, sets of Lebesgue density points are taken with 
respect to the appropriate horizontal hyperplane identified with Rn.

The following lemma is stated in a general form required for Section 7. The reader 
interested only in the results of this section may focus on the special case corresponding 
to K = Bn, intK = Dn, when C ⊂ Rn+1 is an o-symmetric convex body of revolution 
about the xn+1-axis.

Lemma 5.2. Let X = S(Rn) or V(Rn), let T : X → X be a rearrangement, and let 
d > 0. Let K ∈ Kn

(o) and let C ⊂ Rn+1 be a convex body supported by the hyperplanes 
{xn+1 = ±1} and all of whose sections C ∩ {xn+1 = t}, t ∈ [−1, 1], are dilates of K. If 
T is K-smoothing, a > d + ess inf f , and f ∈ X is such that {x : f(x) ≥ a} is bounded, 
then

((KTf ∩ {xn+1 ≥ a})∗ + d intC) ∩ {xn+1 = t}
⊂ ♦∗

T (((Kf ∩ {xn+1 ≥ a}) + d intC) ∩ {xn+1 = t}) (5.6)

for t > ess inf f .

Proof. Let d > 0 and let C = {(x, xn+1) ∈ Rn × R : x ∈ g(xn+1)K, |xn+1| ≤ 1}, for a 
suitable concave function g defined on [−1, 1]. For t ∈ R, denote by Πt the orthogonal 
projection onto {xn+1 = t}. If L is any set in Rn+1, then

(L + d intC) ∩ {xn+1 = t} =
⋃

Πt ((L ∩ {xn+1 = s}) + rs intK) , (5.7)

t−d<s<t+d
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where rs = d g((t −s)/d). Indeed, p ∈ (L +d intC) ∩{xn+1 = t} if and only if p | 〈en+1〉 =
ten+1 and there is a z ∈ L such that p ∈ z+d intC. If z | 〈en+1〉 = sen+1, then this holds 
if and only if t − d < s < t + d and

p− Πtz ∈ d g

(
t− s

d

)
intK,

that is, p ∈ Πt(z + rs intK).
Applying (5.7) with L replaced by L ∩ {xn+1 ≥ a}, we obtain

((L ∩ {xn+1 ≥ a}) + d intC) ∩ {xn+1 = t}

=
⋃

t−d<s<t+d

Πt ((L ∩ {xn+1 ≥ a} ∩ {xn+1 = s}) + rs intK)

=
⋃

t−d<s<t+d, s≥a

Πt ((L ∩ {xn+1 = s}) + rs intK) . (5.8)

Let f ∈ X satisfy the hypotheses of the lemma. By Lemma 2.1(i), we have

(KTf ∩ {xn+1 ≥ a})∗ ⊂ K∗
Tf ∩ {xn+1 ≥ a}∗ ⊂ K∗

Tf ∩ {xn+1 ≥ a}.

From this and (5.1) with f replaced by Tf , we obtain

(KTf ∩ {xn+1 ≥ a})∗ ∩ {xn+1 = s} ⊂ K∗
Tf ∩ {xn+1 = s} ⊂ (KTf ∩ {xn+1 = s})∗, (5.9)

whenever s ≥ a, while the set on the left is clearly empty if s < a. We use (5.7) with 
L = (KTf ∩ {xn+1 ≥ a})∗, (5.9), (5.5), (4.4) applied (via (5.4)) with A replaced by the 
bounded set Kf ∩{xn+1 = s}, s ≥ a, the fact that the action of ♦∗

T as extended by (5.4)
is the same for each t, the pointwise monotonicity of ♦∗

T provided by Lemma 3.9(i), and 
(5.8) with L = Kf , to obtain

((KTf ∩ {xn+1 ≥ a})∗ + d intC) ∩ {xn+1 = t}

=
⋃

t−d<s<t+d

Πt ([(KTf ∩ {xn+1 ≥ a})∗ ∩ {xn+1 = s}] + rs intK)

⊂
⋃

t−d<s<t+d, s≥a

Πt ([KTf ∩ {xn+1 = s}]∗ + rs intK)

=
⋃

t−d<s<t+d, s≥a

Πt ([♦∗
T (Kf ∩ {xn+1 = s})] + rs intK)

⊂
⋃

t−d<s<t+d, s≥a

Πt (♦∗
T [(Kf ∩ {xn+1 = s}) + rs intK])

=
⋃

♦∗
T (Πt [(Kf ∩ {xn+1 = s}) + rs intK])
t−d<s<t+d, s≥a
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⊂ ♦∗
T

( ⋃
t−d<s<t+d, s≥a

Πt [(Kf ∩ {xn+1 = s}) + rs intK]
)

= ♦∗
T (((Kf ∩ {xn+1 ≥ a}) + d intC) ∩ {xn+1 = t}) . �

Recall that M∗
C(A) is the upper anisotropic outer Minkowski content of A ∈ M(Rn)

with respect to a convex body C ∈ Kn
(o), obtained via the left-hand limit in (2.8) with 

Bn replaced by C. We will apply this notion in Rn+1.

Lemma 5.3. Let X = S(Rn) or V(Rn), let T : X → X be a rearrangement, and let C be 
as in Lemma 5.2. If T is smoothing, a > ess inf f , and f ∈ X is such that {x : f(x) ≥ a}
is bounded, then

M∗
C ((KTf ∩ {xn+1 ≥ a})∗) ≤ M∗

C(Kf ∩ {xn+1 ≥ a}).

Proof. Taking the Hn-measures of both sides of (5.6), integrating with respect to t, and 
using Fubini’s theorem and the fact that ♦ is measure preserving, we obtain

Hn+1 ((KTf ∩ {xn+1 ≥ a})∗ + d intC) ≤ Hn+1 ((Kf ∩ {xn+1 ≥ a}) + d intC) (5.10)

for 0 < d ≤ a − ess inf f . By the equimeasurability of T ,

Hn+1 ((KTf ∩ {xn+1 ≥ a})∗) = Hn+1(KTf ∩ {xn+1 ≥ a}) = Hn+1(Kf ∩ {xn+1 ≥ a}).

The desired inequality now follows directly from the definition of M∗
C (in Rn+1 and with 

C replaced by intC). �
Lemma 5.4. Let f ∈ S(Rn) be Lipschitz. If a > ess inf f , then {x : f(x) ≥ a} is bounded.

Proof. Let ε > 0 be such that a − ε > ess inf f and let L be the Lipschitz constant of f .
Suppose that {x : f(x) ≥ a} is unbounded. Then there are points xk in this set with 

‖xk+1‖ > ‖xk‖ +2ε/(1 +L) for k ∈ N. The Lipschitz property implies that f(x) ≥ a − ε

whenever x ∈ B (xk, ε/(1 + L)), k ∈ N. As these balls are disjoint, Hn({x : f(x) ≥
a − ε}) = ∞, contradicting f ∈ S(Rn). �

Recall that hC is the support function of C and Gf denotes the graph of f ∈ M(Rn). 
A result in the spirit of the following lemma was proved by Zhang [48, Lemma 3.1].

Lemma 5.5. Let f ∈ S(Rn) be Lipschitz and let C be as in Lemma 5.2. Let a > ess inf f
be such that Hn({x : f(x) = a}) = 0. Then

MC

(
(Kf ∩ {xn+1 ≥ a})∗

)
= MC

(
Kf ∩ {xn+1 ≥ a}

)
=

∫
Gf∩{xn+1>a}

hC(ν(x)) dHn(x) + Hn({x : f(x) ≥ a}), (5.11)

where ν(x) denotes the outer unit normal to Kf at x.



G. Bianchi et al. / Journal of Functional Analysis 287 (2024) 110422 31
Proof. Recall that if E ⊂ Rn+1 is Hn+1-measurable, its density Θ(E, x) at x is defined 
by (2.11) with n replaced by n + 1. For t ∈ [0, 1], define

Et = {x ∈ Rn+1 : Θ(E, x) = t}.

Let ∂eE = Rn+1 \ (E0 ∪ E1) denote the essential boundary of E. If E has locally finite 
perimeter, then by Federer’s theorem, ν(x) exists for Hn-almost all x ∈ ∂eE; see, for 
example, [28, Theorem 16.2].

Lussardi and Villa [27, Remark 4.2, Theorem 4.4, and Remark 4.5] prove the following 
result. If E ⊂ Rn+1 is a Borel set whose boundary is countably Hn-rectifiable and 
bounded, Hn(∂E ∩ E0) = 0, and E has the property that there exist γ > 0 and a 
probability measure μ in Rn+1 absolutely continuous with respect to Hn, such that for 
each x ∈ ∂E and r ∈ (0, 1),

μ(B(x, r)) ≥ γrn, (5.12)

then E has finite perimeter, the anisotropic outer Minkowski content of E with respect 
to C is defined, and

MC(E) =
∫

∂eE

hC(ν(x)) dHn(x). (5.13)

Recall that a set E ⊂ Rn+1 is countably Hn-rectifiable if there exist countably many 
Lipschitz maps gi : Rn → Rn+1 such that Hn (E \ ∪igi(Rn)) = 0.

Let Kf,a = Kf ∩ {xn+1 ≥ a}. We have

∂Kf,a =
(
Gf ∩ {xn+1 > a}

)
∪
(
Kf ∩ {xn+1 = a}

)
. (5.14)

If x ∈ Rn+1, write x′ = (x1, . . . , xn). It is clear that if x ∈ Kf ∩ {xn+1 = a} and 
f(x′) > a (or f(x′) = a), then Θ(Kf,a, x) = 1/2 (or Θ(Kf,a, x) ≤ 1/2, respectively). 
We claim that if x ∈ Gf ∩ {xn+1 > a} and Θ(Kf,a, x) exists, then Θ(Kf,a, x) ∈ (0, 1). 
Indeed, let x ∈ Gf ∩ {xn+1 > a}. If L denotes the Lipschitz constant of f and ε > 0 is 
sufficiently small, then

{(y′, yn+1) : yn+1 ≤ xn+1 − L‖y′ − x′‖} ∩B(x, ε) ⊂ Kf,a,

from which it is easy to see that Θ(Kf,a, x) > 0. Similarly, Θ(Kf,a, x) < 1 follows easily 
from

{(y′, yn+1) : yn+1 > xn+1 + L‖y′ − x′‖} ∩Kf,a = ∅.

This proves the claim.
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Since Hn({x : f(x) = a}) = 0, by assumption, the observations in the previous 
paragraph imply that

Hn
(
∂Kf,a ∩ (Kf,a)0

)
= 0 and ∂eKf,a = ∂Kf,a, (5.15)

up to a set of Hn-measure zero. The assumption that Hn({x : f(x) = a}) = 0 also 
implies that K∗

f,a = intKf,a and ∂
(
K∗

f,a

)
= ∂Kf,a, up to a set of Hn-measure zero. 

Arguments similar to those used for Kf,a prove that

Hn
(
∂
(
K∗

f,a

)
∩ (K∗

f,a)0
)

= 0 and ∂e
(
K∗

f,a

)
= ∂Kf,a, (5.16)

up to a set of Hn-measure zero.
We claim that Kf,a and K∗

f,a satisfy the hypotheses of Lussardi and Villa’s result. 
Towards this goal, note firstly that by Lemma 5.4, Kf,a and K∗

f,a are bounded, and by 
definition, their boundaries are countably Hn-rectifiable. Let

D = {x′ ∈ Rn : f(x′) ≥ a} + Bn ⊂ Rn,

let A1 = {(x′, f(x′)) : x′ ∈ D}, and let A2 = {(x′, a) : x′ ∈ D}. For E ⊂ Rn+1, define

μ(E) =
(
Hn (π(E ∩A1)) + Hn(E ∩A2)

)
/c,

where c = Hn(π(A1)) + Hn(A2) and π : Rn+1 → Rn is defined by π((x′, xn+1)) = x′. 
It is clear that μ is a probability measure in Rn and that since π is a contraction, μ is 
absolutely continuous with respect to Hn.

It now suffices to prove that μ satisfies (5.12) for each x ∈ ∂Kf,a. To this end, let 
y = (y′, yn+1) ∈ ∂Kf,a and let r ∈ (0, 1). If yn+1 = a then

μ(B(y, r)) ≥ Hn (B(y, r) ∩A2) /c = Hn (B(y, r) ∩ {xn+1 = a}) /c = κnr
n/c.

If yn+1 = f(y′), then π (B(y, r) ∩A1) contains {x ∈ Rn : ‖x −y′‖ ≤ r/(1 +L)}. Therefore

μ(B(y, r)) ≥ Hn (π (B(y, r) ∩A1)) /c ≥ Hn ({x ∈ Rn : ‖x− y′‖ ≤ r/(1 + L)}) /c

= κnr
n

c(1 + L)n .

Thus μ satisfies (5.12) with γ = κn/(c(1 + L)n).
Once we observe that∫

Kf∩{xn+1=a}

hC(ν(x)) dHn(x) = hC(−en+1)Hn({x : f(x) ≥ a}) = Hn({x : f(x) ≥ a}),

where we used the fact that hC(−en+1) = 1 for our choice of C, formula (5.13) with 
E = Kf,a and K∗

f,a, (5.14), (5.15), and (5.16) give (5.11). �
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The following lemma is stated in a general form necessary for Section 7. The reader 
interested only in the main results of this section may choose to focus on the special case 
when K = Bn, in which case hK(y) = ‖y‖ and C ⊂ Rn+1 is a o-symmetric convex body 
of revolution about the xn+1-axis.

Lemma 5.6. Let Φ : [0, ∞) → [0, ∞) be convex with Φ(0) = 0 and Φ �≡ 0, let M > 0, 
and let K ∈ Kn

(o). Then there exist b > 0 and a convex body C ⊂ Rn+1, supported by 
the hyperplanes {xn+1 = ±1} and all of whose sections C ∩ {xn+1 = t}, t ∈ [−1, 1], are 
dilates of K, such that

hC(y, 1) = 1 + bΦ(hK(y)), (5.17)

for y ∈ Rn with hK(y) ≤ M . In particular, C satisfies the conditions in Lemma 5.2.

Proof. Define

Ψ(t) =
{

Φ(t), if 0 ≤ t ≤ M,

mt + q, if t ≥ M,

where m > 0 and q ≤ 0 are such that Ψ : [0, ∞) → [0, ∞) is convex. Then, for y ∈ Rn

and t ∈ R, define

h(y, t) =
{
|t| (1 + bΨ(hK(y)/|t|) , if t �= 0,
bmhK(y), if t = 0,

(5.18)

=
{
|t| (1 + bΦ(hK(y)/|t|) , if |t| ≥ hK(y)/M,

bmhK(y) + (1 + b q)|t|, if |t| ≤ hK(y)/M,
(5.19)

where b > 0. We show that b can be chosen so that h = hC is the support function of a 
convex body C. To this end, note that from (5.18), the positive homogeneity of h follows 
immediately and the subadditivity of h for t > 0 or for t < 0 is a routine exercise using 
the triangle inequality and the convexity of Ψ. It is then enough to observe that if b is 
small enough to ensure that 1 +b q > 0, then the function b m hK(y) +(1 +b q)|t| in (5.19)
coincides with the support function of the cylinder b m K× [−(1 + b q), 1 + b q] ⊂ Rn×R. 
This proves (5.17).

It remains to prove that all sections C ∩ {xn+1 = t}, t ∈ [−1, 1], are dilates of K. 
Clearly o ∈ intC, since hC > 0. From (2.3) and (5.18), it follows easily that the sublevel 
sets of hC(y, 1), considered as a function of y, are dilates of the polar body K◦ of K. If 
t ∈ (0, 1], and ρC◦ denotes the radial function of the polar body C◦ of C (cf. (2.4)), then

C◦ ∩ {xn+1 = t} = {(z, t) : ρC◦(z, t) ≥ 1} = {t(z/t, 1) : ρC◦(z/t, 1) ≥ t}
= {t(y, 1) : ρC◦(y, 1) ≥ t} = t{(y, 1) : hC(y, 1) ≤ 1/t}
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is also a dilate of K◦. This argument can be repeated for the sections of C◦ corresponding 
to t ∈ [−1, 0) and, by continuity, for C◦∩{xn+1 = 0}. Thus there exists a concave function 
f on [−1, 1] such that

C◦ = {(f(t)z, t) ∈ Rn ×R : t ∈ [−1, 1], z ∈ K◦}.

Let s ∈ [−1, 1]. A point (y, s) ∈ Rn ×R belongs to C if and only if

f(t)(y · z) + s t ≤ 1 ∀z ∈ K◦, ∀t ∈ [−1, 1],

that is, if and only if

y · z ≤ min
t∈−[1,1]

1 − s t

f(t) ∀z ∈ K◦.

The last formula shows that C∩{xn+1 = s} equals K dilated by the factor mint∈−[1,1](1 −
s t)/f(t). �

The special case r = R of the following lemma will be needed for the main results of 
this section, while the general case is applied in Section 7.

Lemma 5.7. Let X = S(Rn) or V(Rn), let K ∈ Kn satisfy rBn ⊂ K ⊂ RBn for 
0 < r ≤ R, and let T : X → X be a K-smoothing rearrangement. If f ∈ X is Lipschitz 
with Lipschitz constant L, then there is a Lipschitz function F : Rn → R, with Lipschitz 
constant at most LR/r, such that F (x) = Tf(x) for Hn-almost all x ∈ Rn.

Proof. Let f ∈ X be Lipschitz with Lipschitz constant L and let A be the set of points 
of approximate continuity of Tf . Since f is continuous, Lemma 4.5 and Theorem 4.11(ii) 
yield

sup
‖x−y‖≤dr; x,y∈A

|Tf(x) − Tf(y)| ≤ sup
‖x−y‖≤dR

|f(x) − f(y)|.

Let x, y ∈ A, x �= y, and choose d > 0 so that ‖x − y‖ = dr. Then, by the previous 
inequality,

|Tf(x) − Tf(y)| ≤ sup
‖w−z‖≤dr; w,z∈A

|Tf(w) − Tf(z)|

≤ sup
‖w−z‖≤dR

|f(w) − f(z)| ≤ LdR = (LR/r)‖x− y‖.

Therefore Tf is Lipschitz on A with Lipschitz constant at most LR/r. By the McShane-
Whitney extension theorem (see, e.g., [18, p. 202]) there is a function F : Rn → R with 
the same Lipschitz properties as Tf on the entire space Rn, such that F = Tf on A. 
Since Hn(Rn \A) = 0, the proof is complete. �
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Recall that a Young function is a left-continuous and convex function Φ : [0, ∞) →
[0, ∞] with Φ(0) = 0.

Theorem 5.8. Let X = S(Rn) or V(Rn), let T : X → X be a rearrangement, and let Φ
be a Young function. If T is smoothing and f ∈ X is Lipschitz, then Tf coincides with 
a Lipschitz function Hn-almost everywhere on Rn, and∫

{x: Tf(x)≥a}

Φ (‖∇Tf(x)‖) dx ≤
∫

{x: f(x)≥a}

Φ (‖∇f(x)‖) dx (5.20)

for each a > ess inf f . Hence∫
Rn

Φ (‖∇Tf(x)‖) dx ≤
∫
Rn

Φ (‖∇f(x)‖) dx, (5.21)

where the integrals may be infinite.

Proof. Without loss of generality, we may assume that Φ is a nontrivial real-valued 
function. Indeed, the result is obvious if Φ ≡ 0, and if Φ attains the value ∞, it does so 
on some maximal interval (t0, ∞), t0 ≥ 0. Suppose first that t0 > 0. For 0 < t < t0, the 
right derivative Φ′+(t) of Φ at t is increasing, so we may define c = limt→t0− Φ′+(t). If 
c = ∞, let (tk) be a strictly increasing sequence in (0, t0) converging to t0, and define 
the real-valued Young functions

Φk(t) =
{

Φ(t), if 0 ≤ t < tk,

Φ′+(tk)(t− tk) + Φ(tk), otherwise.

If c < ∞, we must have Φ(t0) < ∞ by left continuity, and may define

Φk(t) =
{

Φ(t), if 0 ≤ t ≤ t0,

(c + k)(t− t0) + Φ(t0), otherwise.

When t0 = 0, we put Φk(t) = kt. In each case, we have Φk ≤ Φ and (Φk) is an increasing 
sequence of real-valued Young functions converging pointwise to Φ. Thus, if (5.20) holds 
for real-valued Young functions, it holds with Φ replaced by Φk, and hence, by the 
monotone convergence theorem, for Φ itself.

The set of values t such that Hn({x : f(x) = t}) = 0 is dense in (ess inf f, ∞), so there 
is an increasing sequence {am} contained in (ess inf f, a) and converging to a such that 
Hn({x : f(x) = am}) = 0 for each m. Fix m ∈ N. By Lemma 5.4, {x : f(x) ≥ am} is 
bounded, and the equimeasurability of T implies that

Hn({x : Tf(x) = am}) = Hn({x : f(x) = am}) = 0.
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Assume that L is the Lipschitz constant for f . As T reduces the modulus of continuity 
by Corollary 4.12, Lemma 5.7 with r = R implies that there is a Lipschitz function F
on Rn with Lipschitz constant at most L such that F (x) = Tf(x) for Hn-almost all 
x ∈ Rn. Weak derivatives and the remainder of this proof are unaffected by changing 
Tf on a set of measure zero, so we may assume that Tf itself is Lipschitz on Rn with 
Lipschitz constant at most L. Then, by Lemmas 5.3 and 5.5 (the latter applied to both 
f and Tf) with a replaced by am, and the equimeasurability of T , we obtain∫

GTf∩{xn+1>am}

hC(νTf (x)) dHn(x) ≤
∫

Gf∩{xn+1>am}

hC(νf (x)) dHn(x),

where C is any convex body as in Lemma 5.2, and νg(x) is the outer unit normal of Kg

at x for a Lipschitz function g. The integral on the right can be written as

∫
{y:f(y)>am}

hC

(
(−∇f(y), 1)√
1 + ‖∇f(y)‖2

)√
1 + ‖∇f(y)‖2 dy =

∫
{y:f(y)>am}

hC(−∇f(y), 1) dy,

where we used the 1-homogeneity of hC . Similarly, the integral on the left can be rewritten 
in the same form, with f replaced by Tf . Consequently,∫

{y:Tf(y)>am}

hC(−∇Tf(y), 1) dy ≤
∫

{y:f(y)>am}

hC(−∇f(y), 1) dy,

which also yields∫
{y:Tf(y)>am}

hC(−∇Tf(y), 1) − 1 dy ≤
∫

{y:f(y)>am}

hC(−∇f(y), 1) − 1 dy, (5.22)

since Hn({y : Tf(y) > am}) = Hn({y : f(y) > am}). If � is the Lipschitz constant for 
some Lipschitz function g, we have ‖∇g(x)‖ ≤ � for x ∈ Rn where the derivative of g
exists. Applying this to g = f and g = Tf implies that

max {‖∇f(x)‖, ‖∇Tf(x)‖} ≤ L (5.23)

for Hn-almost all x ∈ Rn. As Φ is real-valued and not identically 0, we may define the 
convex body C as in Lemma 5.6 corresponding to K = Bn, M = L, and Φ. Then C
satisfies the conditions stated in Lemma 5.2 and by (5.17),

hC(y, 1) − 1 = bΦ(‖y‖),

for y ∈ Rn with ‖y‖ ≤ M and some b > 0. Substituting in (5.22) and taking limits as 
m → ∞, we obtain (5.20).
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By Proposition 3.2, we have ess inf Tf = ess inf f . Letting a → ess inf f in (5.20), we 
arrive at (5.21). �

Theorem 5.8 yields Pólya-Szegő inequalities with Φ(t) = tp, 1 ≤ p < ∞, and it 
is possible to extend these to functions in W 1,p(Rn) ∩ V(Rn) by means of standard 
techniques, utilized for example in the proof of (1.1) in [3, Theorem 3.20] (though the 
case p = 1 needs extra work). We shall not state this extension here, however, but 
instead derive it from a still more general result, Theorem 6.3, proved in Section 6. See 
Corollary 6.5. We also postpone to Section 6 a proof that the assumption in Theorem 5.8
that T is smoothing cannot be dropped in general; see Example 6.6. This example also 
shows that when Φ(t) = t in Theorem 5.8, the smoothing property is not necessary for 
the stated inequalities to hold.

Corollary 5.9. Let X = S(Rn) or V(Rn), and let T : X → X be a rearrangement. If T
is smoothing, f ∈ X is Lipschitz, and a > ess inf f , then

Hn(GTf ∩ {xn+1 ≥ a}) ≤ Hn(Gf ∩ {xn+1 ≥ a}).

Proof. Since f is Lipschitz, we have the familiar formula (see, e.g., [17, p. 101])

Hn(Gf ∩ {xn+1 ≥ a}) =
∫

{x:f(x)≥a}

(
1 + ‖∇f(x)‖2)1/2 dx.

Noting that T reduces the modulus of continuity, by Corollary 4.12, we may, as in the 
proof of Theorem 5.8, assume that Tf is also Lipschitz, so the same formula holds with 
f replaced by Tf . The result now follows from (5.20) on setting Φ(t) =

√
1 + t2 − 1 for 

t ≥ 0, and recalling that Hn({x : Tf(x) ≥ a}) = Hn({x : f(x) ≥ a}). �
6. Extension of Theorem 5.8 to W 1,1

loc (Rn)

We begin by recalling some notions from the theory of Orlicz spaces. Much of the 
literature is based on N-functions (nice Young functions), that is, functions Φ : [0, ∞) →
[0, ∞) that are continuous, convex, and such that Φ(t) = 0 if and only if t = 0, 
limt→0 Φ(t)/t = 0, and limt→∞ Φ(t)/t = ∞. However, this restriction is sometimes un-
necessary, so we prefer to follow [16] and [47] by working with nontrivial Young functions 
Φ, those such that Φ �≡ 0 and Φ �≡ ∞ on (0, ∞).

Let Φ : [0, ∞) → [0, ∞] be a nontrivial Young function. The Orlicz space LΦ(Ω), 
where Ω ⊂ Rn is an open set, is the set of all real-valued measurable functions f on Ω
such that

‖f‖LΦ(Ω) = inf

⎧⎨⎩λ > 0 :
∫

Φ
(
|f(x)|
λ

)
dx ≤ 1

⎫⎬⎭ < ∞. (6.1)

Ω
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The norm defined by (6.1) is called the Luxemburg norm.
Note that f ∈ LΦ(Ω) if and only if there is a c > 0 such that 

∫
Ω Φ(c|f(x)|) dx is finite. 

Indeed, if the latter condition holds, we can choose λ > 0 large enough that 1/λ < c

and 
∫
Ω Φ(c|f(x)|) dx ≤ cλ. Then, since Φ(t)/t is increasing, we have λΦ(|f(x)|/λ) ≤

Φ(c|f(x)|)/c and hence∫
Ω

Φ
(
|f(x)|
λ

)
dx ≤ 1

cλ

∫
Ω

Φ(c|f(x)|) dx ≤ 1.

If f, fk ∈ LΦ(Ω), k ∈ N, then

lim
k→∞

‖fk − f‖LΦ(Ω) = 0 ⇐⇒ lim
k→∞

∫
Ω

Φ (c|fk(x) − f(x)|) dx = 0, for all c > 0, (6.2)

by [16, Proposition 2.1.10(5)].
The complementary function Ψ : [0, ∞) → [0, ∞] to Φ, defined by Ψ(t) = sups≥0(st −

Φ(s)), is also a nontrivial Young function, sometimes called the conjugate function of Φ. 
Another norm on LΦ(Ω) is the Orlicz norm

‖g‖′LΦ(Ω) = sup

⎧⎨⎩
∫
Ω

|g(x)h(x)| dx :
∫
Ω

Ψ(|h(x)|) dx ≤ 1

⎫⎬⎭ ;

by [47, Theorem 132.2], this norm is equivalent to the Luxemburg norm.
The set

HΦ(Ω) =

⎧⎨⎩f ∈ LΦ(Ω) :
∫
Ω

Φ(c|f(x)|) dx < ∞ for all c > 0

⎫⎬⎭ (6.3)

is called the heart of LΦ(Ω).
We say that the Young function Φ satisfies a Δ2 condition at infinity if there exist 

c, t0 > 0 such that

Φ(2t) ≤ cΦ(t)

for t ≥ t0. If Φ is in addition nontrivial and real-valued, and if Hn(Ω) < ∞, then 
HΦ(Ω) = LΦ(Ω); see [16, Theorem 2.1.17(2)].

The Orlicz-Sobolev space W 1,Φ(Ω) is defined as

W 1,Φ(Ω) = {f : f ∈ LΦ(Ω), f is weakly differentiable in Ω, and ‖∇f‖ ∈ LΦ(Ω)}.

The norm of f ∈ W 1,Φ(Ω) is defined by
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‖f‖W 1,Φ(Ω) = ‖f‖LΦ(Ω) +
∥∥‖∇f‖

∥∥
LΦ(Ω). (6.4)

Let Φ1 and Φ2 be nontrivial Young functions. We say that Φ1 dominates Φ2 globally
and write Φ1 � Φ2 if there are constants a, b > 0 such that

bΦ1(at) ≥ Φ2(t) (6.5)

for all t ≥ 0. If Φ1 � Φ2, then LΦ1(Ω) ⊂ LΦ2(Ω) by [16, Theorem 2.2.3(1)]. If both Φ1 �
Φ2 and Φ2 � Φ1, we say that Φ1 and Φ2 are equivalent. In this case, LΦ1(Ω) = LΦ2(Ω)
and by [16, Proposition 2.2.1], the norms ‖ · ‖LΦ1 (Ω) and ‖ · ‖LΦ2 (Ω) are equivalent.

Consider the complementary pair of nontrivial Young functions

Φmin(t) =
{

0, if 0 ≤ t ≤ 1,
t− 1, if 1 < t < ∞,

Φmax(t) =
{
t, if 0 ≤ t ≤ 1,
∞, if 1 < t < ∞;

see [16, p. 54]. The following facts are gathered in [16, Proposition 2.2.4] and the remarks 
that follow it. We have

LΦmin(Rn) = {f1 + f∞ : f1 ∈ L1(Rn), f∞ ∈ L∞(Rn)},

with Luxemburg norm

‖f‖LΦmin (Rn) = inf{max{‖f1‖L1(Rn), ‖f∞‖L∞(Rn)} : f = f1 + f∞} (6.6)

for f ∈ LΦmin(Rn), and LΦmax(Rn) = L1(Rn) ∩ L∞(Rn), with Luxemburg norm

‖f‖LΦmax (Rn) = max{‖f‖L1(Rn), ‖f‖L∞(Rn)} (6.7)

for f ∈ LΦmax(Rn). We will often write LΦmin(Rn) = L1(Rn) + L∞(Rn). Any nontrivial 
Young function Φ satisfies Φmax � Φ � Φmin and hence all Orlicz spaces with nontrivial 
Young functions contain L1(Rn) ∩ L∞(Rn) and are contained in L1(Rn) + L∞(Rn).

The proof of the following lemma is a variant of arguments in [33, p. 77].

Lemma 6.1. Let Z be the closure of⎧⎨⎩
k∑

j=1
aj1Aj

: a1, . . . , ak ∈ R, A1, . . . , Ak ∈ Ln, k ∈ N

⎫⎬⎭ (6.8)

in L1(Rn) + L∞(Rn). Then Z = L1(Rn) + L∞(Rn).

Proof. The step functions in the set (6.8) are clearly bounded and integrable, so we only 
have to show that L1(Rn) + L∞(Rn) ⊂ Z.
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Let f ∈ L1(Rn) + L∞(Rn) and suppose that |f(x)| < M for Hn-almost all x ∈ Rn. 
For k ∈ N define Ij = [jM/k, (j + 1)M/k), Aj = f−1(Ij), and

aj =
{

min Ij , if j ≥ 0,
sup Ij , otherwise,

for j = −k, . . . , k − 1. For j ∈ {−1, 0} we have aj = 0, and for all other j,

|aj |Hn(Aj) ≤
∫
Aj

|f(x)|dx < ∞,

as f ∈ L1(Rn). Therefore

fk =
k−1∑
j=−k

aj1Aj
∈ Z.

By construction, |fk(x) − f(x)| ≤ M/k for Hn-almost all x ∈ Rn, so ‖fk − f‖∞ → 0
as k → ∞. Since |fk(x)| ≤ |f(x)| for Hn-almost all x ∈ Rn, the dominated convergence 
theorem yields ‖fk − f‖1 → 0 as k → ∞. It follows that fk → f as k → ∞ in the norm 
(6.7), proving the lemma. �

By definition, a subset S of L1(Rn) + L∞(Rn) is relatively sequentially compact 
in the weak topology σ

(
L1(Rn) + L∞(Rn), L1(Rn) ∩ L∞(Rn)

)
if any sequence (fj) of 

functions in S has a subsequence (fjk) converging to some f ∈ L1(Rn) +L∞(Rn), in the 
sense that

lim
k→∞

∫
Rn

(fjk(x) − f(x))h(x) dx = 0

for all h ∈ L1(Rn) ∩ L∞(Rn). As σ
(
L1(Rn) + L∞(Rn), L1(Rn) ∩ L∞(Rn)

)
is the only 

weak topology used in this section, henceforth weak convergence and compactness 
will always refer to this topology. If S is bounded in the norm (6.6), it is relatively 
weakly sequentially compact if and only if there is a real-valued Young function Φ̃ with 
limt→∞ Φ̃(t)/t = ∞ and

sup
f∈S

∫
Rn

Φ̃(f(x)) dx < ∞. (6.9)

This is essentially the criterion of de La Vallée Poussin [16, Theorem 2.3.5] combined 
with [16, Proposition 2.3.16], where the latter uses the σ-finiteness of the underlying 
measure in the proof.

For the reader’s convenience we provide a proof of the following approximation lemma, 
mainly to stress that Φ need not be an N-function.
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Lemma 6.2. If Φ : [0, ∞) → [0, ∞) is a real-valued Young function and f ∈ HΦ(Rn), 
there is a sequence (fj) of C∞(Rn) functions with compact supports that converges to f
in LΦ(Rn).

If, in addition, f is nonnegative, or has bounded support, or ‖∇f‖ ∈ HΦ(Rn), then 
fj, j ∈ N, can be chosen to be nonnegative, or have uniformly bounded supports, or such 
that limj→0 ‖fj − f‖W 1,Φ(Rn) = 0, respectively.

Proof. We may assume that f ∈ HΦ(Rn) has compact support. Indeed, let 0 ≤ φ ≤ 1
be a C∞(Rn) function with support in 2Bn and φ(x) = 1 for all x ∈ Bn, and let 
φm(x) = φ(x/m) for m ∈ N and x ∈ Rn. Then φmf ∈ HΦ(Rn) has compact support, 
and using (6.2) and (6.3), it is easy to see that φmf converges to f as m → ∞ in LΦr (Rn). 
If ‖∇f‖ ∈ HΦ(Rn) is assumed in addition, this convergence even holds in W 1,Φ(Rn), in 
view of (6.2) and (6.4). Indeed, since Φ is convex, we have, for s, t ≥ 0,

Φ(s + t) ≤ (1/2) (Φ(2s) + Φ(2t)) .

Therefore

Φ (c‖∇(f(1 − φm)) ‖) ≤ (1/2)
(

Φ(2c‖∇f‖) + Φ
(

(2c/m)|f | sup
Rn

‖∇φ‖
))

.

Since ‖∇f‖ ∈ HΦ(Rn), the integrals of both terms on the right-hand side are finite, and 
the desired conclusion follows from the dominated convergence theorem. Whenever f is 
nonnegative, we also have φmf ≥ 0. Thus if the result holds for functions with compact 
support, a standard diagonal-type argument shows that it holds generally.

Suppose that f ∈ HΦ(Rn) has compact support. Let ρ : Rn → [0, ∞) be a C∞(Rn)
function with support in Bn and integrating to 1, and define ρj(x) = jnρ(jx) for j ∈ N

and x ∈ Rn. The convolution fj = f ∗ρj is C∞(Rn), satisfies fj ≥ 0 when f ≥ 0, and has 
support in M +Bn when the support of f is M ⊂ Rn. We claim that ‖f−fj‖LΦ(Rn) → 0
as j → ∞. To see this, note that since Φ is real-valued, there is a sequence of inte-
grable simple functions (i.e., finite weighted sums of integrable characteristic functions) 
converging to f in the LΦ(Rn) norm, by [16, Theorem 2.1.14(b)]. Using monotone con-
vergence, the proof of the latter theorem can easily be modified to show that these 
simple functions can be assumed to have bounded supports. Thus, for each ε > 0 there 
is a simple function h with |h(x)| ≤ b1RBn(x) for some b, R > 0 and all x ∈ Rn, such 
that ‖f − h‖LΦ(Rn) ≤ ε/4. If hj = h ∗ ρj , Jensen’s inequality (see, e.g., [33, p. 62, 
Proposition 5]) implies that

‖fj − hj‖LΦ(Rn) = ‖(f − h) ∗ ρj‖LΦ(Rn) ≤ ‖f − h‖LΦ(Rn) ≤ ε/4,

so

‖f − fj‖LΦ(Rn) ≤ ‖f − h‖LΦ(Rn) + ‖h− hj‖LΦ(Rn) + ‖hj − fj‖LΦ(Rn)
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≤ ε

2 + ‖h− hj‖LΦ(Rn). (6.10)

We have

|h(x) − hj(x)| ≤
∫
Rn

|h(x) − h(y)|ρj(x− y)dy ≤ ‖ρj‖∞
∫

B(x,1/j)

|h(x) − h(y)| dy.

As h is integrable, the Lebesgue differentiation theorem (see, e.g., [25, Proposition 3.5.4]) 
implies that hj(x) → h(x) for Hn-almost all x ∈ Rn. Since |hj(x)| ≤ b1(R+1)Bn(x)
for all x ∈ Rn and Φ is real-valued, the dominated convergence theorem gives 
limj→∞

∫
Rn Φ(c|h(x) −hj(x)|) dx = 0 for all c > 0. Therefore, by (6.2), there is a j0 ∈ N

such that ‖h − hj‖LΦ(Rn) ≤ ε/2 for all j ≥ j0, and inserting this into (6.10) proves the 
claim.

Since fj ≥ 0 when f ≥ 0, it only remains to deal with the statement involving the 
extra assumption that ‖∇f‖ ∈ HΦ(Rn). For this, we may proceed exactly as in the proof 
of [15, Theorem 2.1]. If f and ‖∇f‖ are functions in HΦ(Rn) with compact support, we 
have ∂fj/∂xi = (∂f/∂xi) ∗ ρj (where the weak derivative is used on the right-hand 
side). Applying the above, both to f and with f replaced by ∂f/∂xi, i = 1, . . . , n, yields 
limj→0 ‖f − fj‖W 1,Φ(Rn) = 0, as required. �
Theorem 6.3. Let T : V(Rn) → V(Rn) be a smoothing rearrangement and let Φ be a 
Young function. If f ∈ W 1,1

loc (Rn) ∩ V(Rn) and 
∫
Rn Φ(‖∇f(x)‖) dx < ∞, then Tf ∈

W 1,1
loc (Rn) and ∫

Rn

Φ(‖∇Tf(x)‖) dx ≤
∫
Rn

Φ(‖∇f(x)‖) dx. (6.11)

Proof. As at the beginning of the proof of Theorem 5.8, we may assume that Φ is a 
nontrivial real-valued function. We first aim to prove (6.11) when Hn(supp f) < ∞. Let 
Ω be an open set such that supp f ⊂ Ω and Hn(Ω) < ∞. The proof will proceed via a 
succession of claims.

For r > sup{t ≥ 0 : Φ(t) = 0}, define

Λr(t) =
{

Φ(t), if 0 ≤ t < r,

Φ′+(r)(t− r) + Φ(r), otherwise,

where Φ′+(r) is the right derivative of Φ at r. Then Φr = max{0, Λr−1/r} is a nontrivial 
real-valued (and hence continuous) Young function with Φr ≤ Φ. By construction, there 
is a δ > 0 such that δ ≤ Φ′+

r (t) ≤ 1/δ for all t > t0 = sup{t ≥ 0 : Φr(t) = 0} > 0. It 
follows that for t ≥ t0, we have

δ(t− t0) =
t∫
δ ds ≤ Φr(t) ≤

t∫ 1
δ
ds = 1

δ
(t− t0).
t0 t0
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Comparing (6.5), we see that Φr is equivalent to Φmin. Therefore, as we remarked 
before Lemma 6.2, the LΦr (Rn) norm is equivalent to the norm (6.6) and hence 
LΦr (Rn) = L1(Rn) + L∞(Rn). If Ψr denotes the complementary Young function to 
Φr, then LΨr (Rn) = L1(Rn) ∩ L∞(Rn) and the LΨr(Rn) norm is equivalent to (6.7).

Our first claim is that f can be approximated in the W 1,Φr(Rn) norm by a sequence 
(fj) of nonnegative C∞(Rn) functions with compact support. To see this, note that 
since 0 ≤ Φr ≤ Φ, our assumptions give 

∫
Rn Φr(‖∇f(x)‖) dx < ∞. By [39, Lemma 3], 

this yields the existence of a c > 0 such that 
∫
Rn Φr(c|f(x)|) dx is finite, and hence 

f ∈ LΦr (Rn), as was explained in the remarks at the beginning of this section. Therefore 
f ∈ LΦr(Ω) and our assumptions and 0 ≤ Φr ≤ Φ imply that ‖∇f‖ ∈ LΦr (Ω). As was 
mentioned before Lemma 6.1, LΦr (Ω) = HΦr(Ω) because Φr satisfies a Δ2 condition at 
infinity and Hn(Ω) < ∞. Since f vanishes on Rn \ Ω, we have f, ‖∇f‖ ∈ HΦr (Rn). By 
Lemma 6.2, there exists a sequence (fj) of nonnegative C∞(Rn) functions with compact 
support that converges to f in the W 1,Φr(Rn) norm. This completes the proof of the 
first claim.

Our second claim is that (Tfj) converges to Tf in LΦr (Rn), Tf ∈ W 1,1
loc (Rn), and a 

subsequence of (∇Tfj) converges weakly to the weak gradient of Tf . Indeed, Proposi-
tion 3.7 implies that ‖Tfj −Tf‖LΦr (Rn) ≤ ‖fj −f‖LΦr (Rn). Thus Tfj → Tf in LΦr (Rn)
and, in particular, Tf ∈ LΦr(Rn) and Tf ∈ L1

loc(Rn). We also have

lim
j→∞

∥∥‖∇fj‖
∥∥
LΦr (Rn) =

∥∥‖∇f‖
∥∥
LΦr (Rn). (6.12)

The map T and each fj satisfy the hypotheses of Theorem 5.8, so for j ≥ 1, the latter 
theorem implies that the nonnegative function Tfj agrees with a Lipschitz function 
Hn-almost everywhere, and

∥∥‖∇Tfj‖
∥∥
LΦr (Rn) ≤

∥∥‖∇fj‖
∥∥
LΦr (Rn). (6.13)

Due to (6.12) and (6.13), the set {‖∇Tfj‖, j ≥ 1} is bounded in LΦr(Rn) and therefore 
also in LΦmin(Rn) by norm equivalence. Since ‖∇fj‖ converges in LΦr(Rn), it also con-
verges in LΦmin(Rn), and the criterion of de La Vallée Poussin stated before Lemma 6.2
yields the existence of a real-valued Young function Φ̃ with limt→∞ Φ̃(t)/t = ∞ such 
that (6.9) holds with S = {‖∇fj‖ : j ≥ 1}. Theorem 5.8, applied with Φ̃ instead of Φ, 
shows that (6.9) also holds for S = {‖∇Tfj‖ : j ≥ 1} with the same Φ̃. De La Vallée 
Poussin’s criterion now shows the relative weak compactness of {‖∇Tfj‖ : j ≥ 1}. 
Hence, there is a subsequence of (∇Tfj), also denoted (∇Tfj), and a vector field 
g ∈

(
L1(Rn) + L∞(Rn)

)n =
(
LΦr (Rn)

)n, such that ∇Tfj converges weakly to g, i.e., 
for each h ∈

(
L1(Rn) ∩ L∞(Rn)

)n =
(
LΨr (Rn)

)n,

lim
j→∞

∫
(∇Tfj)(x)h(x) dx =

∫
g(x)h(x) dx.
Rn Rn
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If h ∈ C∞(Rn) has compact support, then h, ∂h/∂xi ∈ LΨr (Rn) and∫
Rn

gi(x)h(x) dx = lim
j→∞

∫
Rn

∂Tfj
∂xi

(x)h(x) dx = − lim
j→∞

∫
Rn

Tfj(x) ∂h
∂xi

(x) dx

= −
∫
Rn

Tf(x) ∂h
∂xi

(x) dx,
(6.14)

where we have used the fact that the convergence of Tfj to Tf in LΦr (Rn) also implies 
weak convergence. From (6.14) we see that g is the weak gradient of Tf , and the fact 
that ∂Tf/∂xi is locally integrable is a direct consequence of the fact that it belongs to 
LΨr (Rn). The second claim is proved.

Next, we claim that∥∥‖∇Tf‖
∥∥
LΦr (Rn) ≤ lim inf

j→∞

∥∥‖∇Tfj‖
∥∥
LΦr (Rn). (6.15)

With this goal in mind, we first prove that if u ∈ (LΦr (Rn))n, then

∥∥‖u‖∥∥
LΦr (Rn) = sup

⎧⎨⎩
∣∣∣∣∣∣
∫
Rn

u(x) · h(x) dx

∣∣∣∣∣∣ : h ∈ (LΨr (Rn))n,
∥∥‖h‖∥∥′

LΨr (Rn) ≤ 1

⎫⎬⎭ .

(6.16)
A similar formula in the scalar case is proved in [33, (10), Proposition 10, Section 3.4]; 
when applied with f and Φ there replaced by ‖u‖ and Φr, respectively, it becomes

∥∥‖u‖∥∥
LΦr (Rn) = sup

⎧⎨⎩
∣∣∣∣∣∣
∫
Rn

‖u(x)‖ v(x) dx

∣∣∣∣∣∣ : v ∈ MΨr , ‖v‖′LΨr (Rn) ≤ 1

⎫⎬⎭ , (6.17)

where MΨr is the closure of the span of all step functions in LΨr(Rn). (We warn the 
reader that in [33], ‖u‖LΦ(Rn) and ‖u‖′LΦ(Rn) are denoted by Nφ(u) and ‖u‖Φ, respec-
tively.) We have already seen that LΨr(Rn) = L1(Rn) ∩L∞(Rn) and that the two spaces 
have equivalent norms, so MΨr = LΨr (Rn) due to Lemma 6.1. Thus, (6.17) becomes

∥∥‖u‖∥∥
LΦr (Rn) = sup

⎧⎨⎩
∣∣∣∣∣∣
∫
Rn

‖u(x)‖ v(x) dx

∣∣∣∣∣∣ : v ∈ LΨr (Rn), ‖v‖′LΨr (Rn) ≤ 1

⎫⎬⎭ . (6.18)

Let S1 and S2 denote the right-hand sides of (6.16) and (6.18), respectively. The 
Cauchy-Schwartz inequality yields S1 ≤ S2. We can restrict the supremum in (6.18)
to nonnegative v. If v ∈ LΨr (Rn), v ≥ 0, ‖v‖′LΨr (Rn) ≤ 1, and

h(x) =
{
v(x) u(x)

‖u(x)‖ , if u(x) �= 0,
0, if u(x) = 0,
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then h ∈ (LΨr(Rn))n, 
∥∥‖h‖∥∥′

LΨr (Rn) ≤ 1, and

S1 ≥

∣∣∣∣∣∣
∫
Rn

u(x) · h(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Rn

‖u(x)‖v(x) dx

∣∣∣∣∣∣ .
This proves that S1 ≥ S2 and concludes the proof of (6.16). Now (6.16) with u replaced 
by ∇Tf and ∇Tfj gives∥∥‖∇Tf‖

∥∥
LΦr (Rn)

= sup

⎧⎨⎩
∣∣∣∣∣∣
∫
Rn

∇Tf(x) · h(x) dx

∣∣∣∣∣∣ : h ∈ (LΨr (Rn))n,
∥∥‖h‖∥∥′

LΨr (Rn) ≤ 1

⎫⎬⎭
= sup

⎧⎨⎩ lim
j→∞

∣∣∣∣∣∣
∫
Rn

∇Tfj(x) · h(x) dx

∣∣∣∣∣∣ : h ∈ (LΨr (Rn))n,
∥∥‖h‖∥∥′

LΨr (Rn) ≤ 1

⎫⎬⎭
≤ lim inf

j→∞
sup

⎧⎨⎩
∣∣∣∣∣∣
∫
Rn

∇Tfj(x) · h(x) dx

∣∣∣∣∣∣ : h ∈ (LΨr (Rn))n,
∥∥‖h‖∥∥′

LΨr (Rn) ≤ 1

⎫⎬⎭
= lim inf

j→∞

∥∥‖∇Tfj‖
∥∥
LΦr (Rn).

This proves (6.15).
From (6.12), (6.13), and (6.15), we conclude that∥∥‖∇Tf‖

∥∥
LΦr (Rn) ≤

∥∥‖∇f‖
∥∥
LΦr (Rn). (6.19)

Our fourth claim is that (6.11) holds when Φ is replaced by Φr. To see this, note that 
(6.19) holds if Φr is replaced by a Φr for any a > 0, because all the preceding arguments 
are valid with this replacement, due to 

∫
Rn a Φr(‖∇f(x)‖) dx < ∞. If we choose a so that ∫

Rn a Φr(‖∇f(x)‖) dx = 1, then 
∥∥‖∇f‖

∥∥
La Φr (Rn) = 1, by [16, Proposition 2.1.10(4)] and 

the fact that ‖∇f‖ ∈ HaΦr(Rn). Thus (6.19) becomes∥∥‖∇Tf‖
∥∥
LaΦr (Rn) ≤ 1.

By [16, Proposition 2.1.10(2)], the previous inequality holds if and only if∫
Rn

aΦr(‖∇Tf(x)‖) dx ≤ 1 =
∫
Rn

aΦr(‖∇f(x)‖) dx. (6.20)

This proves the fourth claim.
Since the nonnegative function Φr increases to Φ as r → ∞, one may apply 

the monotone convergence theorem to both sides of (6.20) and obtain (6.11) when 
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Hn(supp f) < ∞. To remove the latter restriction, let f ∈ W 1,1
loc (Rn) ∩ V(Rn) and 

let fc = max{f − c, 0} for c > 0. Then fc satisfies the hypotheses of the theorem and 
Hn(supp fc) < ∞. Moreover, ∇fc = ∇f on {x : f(x) > c} and Tfc = max{Tf − c, 0}, 
by Proposition 3.6 with ϕ(t) = (t − c)+, so ∇Tfc = ∇Tf on {x : Tf(x) > c}. By (6.11)
with f replaced by fc, we have∫

{x:Tf(x)>c}

Φ(‖∇Tf(x)‖) dx =
∫
Rn

Φ(‖∇Tfc(x)‖) dx

≤
∫
Rn

Φ(‖∇fc(x)‖) dx =
∫

{x:f(x)>c}

Φ(‖∇f(x)‖) dx.

Letting c → 0 and applying the monotone convergence theorem, we obtain (6.11). �
Lemma 6.4. Let X = S(Rn) or V(Rn) and let T : X → X be a smoothing rearrangement. 
If f ∈ W 1,∞(Rn) ∩X, then Tf ∈ W 1,∞(Rn) and

ess sup
x∈Rn

‖∇Tf(x)‖ ≤ ess sup
x∈Rn

‖∇f(x)‖. (6.21)

Proof. If f ∈ W 1,∞(Rn) ∩ X, then by [3, Proposition 3.17], f coincides Hn-almost 
everywhere with a Lipschitz function in X. We may therefore assume that f is Lipschitz, 
and then, as in the proof of Theorem 5.8, also assume that Tf is Lipschitz. By [3, 
Corollary 3.4], (6.21) is equivalent to L1 ≤ L2, where L1 and L2 are the Lipschitz 
constants of Tf and f , respectively. Since

L1 = sup
d>0

ωd(Tf)/d ≤ sup
d>0

ωd(f)/d = L2,

the proof is complete. �
Corollary 6.5. Let T : V(Rn) → V(Rn) be a smoothing rearrangement and let 1 ≤ p ≤ ∞. 
If f ∈ W 1,p(Rn) ∩ V(Rn), then Tf ∈ W 1,p(Rn) and

∥∥‖∇Tf(x)‖
∥∥
p
≤

∥∥‖∇f(x)‖
∥∥
p
, (6.22)

where ‖ · ‖p denotes the Lp norm when 1 ≤ p < ∞ and the essential supremum over Rn

when p = ∞.

Proof. The case when p = ∞ corresponds to Lemma 6.4. Suppose that 1 ≤ p < ∞ and 
let f ∈ W 1,p(Rn) ∩V(Rn). As W 1,p(Rn) ⊂ W 1,1

loc (Rn), Theorem 6.3 with Φ(t) = tp gives 
(6.22). Our assumptions on f show that the right-hand side of (6.22) is finite, implying 
that Tf ∈ W 1,p(Rn). �
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The following example shows that the assumption that T is smoothing in Theorems 5.8
and 6.3 and Corollary 6.5 cannot be dropped in general. It also shows that when Φ(t) = t

in Theorem 5.8 or 6.3, or p = 1 in Corollary 6.5, the smoothing property is not necessary 
for the stated inequalities to hold.

Example 6.6. Let K ∈ Kn
(o) and Hn(K) = κn and let T : V(Rn) → V(Rn) be the 

rearrangement defined in Example 4.3(ii). We make the following two claims.

(i) Inequalities (5.21) and (6.11) for Φ(t) = t, and (6.22) for p = 1, each hold if and only 
if K = x + Bn for some x ∈ Dn.
(ii) Inequalities (5.21) and (6.11) for strictly convex real-valued Φ, and (6.22) for 1 <
p ≤ ∞, each hold if and only if K = Bn.

Suppose these claims are true. If K is not a ball, then T is not smoothing by Exam-
ple 4.3(ii) and Theorems 5.8 and 6.3 (for real-valued strictly convex Φ), and Corollary 6.5
fail by (i) and (ii). If K = x + Bn for some o �= x ∈ Dn, then T is not smoothing by 
Example 4.3(ii) but nevertheless Theorems 5.8 and 6.3 with Φ(t) = t, and Corollary 6.5
with p = 1, hold by (i).

To prove the two claims, we note first that if f ∈ V(Rn) and αf,t = Hn({x : f(x) ≥ t})
for t ≥ 0, the definition of T yields

{x : Tf(x) ≥ t} =
(
αf,t

κn

)1/n

K (6.23)

for t > 0.
Now let M ∈ Kn

(o) and Hn(M) = κn, and let fM (x) = (1 − hM◦(x))+ for x ∈ Rn, 
where M◦ is the polar body of M and s+ is the nonnegative part of s ∈ R. Then 
{x : fM (x) ≥ t} = (1 − t)+M for t > 0. Since αfM ,t = ((1 − t)+)n κn, (6.23) with 
f = fM implies that

TfM = fK . (6.24)

When M = Bn, we have fBn(x) = (1 − ‖x‖)+ for x ∈ Rn and hence

‖∇fBn(x)‖ =
{

1, if x ∈ Dn \ {o},
0, if x �∈ Bn.

(6.25)

The coarea formula for Lipschitz functions f on Rn (see [3, Theorem 4.19], [17, The-
orem 1, p. 112]) states that

∫
Rn

‖∇f(x)‖ dx =
∞∫
0

Hn−1({x : f(x) = t}) dt. (6.26)
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Suppose that T satisfies (5.21) or (6.11) with Φ(t) = t, or (6.22) with p = 1. Then, 
using (6.26) with f = fK , (6.24) with M = Bn, either (5.21), or (6.11), or (6.22) with 
f = fBn , and (6.25), we obtain

Hn−1(∂K) = n

1∫
0

(1 − t)n−1Hn−1(∂K) dt = n

∞∫
0

Hn−1({x : fK(x) = t}) dt (6.27)

= n

∫
Rn

‖∇fK(x)‖ dx = n

∫
Rn

‖∇TfBn(x)‖ dx

≤ n

∫
Rn

‖∇fBn(x)‖ dx = nκn = Hn−1(∂Bn).

Because Hn(K) = Hn(Bn), equality must hold in the isoperimetric inequality and con-
sequently K = x + Bn for some x ∈ Dn. Conversely, suppose that K = x + Bn for 
some x ∈ Dn and f ∈ W 1,1(Rn) ∩ V(Rn). From (6.23) and the fact that the decreasing 
function t �→ αf,t can only have countably many discontinuities, we get

{x : Tf(x) = t} = {x : Tf(x) ≥ t} \
⋃
s>t

{x : Tf(x) ≥ s} ⊂
(
αf,t

κn

)1/n

∂K

for almost all t > 0. Since K is a translate of Bn, this and (6.26) imply that

∫
Rn

‖∇Tf(x)‖ dx =
∞∫
0

Hn−1({x : Tf(x) = t}) dt ≤
∞∫
0

Hn−1

((
αf,t

κn

)1/n

∂K

)
dt

=
∞∫
0

Hn−1

((
αf,t

κn

)1/n

∂Bn

)
dt =

∫
Rn

‖∇f#(x)‖dx.

Hence, T satisfies (5.21) and (6.11) with Φ(t) = t, and (6.22) with p = 1, as the Schwarz 
rearrangement does so. This proves (i).

For (ii), assume first that Φ is real-valued and strictly convex, and that (5.21) or 
(6.11) holds. Let Φ(1) = c > 0. Note that the measure on K with differential dx/κn is a 
probability measure, since Hn(K) = κn. We use (6.25), either (5.21) or (6.11), Jensen’s 
inequality (see, e.g. [33, p. 62, Proposition 5]), (6.27), and the isoperimetric inequality, 
to obtain

c =
∫
Rn

Φ (‖∇fBn(x)‖) dx
κn

≥
∫
Rn

Φ (‖∇TfBn(x)‖) dx
κn

≥
∫
K

Φ (‖∇TfBn(x)‖) dx
κn

≥ Φ

⎛⎝∫
K

‖∇TfBn(x)‖dx
κn

⎞⎠ = Φ
(

1
nκn

Hn−1(∂K)
)

≥ Φ
(

1
nκn

Hn−1(∂Bn)
)

= Φ(1) = c.
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It follows that there is equality in the isoperimetric inequality, giving K = x + Bn for 
some x ∈ Dn, as before. But now equality also holds in Jensen’s inequality with the 
strictly convex function Φ, so ‖∇TfBn(·)‖ = ‖∇fK(·)‖ must be constant Hn-almost 
everywhere on K. This is only possible when x = o. If we assume instead that (6.22)
holds with 1 < p < ∞, we can apply the same argument with Φ(t) = tp. Conversely, 
when K = Bn, the rearrangement T is the Schwarz rearrangement and therefore the 
Pólya-Szegő inequality holds.

Finally, for (ii) when p = ∞, take f = fBn in (6.22). We have TfBn = fK by (6.24), 
and it is clear that ess supx∈Rn ‖∇fBn(x)‖ = 1, while ess supx∈Rn ‖∇fK(x)‖ > 1 if and 
only if K �= Bn. This completes the proof of (ii).

7. The anisotropic case

The following result generalizes Theorem 5.8, which corresponds to the case when 
K = Bn.

Theorem 7.1. Let X = S(Rn) or V(Rn), let K ∈ Kn
(o), let T : X → X be a rearrange-

ment, and let Φ be a Young function. If T is K-smoothing and f ∈ X is Lipschitz, then 
Tf coincides with a Lipschitz function Hn-almost everywhere on Rn, and

∫
Rn

Φ (h−K(∇Tf(x))) dx ≤
∫
Rn

Φ (h−K(∇f(x))) dx, (7.1)

where the integrals may be infinite.

Proof. We can argue as in the proof of Theorem 5.8, with very few changes. With 
arguments as at the beginning of that proof, we may assume without loss of generality 
that Φ is a nontrivial real-valued Young function. Let f ∈ X be Lipschitz with Lipschitz 
constant L. Choosing 0 < r ≤ R such that rBn ⊂ K ⊂ RBn, we may use Lemma 5.7
to conclude that Tf coincides Hn-almost everywhere with a Lipschitz function with 
Lipschitz constant at most LR/r. Inequality (5.22) follows as before. Instead of (5.23)
we have

max {‖∇f(x)‖, ‖∇Tf(x)‖} ≤ LR/r

for Hn-almost all x ∈ Rn. Then, if C is the convex body from Lemma 5.6 corresponding 
to M = LR/r and Φ, we have

hC(y, 1) − 1 = bΦ(hK(y)) = bΦ(h−K(−y))

for y ∈ Rn with hK(y) ≤ M and some b > 0. As before, this leads to (7.1). �
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Finally, we present in Theorem 7.3 an anisotropic version of Theorem 6.3, which again 
corresponds to the case when K = Bn. We shall need the following lemma. Recall that 
a convex body is smooth if all its boundary points are regular and strictly convex if it 
does not contain a line segment in its boundary; see [36, pp. 83, 87].

Lemma 7.2. Let L ∈ Kn
(o) be a smooth and strictly convex body, and let u : Rn → Rn and 

v : Rn → R be measurable. Then there is a measurable w : Rn → Rn such that
(i) hL◦(w(x)) = v(x) for all x such that u(x) �= o, and
(ii) u(x) · w(x) = hL(u(x)) hL◦(w(x)) for all x ∈ Rn.

Proof. If A = {x : u(x) �= 0}, then A is Hn-measurable. As is observed in [36, Re-
mark 1.7.14], it follows easily from (2.3) that since L is smooth and strictly convex, the 
same is true of L◦. Let n(L◦, y) denote the unit outer normal to L◦ at y ∈ ∂L◦. Note 
that u/hL(u) = ρL◦(u)u ∈ ∂L◦ by (2.3), and define η : Sn−1 → Sn−1 by

η(u) = n (L◦, u/hL(u)) .

The map η is continuous, since L◦ is a convex body of class C1 by [36, Theorem 2.2.4]. The 
map f : Rn \ {o} → Sn−1 defined by f(z) = z/‖z‖ is also continuous. The composition 
η ◦ f ◦ u : A → Sn−1 of measurable functions is therefore also measurable, and so is 
its composition with the continuous support function hL◦ : Rn → R (see [36, p. 115]). 
Define

w(x) =
{
v(x) η(f(u(x)))

hL◦ (η(f(u(x)))) , if x ∈ A,
0, if x �∈ A.

Then w : Rn → Rn is measurable and clearly satisfies (i). By its definition, w(x) is an 
outer normal to L◦ at f(u(x))/hL(f(u(x))) = u(x)/hL(u(x)), so (ii) holds due to the 
equality condition for (2.7) stated immediately after it. �
Theorem 7.3. Let K ∈ Kn

(o), let T : V(Rn) → V(Rn) be a K-smoothing rearrangement, 
and let Φ be a Young function. If f ∈ W 1,1

loc (Rn) ∩V(Rn) and 
∫
Rn Φ (h−K(∇f(x))) dx <

∞, then Tf ∈ W 1,1
loc (Rn) and∫
Rn

Φ (h−K(∇Tf(x))) dx ≤
∫
Rn

Φ (h−K(∇f(x))) dx. (7.2)

Proof. The proof follows that of Theorem 6.3, up to the end of the proof of the second 
claim, verbatim except that the role of Theorem 5.8 is now played by Theorem 7.1 and 
that ‖∇f‖ and ‖∇Tf‖ are replaced by h−K(∇f) and h−K(∇Tf), respectively. Instead 
of the third claim, that (6.15) holds, we claim that∥∥h−K(∇Tf)

∥∥
LΦr (Rn) ≤ lim inf

∥∥h−K(∇Tfj)
∥∥
LΦr (Rn). (7.3)
j→∞
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The argument is similar to the one given for (6.15). We first prove that if u ∈ (LΦr (Rn))n, 
then

∥∥h−K(u)
∥∥
LΦr (Rn) =sup

⎧⎨⎩
∣∣∣∣∣∣
∫
Rn

u(x) · w(x) dx

∣∣∣∣∣∣ : w ∈ (LΨr (Rn))n,
∥∥h−K◦(w)

∥∥′
LΨr (Rn)≤1

⎫⎬⎭,

(7.4)
where −K◦ = (−K)◦ is the polar body of −K; see (2.2). For this, we apply [33, (10), 
Proposition 10, Section 3.4] to h−K(u), which yields

∥∥h−K(u)
∥∥
LΦr (Rn) = sup

⎧⎨⎩
∣∣∣∣∣∣
∫
Rn

h−K(u(x)) v(x) dx

∣∣∣∣∣∣ : v ∈ LΨr (Rn), ‖v‖′LΨr (Rn) ≤ 1

⎫⎬⎭ .

(7.5)
(Here we have used the fact that MΨr = LΨr(Rn), where MΨr is the closure of the 
span of all linear step functions in LΨr(Rn); this was explained after (6.17), along with a 
warning about the different notation employed in [33].) Let S1 and S2 denote the right-
hand sides of (7.4) and (7.5), respectively. From (2.7) with K, x, and y replaced by −K, 
u, and w, respectively, we obtain S1 ≤ S2.

For the converse, we can restrict the supremum in (7.5) to nonnegative v. Let u ∈
(LΦr (Rn))n and let v ∈ LΨr(Rn), v ≥ 0, and ‖v‖′LΨr (Rn) ≤ 1. By [36, Theorem 2.7.1], 
the set of smooth and strictly convex bodies is dense in Kn with the Hausdorff metric, 
while the compact convex sets strictly contained in K and strictly containing aK for a 
fixed 0 < a < 1 form an open set in Kn. We may therefore choose a sequence (Km) of 
smooth and strictly convex bodies converging to K as m → ∞ in the Hausdorff metric 
and such that

1
2K ⊂ Km ⊂ K (7.6)

for m ∈ N. Let wm : Rn → Sn−1 be the measurable vector field supplied by Lemma 7.2
with L = −Km. Since v ∈ LΨr(Rn), we have h−K◦

m
(wm) ∈ LΨr (Rn); this is equivalent 

to ‖wm‖ ∈ LΨr(Rn) and hence wm ∈ (LΨr (Rn))n. By (7.6), −K◦ ⊂ −K◦
m, so from 

Lemma 7.2(i), we get

‖h−K◦(wm)‖′LΨr (Rn) ≤ ‖h−K◦
m

(wm)‖′LΨr (Rn) = ‖v‖′LΨr (Rn) ≤ 1.

Using (i) and (ii) of Lemma 7.2 with L = −Km, we obtain

S1 ≥

∣∣∣∣∣∣
∫
Rn

u(x) · wm(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Rn

h−Km
(u(x))h−K◦

m
(wm(x)) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

h−Km
(u(x)) v(x) dx

∣∣∣∣∣∣ . (7.7)

Rn
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By (7.6),

0 ≤ h−Km
(u(x)) v(x) ≤ h−K(u(x)) v(x)

and the function on the right-hand side is integrable. Taking the limit as m → ∞ in 
(7.7), the dominated convergence theorem yields

S1 ≥ lim
m→∞

∫
Rn

h−Km
(u(x)) v(x) dx =

∫
Rn

h−K(u(x)) v(x) dx.

This proves that S1 ≥ S2 and concludes the proof of (7.4). Now (7.3) follows from (7.4)
by the same argument that showed that (6.15) follows from (6.16).

The remainder of the proof of the theorem is a repetition of the last part of the proof 
of Theorem 6.3, from the point where (6.15) has been established onwards. �

Suppose that K ⊂ Rn is an o-symmetric convex body. Then

hK(x) = h−K(x) = ‖x‖K◦

for x ∈ Rn, where ‖ · ‖K◦ is the norm for which the unit ball is K◦, the polar body of 
K, defined by (2.2). In this case, (7.1) and (7.2) may be rewritten in the form∫

Rn

Φ (‖∇Tf(x)‖K◦) dx ≤
∫
Rn

Φ (‖∇f(x)‖K◦) dx.

Data availability

No data was used for the research described in the article.

Appendix A

The purpose of this appendix is to provide a proof of Proposition 3.7. This follows 
easily from Lemma 8.1 below, first proved by Crowe, Zweibel, and Rosenbloom [13, 
Theorem 3] for Schwarz rearrangement without the assumption that F (s, 0) and F (0, t)
decrease with s ≥ 0 and t ≥ 0, respectively. Variants of Proposition 3.7 are stated for 
general rearrangements by Brock and Solynin [9, Theorem 3.1] and by Van Schaftingen 
and Willem [46, Corollary 1], whose approaches to rearrangements differ from ours; see 
[6, Appendix] for a comparison. Brock and Solynin refer to [13] for a proof, but do not 
explain why it should apply to general rearrangements, while [46, Corollary 1] is stated 
with the extra assumption that the function j is even. The proof of [46, Corollary 1] is 
based on that of [42, Proposition 3.3.9], which does not assume that j is even, or that 
it is nonnegative, but which requires a considerable amount of preliminary observations 
and terminology. For this reason, we prefer to follow the argument in [13].
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Lemma 8.1. Let F : R2 → R be continuous with F (0, 0) = 0 and such that F (s, 0)
and F (0, t) decrease with s ≥ 0 and t ≥ 0, respectively. Suppose that for all coordinate 
rectangles R = [a, b] × [c, d], where a ≤ b, c ≤ d,

G(R) = F (b, d) + F (a, c) − F (b, c) − F (a, d) ≥ 0. (8.1)

Let T : V(Rn) → V(Rn) be a rearrangement. If f, g ∈ V(Rn), then∫
Rn

F (f(x), g(x)) dx ≤
∫
Rn

F (Tf(x), T g(x)) dx. (8.2)

Proof. The function G is additive on coordinate rectangles, that is, if R, S, and R∪S are 
non-overlapping coordinate rectangles, then G(R∪S) = G(R) +G(S). This allows G to 
be extended to a measure ν on R2 such that each coordinate rectangle R is ν-measurable 
and ν(R) = G(R); see [34, pp. 64–68] (where the union of sets is denoted by +).

Let H denote the Heaviside function, i.e., H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0. 
Then for b, d, s, t ≥ 0,

1[0,b]×[0,d](s, t) = H(b− s)H(d− t).

It follows that

∞∫
0

∞∫
0

H(b− s)H(d− t) dν(s, t) =
∞∫
0

∞∫
0

1[0,b]×[0,d](s, t) dν(s, t)

= ν([0, b] × [0, d]) = G([0, b] × [0, d])

= F (b, d) − F (b, 0) − F (0, d).

From this we obtain

F (b, d) = F (b, 0) + F (0, d) +
∞∫
0

∞∫
0

H(b− s)H(d− t) dν(s, t).

On setting b = f(x) and d = g(x) and integrating, this gives∫
Rn

F (f(x), g(x)) dx =
∫
Rn

F (f(x), 0) dx +
∫
Rn

F (0, g(x)) dx + I(f, g), (8.3)

where by Fubini’s theorem,

I(f, g) =
∫ ∞∫ ∞∫

H(f(x) − s)H(g(x) − t) dν(s, t) dx

Rn 0 0
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=
∞∫
0

∞∫
0

∫
Rn

H(f(x) − s)H(g(x) − t) dx dν(s, t). (8.4)

Our assumptions on F imply that −F (r, 0) ≥ 0 increases with r ≥ 0. We can therefore 
apply (3.11), with ϕ(r) = −F (r, 0) for r ≥ 0, to obtain −F (Tf(x), 0) = T (−F (f(x), 0)), 
for each x ∈ Rn. With this, the layer-cake representation formula, and the equimeasur-
ability of T , we conclude that∫

Rn

F (Tf(x), 0) dx = −
∫
Rn

T (−F (f(x), 0)) dx

= −
∞∫
0

Hn({x : T (−F (f(x), 0)) > t}) dt

= −
∞∫
0

Hn({x : −F (f(x), 0) > t}) dt =
∫
Rn

F (f(x), 0) dx. (8.5)

Similarly, ∫
Rn

F (0, T g(x)) dx =
∫
Rn

F (0, g(x)) dx. (8.6)

Since ♦T is monotonic, we have

Hn(♦T (A ∩B)) ≤ Hn((♦TA) ∩ ♦TB) (8.7)

whenever A, B ∈ Ln. Consequently, using the measure-preserving property of ♦T , (8.7), 
and (3.9), we obtain

∫
Rn

H(f(x) − s)H(g(x) − t) dx = Hn({x : f(x) ≥ s} ∩ {x : g(x) ≥ t})

= Hn(♦T ({x : f(x) ≥ s} ∩ {x : g(x) ≥ t}))

≤ Hn((♦T {x : f(x) ≥ s}) ∩ ♦T {x : g(x) ≥ t})

= Hn({x : Tf(x) ≥ s} ∩ {x : Tg(x) ≥ t})

=
∫
Rn

H(Tf(x) − s)H(Tg(x) − t) dx.

By (8.4), this yields I(f, g) ≤ I(Tf, Tg). Then (8.2) follows from (8.3), (8.3) with f and 
g replaced by Tf and Tg, respectively, (8.5), and (8.6). �



G. Bianchi et al. / Journal of Functional Analysis 287 (2024) 110422 55
Proof of Proposition 3.7. Let F (s, t) = −j(s − t) for s, t ≥ 0. Since j is convex, for r ∈ R

and s, t ≥ 0, we have

j(r) − j(r − s) ≤ j(r + t) − j(r − s + t).

If r = b − d, s = b − a, and t = d − c, this gives

j(b− d) − j(a− d) ≤ j(b− c) − j(a− c),

yielding (8.1). Moreover, F (r, 0) = −j(r) and F (0, r) = −j(−r) both decrease with r ≥ 0
since j ≥ 0 and j(0) = 0. Applying Lemma 8.1 with this choice of F , we obtain (3.12).

The Lp-contracting property results from taking j(r) = |r|p, p ≥ 1. �
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