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Confinement can have a considerable effect on the behavior of particle systems and is therefore an
effective way to discover new phenomena. A notable example is a system of identical bosons at low
temperature under an external field mimicking an isotropic bubble trap, which constrains the particles to a
portion of space close to a spherical surface. Using path integral Monte Carlo simulations, we examine the
spatial structure and superfluid fraction in two emblematic cases. First, we look at soft-core bosons, finding
the existence of supersolid cluster arrangements with polyhedral symmetry; we show how different
numbers of clusters are stabilized depending on the trap radius and the particle mass, and we characterize
the temperature behavior of the cluster phases. A detailed comparison with the behavior of classical soft-
core particles is provided too. Then, we examine the case, of more immediate experimental interest, of a
dipolar condensate on the sphere, demonstrating how a quasi-one-dimensional supersolid of clusters is
formed on a great circle for realistic values of density and interaction parameters. Crucially, this supersolid
phase is only slightly disturbed by gravity. We argue that the predicted phases can be revealed in magnetic
traps with spherical-shell geometry, possibly even in a lab on Earth. Our results pave the way for future
simulation studies of correlated quantum systems in curved geometries.

DOI: 10.1103/PhysRevLett.132.026001

Computing the equilibrium properties of quantum many-
body systems remains a main objective of contemporary
physics. In this respect, ultracold atoms provide a frame-
work where geometry and interactions can be tuned almost
at will, allowing one to test fundamental many-body
theories [1,2]. A system of atoms (loosely) confined to
an ellipsoidal surface [3,4] represents a typology that only
recently has started to be explored. To achieve this goal, a
quantum gas is loaded into a shell trap, where atoms
are subject to a quadrupolar field “dressed” by a radio
frequency (rf) field [5–9]. In the limit of slow atomic
motion in a strong magnetic field, the effective potentials of
the internal states are the position-dependent eigenvalues of
the Hamiltonian consisting of the bare potentials and the
coupling term [10]. For atoms in the upper dressed state,
resonance is reached at the surface of an ellipsoid.
However, to let atoms explore the full surface, experiments
must be performed in outer space [11–13] or adopt some
gravity compensation mechanism [14,15]. Coherent and
isotropic shells of atoms slowly expanding in microgravity
can be generated too [16].

The realization of shell-shaped condensates has fueled a
renewed interest in the problem of quantum particles in
curved geometries [17], and particularly in the quantum
phases that free and interacting bosons can exhibit. Several
recent works have investigated Bose-Einstein condensation
as well as the superfluid-to-normal fluid transition on a
sphere [18–22], while others have studied the dynamics and
thermodynamics of the condensate itself [23–26]. Most of
these works have considered weakly interacting particles,
although some have looked into the condensed phases
arising from dipolar interactions [26–29].
While experiments have so far been performed in the

same dilute limit, bubble traps open the exciting prospect of
investigating the physics of strongly correlated quantum
particles in curved spaces, with all the advantages brought
by ultracold-atom setups. For example, ultracold atoms
may serve as quantum simulators to test fundamental
physics; therefore, studying the effects of curvature in a
controlled environment can be of interest to other fields
ranging from cosmology to biology [30,31]. Similarly, we
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can envisage the possibility to control the self-assembly of
a many-body system through a convenient choice of the
confining surface, i.e., of the shape of the ensuing geo-
metric potential [17]. Equally important is to figure out
experiments on curved many-body systems that could be
accomplished on Earth, i.e., without the necessity of
compensating gravity [32]. In this respect, the most awaited
developments concern dipolar atoms [33], which have
already been examined in flat space and harmonic traps
[34,35] and are known to give rise to supersolid phases
[36–39]. At the same time, it will be interesting to see
whether the confined geometry of bubble traps can stabilize
the supersolid phase in small systems of Rydberg-dressed
atoms [40–44].
In this Letter, we use the path integral Monte Carlo

(PIMC) simulation method to give a first glimpse of the
equilibrium phases that can arise in a shell-trapped system
of identical bosonic particles. In particular, we will provide
the first compelling evidence of supersolid order for two
distinct instances of the interaction potential. First, we look
at the penetrable-sphere model as an example of soft-core
potential and a paradigmatic interaction in condensed
matter physics that gives rise to both superfluidity and
clusterization [45–48]; for this interaction, we compare our
results with various benchmarks. Then, we investigate the
effects of a dipole-dipole interaction, more closely related
to experiments, and we show, for a realistic choice of
parameters, that a supersolid cluster phase indeed occurs in
shell geometry. Remarkably, this supersolid is resistant to
the gravity of Earth.
To keep contact with the experiments, we simulate

spinless bosons in three-dimensional space under the
constraint of an external potential analogous to that realized
in the lab. For N particles with mass m, the Hamiltonian
reads

H ¼
XN

i¼1

ð−λ∇2
ri þ uextðjrijÞÞ þ

X

i<j

vintðri − rjÞ; ð1Þ

where ri is the position of the ith particle, λ ¼ ℏ2=2m, vint
is the (possibly anisotropic) interaction potential, and

uextðdÞ ¼ ðu0=ΩÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 − ΔÞ2=4þΩ2

q
− u0 ð2Þ

is the external potential appropriate to a spherically
symmetric bubble trap [24] centered at the origin. In
Eq. (2), Δ and Ω are square-length parameters related to
the detuning and Rabi frequency of the rf field, respectively,
while u0 characterizes the harmonic trap prior to dressing.
The potential (2) interpolates between the filled sphere and
the spherical shell [see Fig. 1(g)]. In the thin-shell limit, uext
becomes harmonic around the minimum at

ffiffiffiffi
Δ

p
, which thus

defines the radius R of the reference sphere. As R increases,
the potential minimum gets more and more pronounced,

until particles become effectively confined to a spherical
surface.
In our PIMC simulations [49], we employ the worm

algorithm [50] to sample the equilibrium statistics of
bosons at finite temperature and estimate the superfluid
fraction, fs [51]. To deal with the strong spatial constraint
due to (2), we introduce a biased version of the PIMC
method [51]. We also perform classical Monte Carlo (MC)
and molecular dynamics (MD) simulations to probe the
classical limit in the soft-core case.
We begin by considering bosons interacting through the

soft-core potential:

vintðrÞ ¼ ϵθðσ − rÞ; ð3Þ

where ϵ > 0, and σ is the core diameter. In the discussion of
the soft-core model, ϵ and σ are taken as units of energy and
length, respectively; temperatures are expressed in units of
ϵ=kB. Because of the peculiar nature of the repulsion, at
high density particles are gathered in droplets or clusters
[77]. Employing mean-field theory at T ¼ 0, the authors of
Ref. [78] explored various possible arrangements of clus-
ters on the sphere, finding the configuration of lowest
enthalpy as a function of the radius. The evidence of super-
solid phases is, however, not conclusive: Condensation of
clusters is assumed, not derived, while there is no guarantee
that the true ground state has been identified. Using, for the
first time, ab initio PIMC simulations, we provide for the

FIG. 1. Soft-core bosons in an isotropic bubble trap. (a)–
(c) Particle density for N ¼ 120, T ¼ 0.125, R ¼ 1.4, u0 ¼ 2,
Ω ¼ 0.0441, and λ ¼ 0.5 (a), 0.16 (b), 0.01 (c). The size of the
points is proportional to the density averaged along the radial
direction, and the shading is a guide for the eye: Brighter points
are closer to the observer. (d)–(f) Area-preserving projections of
the densities in (a)–(c). Brighter colors indicate a larger density
(log scale). (g) External potential (2) for u0 ¼ 2,Ω ¼ 0.0441, and
R ¼ 0.84 (brown), 1.05 (red), and 1.4 (gold). (h) Pair distribution
function for the same parameters in (a)–(c): λ ¼ 0.5 (blue dotted
line), 0.16 (blue dashed line), 0.01 (purple solid line).
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same interaction (3) conclusive evidence of supersolid
order. Moreover, we show how the supersolid withstands
finite temperature in a realistic bubble trap, i.e., beyond a
purely two-dimensional setup.
First, we investigate the behavior of the system at a

temperature T ≪ 1, choosing Ω ¼ 0.0441 (an arbitrary
value much smaller than Δ; see below). In Figs. 1(a)–1(f),
we give a graphical account of the structures found for
decreasing λ at T ¼ 0.125, which are indicative of a
superfluid-supersolid-insulator “transition,” similar to what
occurs on a plane [79]. Specifically, we perform a size
scaling analysis of fs at fixed N=ð4πR2Þ ¼ 4.87 for two
strengths of the trap potential to see how the system
approaches the planar limit. On a plane, the phases were
characterized in terms of the dimensionless interaction
strength α ¼ mρσ4ϵ=ℏ2 ¼ ρσ4ϵ=ð2λÞ (for a number density
ρ ¼ 4.4), finding that the superfluid-supersolid transition
occurs at α ≈ 13, whereas the system becomes insulating at
α ≈ 22 [79]. In both two and three dimensions, the former
transition is marked by a jump in fs [45]. Our results are
reported in Fig. 2. In the strongly confined case (u0 ¼ 50,
top panel), the planar behavior is already recovered forN ¼
120 particles, while for smaller sizes we find a smooth
crossover. For a weaker external potential (u0 ¼ 2, bottom
panel), the transition to supersolid is milder and shifted
toward higher α values; moreover, convergence to the
planar limit is much slower. In both cases, the system is
a density wave at large α; as α is reduced, quantum
fluctuations increase, eventually leading to a disruption
of polyhedral order which is faster when more freedom is
given to particles in the radial direction, i.e., for u0 ¼ 2. The
same sequence of transitions is reflected in the shape of the
pair distribution function gðrÞ [see Fig. 1(h) and [51] ]. As

long as fs > 0, gðrÞ is nonzero at any distance, which is
consistent with a condensate wave function being nonzero
everywhere on the sphere. Instead, in a normal solid near
zero temperature, gðrÞ would ideally be zero in the
interstitial region between two successive shells of neigh-
bors. The deviations from this behavior at moderate to large
distances are a temperature effect, ultimately due to the
finite extension of the clusters.
Next, we fix the number N of particles (120) and the

temperature T (0.5), and set u0 ¼ 2 and Ω ¼ 0.0441 [we
require Ω ≪ 1, so as to have uextð0Þ ≈ Δ=Ω ≫ 1 for
R ≈ 1]. We collect in a diagram the equilibrium arrange-
ments for various λ and R [Fig. 3(a)]. On account of the fs
value and the evidence or not of polyhedral order, we can
reasonably distinguish between superfluid, supersolid, and
normal-solid states. Throughout the “solid” regions, the
number Nc of clusters may vary, but clusters are invariably
found at the vertices of a regular or semiregular polyhe-
dron: for example, an octahedron for Nc ¼ 6, a square
antiprism forNc ¼ 8, and an icosahedron forNc ¼ 12 [51].
For some ðλ; RÞ pairs, the cluster structure agrees with
those predicted in [78] (for example, the icosahedral
structure at λ ¼ 0.16 and R ¼ 1.4). However, for several
other pairs, the equilibrium configuration is a novel cluster
phase not seen before. Moreover, contrary to the mean-field
prediction, we see that decreasing λ at fixed R leads to

FIG. 2. Superfluid fraction across the superfluid-supersolid-
insulator transition plotted as a function of α for T ¼ 0.125 [the ρ
entering the expression of α is N=ð4πR2Þ]. (a) u0 ¼ 50.
(b) u0 ¼ 2. Different symbols correspond to different system
sizes: N ¼ 40 and R ¼ 0.808 (circles), N ¼ 80 and R ¼ 1.143
(diamonds), N ¼ 120 and R ¼ 1.4 (squares). The dashed lines
refer to the planar limit [80].

FIG. 3. (a) A diagram showing for N ¼ 120 and T ¼ 0.5 the
number Nc of clusters as a function of λ−1 and R. The blue dots
are state points where the system is superfluid. Open circles and
squares mark supersolid and normal-solid states, respectively.
When λ and R are both small,Nc depends on the initial conditions
(see more in [51]); therefore, no number is printed in the symbol.
(b) Superfluid fraction fs plotted as a function of R at fixed
λ ¼ 0.16 and u0 ¼ 50 for T ¼ 0.5 (red squares), 0.25 (purple
diamonds), and 0.125 (blue circles). (c) T dependence of fs for
R ¼ 1.4 and λ ¼ 0.16.
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transitions between equilibrium configurations with differ-
ent numbers of clusters. As we increase the radius, the
supersolid region shrinks, while the number of clusters
grows. At large radii, the particles assemble in smaller
clusters, making it more difficult for the system to sustain
superfluidity; eventually, above a certain R the system is so
dilute that clusters are washed away for every λ.
In the T → 0 limit, the superfluid phase is stable at all

large radii. Upon heating, similar to flat space, a superfluid-
to-normal-fluid transition eventually occurs. This is
illustrated for λ ¼ 0.16 in Fig. 3(b), where we plot the
superfluid fraction as a function of R at different temper-
atures. As T goes up, fs is gradually reduced until it
vanishes, starting from larger R values. At high enough
temperatures, fs is also depleted for the supersolid, as we
show in Fig. 3(c) for R ¼ 1.4 and λ ¼ 0.16: Interestingly,
however, polyhedral order is preserved throughout the
range of temperatures.
When λ → 0, the number of clusters approaches a value

dependent on R; this regime corresponds to the classical
limit, regardless of R and T > 0. To make sure that this is
indeed the case, we have considered the classical counter-
part of the quantum problem. The first observation of
cluster phases in classical particles on a sphere goes back to
Ref. [81], where density-functional-theory calculations are
presented. Here, to keep the same level of accuracy of the
quantum treatment, we carry out extensive MC and MD
simulations of classical soft-core particles, using the same
parameters of the quantum simulations. The results
expressed in terms of the number and final arrangement
of clusters are reported in [51] for various R values. Except
for small radii, where the uncertainty in Nc is large, the
aggregates formed by quantum particles have a compara-
tively smaller number of clusters. This is an effect of
quantum delocalization, which causes the effective diam-
eter of bosons to be larger than σ.
We now move to examine the behavior of dipolar bosons

in the thin-shell limit. As is common in experiments, we
assume atoms to be polarized along ẑ. We work with a
number density on the sphere of about 4 μm−2, of the same
order as that used in experimental realizations [11]. The
(anisotropic) interaction potential reads

vintðrÞ ¼ vHSðrÞ þ
μ0d2m
4π

1 − 3 cos2 θ
r3

; ð4Þ

where μ0 is the vacuum permeability, dm ¼ 9.93μB is the
magnitude of the dipole moment of a 164Dy atom, μB is the
Bohr magneton, and cos θ ¼ r̂ · ẑ [82]. Finally, vHSðrÞ is
the hard-sphere potential with core diameter equal to the
scattering length a [51].
We simulate the system for various a, considering values

up to 103a0, with a0 the Bohr radius, thus much smaller
than the sphere radius taken to be R ¼ 2.6 μm (or
R ≈ 50 × 103a0). Our results for N ¼ 360 and T ¼ 1 nK
are illustrated in Fig. 4. As is clear from Eq. (4), particles

attract each other along the z direction and repel each other
along x and y. As long as a is much smaller than R,
particles move away from the poles of the sphere and bunch
together around the equator. Indeed, up to a ≈ 150a0,
particles form clusters lined up along the equator, as seen
in Figs. 4(a) and 4(b). At variance with what is observed for
dipolar clusters in trapped Euclidean geometries [36], the
cluster phase on the sphere excludes zigzag configurations:
In Figs. 4(a) and 4(b), clusters remain on the equator due to
the lack of a significant repulsion along z that could
counteract the mutual attraction. Unless a is very small,
the superfluid fraction for rotations around z is finite and
significantly larger than fs for rotations around x and y,
thus qualifying this state as supersolid [Fig. 5(a)] [83]. For

FIG. 4. Dipolar atoms on a sphere. (a)–(c) Particle density for
N ¼ 360,T ¼ 1 nK, andR ¼ 2.6 μm, ata=a0 ¼ 5 (a),a=a0 ¼ 50
(b), and a=a0 ¼ 350 (c). The density increases with the size of the
points, while colors are a guide for the eye. (d)–(f) Area-preserving
projections of the densities in (a)–(c). (g)–(i) Effect of gravity.
Brighter colors indicate larger values of the density (log scale).

FIG. 5. (a) Superfluid fractions fðxÞs (blue circles), fðyÞs (green

diamonds), and fðzÞs (red squares) as a function of a. (b),(c)

Thermal behavior of fðzÞs and fðxÞs , for a=a0 ¼ 5 (pink and light
blue), 50 (red and blue), and 350 (brown and purple).
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larger a, due to the increased particle exclusion, clusters
grow in size and merge together forming a ribbon wrapped
around the sphere; see Figs. 4(c) and 4(f). This specific
configuration is consistent with the density profile seen in
[26,27]. Beyond a ≈ 200a0, the ribbon is homogeneous;
however, between a ¼ 150a0 and a ¼ 200a0, there is a
wide crossover region where the clusters are still present
as azimuthal density modulations. The modulated-to-
unmodulated transition is shifted to slightly larger a
compared to other trapped geometries (see, e.g., [85]
and references cited therein) because of the enhanced
stability of spherically confined clusters. The superfluid
fraction along z is still significantly larger than in the other
directions. Finally, for very large values of a > 500a0, a
homogeneous superfluid state emerges, similar to the one
shown in Figs. 1(a) and 1(d). Simulations at different values
of N but fixed density show no significant scaling, a strong
indication that the same supersolid phase persists at larger
numbers of particles, up to experimental values. The
temperature analysis indicates that the supersolid behaves
differently from the superfluid ribbon [see Figs. 5(b) and

5(c)]. In the former case, fðzÞs remains nonzero up to ≈5 nK
due to a nonzero superfluid signal of the system around z.

As for fðxÞs , the signal is smaller and substantially constant
as a result of the thickness of the supersolid in the
latitudinal direction. Instead, the ribbon remains superfluid
up to much higher temperatures, while keeping its aniso-
tropic character for all T.
Figures 4(g)–4(i) depict simulations carried out by

including the effect of gravity on 164Dy atoms. Interes-
tingly, for small enough a the atoms still form a ring of
clusters perpendicular to z, although their center of mass is
no longer at z ¼ 0, but slightly shifted downward. For larger
values of a, even though part of the atoms are found near the
south pole, a shifted superfluid ribbon is still evident. This is
to be contrasted with what happens when we remove the
dipolar component of the interaction, but still keep the hard-
core repulsion: In this case, all particles are pushed by
gravity to the bottom of the trap [51].
To conclude, we have investigated the equilibrium

phases of identical bosons in a shell trap. As the bubble
expands, the system switches from three to two dimen-
sional in a continuous fashion. In this peculiar setting, the
PIMC algorithm needs an ad hocmodification that we have
discussed at length in [51]. With this tool at hand, we have
considered two species of bosons, i.e., soft-core atoms and
dipolar atoms, providing evidence at small nonzero temper-
ature of two unconventional supersolid behaviors. We have
argued that the realization of these phases is within reach of
present-day technology. Very significantly, we have shown
that the dipolar supersolid on the sphere is robust to the
effects of gravity. This surprising result indicates that it
could be probed experimentally even without sending the
apparatus to space. More generally, the ideas underlying
our original implementation of the PIMC algorithm on the

sphere can profitably be replicated for other curved
surfaces, allowing us to gain insight into the peculiarities
of bosons in spaces where the geometric potential is
nonzero (see more in the last section of [51]).
In this Letter, we have focused on demonstrating the

existence of a supersolid phase on the sphere. Using the
same numerical techniques, it would be also possible to
investigate the nature of the superfluid phase on the sphere,
e.g., Berezinskii-Kosterlitz-Thouless behavior or reentrant
effects [85,86]. Our work might also be relevant to super-
solid phases in the crust of neutron stars [87]. The
dynamical properties of shell-trapped bosons are another
open problem and an active area of research [88]. For
example, it would be interesting to see whether the super-
fluid ribbon in Figs. 4(c) and 4(f) can support persistent
currents in the same way as does a superfluid ring [89–91].

The authors acknowledge the NICIS Centre for High-
Perfomance Computing, South Africa, for providing com-
putational resources. M. C. and F. C. acknowledge financial
support from PNRRMUR Project No. PE0000023-NQSTI.
Fruitful discussions with M. Boninsegni, T. Macrì, A.
Mendoza-Coto, G. Modugno, and S. Moroni are gratefully
acknowledged.

*matteo.ciardi@tuwien.ac.at
†fabio.cinti@unifi.it
‡giuseppe.pellicane@unime.it
§sprestipino@unime.it

[1] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics
with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[2] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simu-
lations with ultracold quantum gases, Nat. Phys. 8, 267
(2012).

[3] B. M. Garraway and H. Perrin, Recent developments in
trapping and manipulation of atoms with adiabatic poten-
tials, J. Phys. B 49, 172001 (2016).

[4] H. Perrin and B. M. Garraway, Trapping atoms with radio
frequency adiabatic potentials, in Advances in Atomic,
Molecular, and Optical Physics (Elsevier, New York,
2017), pp. 181–262.

[5] O. Zobay and B. M. Garraway, Two-dimensional atom
trapping in field-induced adiabatic potentials, Phys. Rev.
Lett. 86, 1195 (2001).

[6] O. Zobay and B. M. Garraway, Atom trapping and two-
dimensional Bose-Einstein condensates in field-induced
adiabatic potentials, Phys. Rev. A 69, 023605 (2004).

[7] Y. Colombe, E. Knyazchyan, O. Morizot, B. Mercier, V.
Lorent, and H. Perrin, Ultracold atoms confined in
rf-induced two-dimensional trapping potentials, Europhys.
Lett. 67, 593 (2004).

[8] O. Morizot, C. L. G. Alzar, P.-E. Pottie, V. Lorent, and H.
Perrin, Trapping and cooling of rf-dressed atoms in a
quadrupole magnetic field, J. Phys. B 40, 4013 (2007).

[9] T. L. Harte, E. Bentine, K. Luksch, A. J. Barker, D.
Trypogeorgos, B. Yuen, and C. J. Foot, Ultracold atoms

PHYSICAL REVIEW LETTERS 132, 026001 (2024)

026001-5

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1088/0953-4075/49/17/172001
https://doi.org/10.1103/PhysRevLett.86.1195
https://doi.org/10.1103/PhysRevLett.86.1195
https://doi.org/10.1103/PhysRevA.69.023605
https://doi.org/10.1209/epl/i2004-10095-7
https://doi.org/10.1209/epl/i2004-10095-7
https://doi.org/10.1088/0953-4075/40/20/004


in multiple radio-frequency dressed adiabatic potentials,
Phys. Rev. A 97, 013616 (2018).

[10] A. Messiah, Quantum Mechanics, Dover Books on Physics
(Dover Publications, Newburyport, 2014).

[11] N. Lundblad, R. A. Carollo, C. Lannert, M. J. Gold, X.
Jiang, D. Paseltiner, N. Sergay, and D. C. Aveline, Shell
potentials for microgravity Bose-Einstein condensates, npj
Microgravity 5, 30 (2019).

[12] D. C. Aveline, J. R. Williams, E. R. Elliott, C. Dutenhoffer,
J. R. Kellogg, J. M. Kohel, N. E. Lay, K. Oudrhiri, R. F.
Shotwell, N. Yu, and R. J. Thompson, Observation of Bose-
Einstein condensates in an Earth-orbiting research lab,
Nature (London) 582, 193 (2020).

[13] R. A. Carollo, D. C. Aveline, B. Rhyno, S. Vishveshwara, C.
Lannert, J. D. Murphree, E. R. Elliott, J. R. Williams, R. J.
Thompson, and N. Lundblad, Observation of ultracold
atomic bubbles in orbital microgravity, Nature (London)
606, 281 (2022).

[14] Y. Guo, E. M. Gutierrez, D. Rey, T. Badr, A. Perrin, L.
Longchambon, V. S. Bagnato, H. Perrin, and R. Dubessy,
Expansion of a quantum gas in a shell trap, New J. Phys. 24,
093040 (2022).

[15] F. Jia, Z. Huang, L. Qiu, R. Zhou, Y. Yan, and
D. Wang, Expansion dynamics of a shell-shaped Bose-
Einstein condensate, Phys. Rev. Lett. 129, 243402
(2022).

[16] M. Meister, A. Roura, E. M. Rasel, and W. P. Schleich, The
space atom laser: An isotropic source for ultra-cold atoms in
microgravity, New J. Phys. 21, 013039 (2019).

[17] N. S. Móller, F. E. A. dos Santos, V. S. Bagnato, and A.
Pelster, Bose-Einstein condensation on curved manifolds,
New J. Phys. 22, 063059 (2020).

[18] A. Tononi and L. Salasnich, Bose-Einstein condensation on
the surface of a sphere, Phys. Rev. Lett. 123, 160403
(2019).

[19] S. J. Bereta, L. Madeira, V. S. Bagnato, and M. A.
Caracanhas, Bose-Einstein condensation in spherically
symmetric traps, Am. J. Phys. 87, 924 (2019).

[20] A. Tononi, F. Cinti, and L. Salasnich, Quantum bubbles in
microgravity, Phys. Rev. Lett. 125, 010402 (2020).

[21] A. Tononi, A. Pelster, and L. Salasnich, Topological super-
fluid transition in bubble-trapped condensates, Phys. Rev.
Res. 4, 013122 (2022).

[22] C. Lannert, T.-C. Wei, and S. Vishveshwara, Dynamics of
condensate shells: Collective modes and expansion, Phys.
Rev. A 75, 013611 (2007).

[23] K. Padavić, K. Sun, C. Lannert, and S. Vishveshwara,
Physics of hollow Bose-Einstein condensates, Europhys.
Lett. 120, 20004 (2018).

[24] K. Sun, K. Padavić, F. Yang, S. Vishveshwara, and C.
Lannert, Static and dynamic properties of shell-shaped
condensates, Phys. Rev. A 98, 013609 (2018).

[25] B. Rhyno, N. Lundblad, D. C. Aveline, C. Lannert, and S.
Vishveshwara, Thermodynamics in expanding shell-shaped
Bose-Einstein condensates, Phys. Rev. A 104, 063310
(2021).

[26] P. C. Diniz, E. A. B. Oliveira, A. R. P. Lima, and E. A. L.
Henn, Ground state and collective excitations of a dipolar
Bose-Einstein condensate in a bubble trap, Sci. Rep. 10,
4831 (2020).

[27] S. K. Adhikari, Dipolar Bose-Einstein condensate in a ring
or in a shell, Phys. Rev. A 85, 053631 (2012).

[28] F. Cinti and M. Boninsegni, Classical and quantum fila-
ments in the ground state of trapped dipolar Bose gases,
Phys. Rev. A 96, 013627 (2017).

[29] M. Arazo, R. Mayol, and M. Guilleumas, Shell-shaped
condensates with gravitational sag: Contact and dipolar
interactions, New J. Phys. 23, 113040 (2021).

[30] S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, and G. K.
Campbell, A rapidly expanding Bose-Einstein condensate:
An expanding universe in the lab, Phys. Rev. X 8, 021021
(2018).

[31] M. F. Hagan and G.M. Grason, Equilibrium mechanisms of
self-limiting assembly, Rev. Mod. Phys. 93, 025008
(2021).

[32] N. Lundblad, D. C. Aveline, A. Balaž, E. Bentine,
N. P. Bigelow, P. Boegel, M. A. Efremov, N. Gaaloul, M.
Meister, M. Olshanii, C. A. R. S. de Melo, A. Tononi, S.
Vishveshwara, A. C. White, A. Wolf, and B. M. Garraway,
Perspective on quantum bubbles in microgravity, Quantum
Sci. Technol. 8, 024003 (2023).

[33] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T.
Pfau, The physics of dipolar bosonic quantum gases, Rep.
Prog. Phys. 72, 126401 (2009).

[34] G. Biagioni, N. Antolini, A. Alaña, M. Modugno, A.
Fioretti, C. Gabbanini, L. Tanzi, and G. Modugno, Dimen-
sional crossover in the superfluid-supersolid quantum phase
transition, Phys. Rev. X 12, 021019 (2022).

[35] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-
Tolra, B. L. Lev, and T. Pfau, Dipolar physics: A review of
experiments with magnetic quantum gases., Rep. Prog.
Phys. 86, 026401 (2023).

[36] M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M. J.
Mark, R. N. Bisset, L. Santos, and F. Ferlaino, Two-dimen-
sional supersolidity in a dipolar quantum gas, Nature
(London) 596, 357 (2021).

[37] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C.
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Helmerson, and W. D. Phillips, Observation of persistent
flow of a Bose-Einstein condensate in a toroidal trap, Phys.
Rev. Lett. 99, 260401 (2007).

[90] L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C.
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