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Pheochromocytomas and paragangliomas are rare neuroendocrine 
tumours. Around 20–25 % of patients develop metastases, for which 
there is an urgent need of prognostic markers and therapeutic stra-
tification strategies. The presence of a MAML3-fusion is associated 
with increased metastatic risk, but neither the processes underlying 
disease progression, nor targetable vulnerabilities have been ad-
dressed. We have compiled a cohort of 850 patients, which has 
shown a 3.65 % fusion prevalence and represents the largest MAML3- 
positive series reported to date. While MAML3-fusions mainly cause 
single pheochromocytomas, we also observed somatic post-zygotic 
events, resulting in multiple tumours in the same patient. MAML3- 
tumours show increased expression of neuroendocrine-to-me-
senchymal transition markers, MYC-targets, and angiogenesis-re-
lated genes, leading to a distinct tumour microenvironment with 
unique vascular and immune profiles. Importantly, our findings have 
identified MAML3-tumours specific vulnerabilities beyond Wnt- 
pathway dysregulation, such as a rich vascular network, and 

1 These authors equally contributed to this study. 
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overexpression of PD-L1 and CD40, suggesting potential therapeutic 
targets. 

© 2024 The Author(s). Published by Elsevier Ltd. This is an open 
access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).  

Introduction 

Pheochromocytomas (PCCs) and paragangliomas (PGLs), collectively known as PPGLs, are rare neu-
roendocrine tumours derived from the chromaffin cells of the adrenal medulla and paraganglia, re-
spectively. These tumours are genetically heterogeneous and are associated with germline and somatic 
pathogenic variants (PV) in more than 20 genes described so far [1,2]. PPGLs display distinct expression 
profiles determined by specific driver genes, leading to their classification into three clusters: pseudo-
hypoxic (C1), kinase signalling (C2), and Wnt-altered (C3). The latter cluster comprises tumours with 
MAML3-fusions and CSDE1-PV [3]. Metastatic disease occurs in approximately 20 % of the PPGL patients, 
with an overall 5-year survival rate of 40–77 % [4], and current treatments show limited efficacy. Tumour 
size (≥ 5 cm), extra-adrenal location, and SDHB-PV are key prognostic factors [4–6], though clinical 
outcomes remain mostly unpredictable [6–8]. Therefore, accurate molecular markers for metastatic risk 
and personalized treatment strategies are needed to improve patient management. 

Genomic studies have elucidated the molecular landscape of PPGLs [3,9]. Our recent large-scale 
genomic study on metastatic PPGLs provided crucial insights into this aggressive tumour subset [10]. 
Notably, this study identified a classifier using four molecular events – high microsatellite instability 
(MSI) score, high CDK1 expression, ATRX-PV and MAML3-fusions – that achieved 100 % sensitivity in 
predicting metastatic risk at the time of primary tumour diagnosis [10]. 

MAML3-fusion related PPGLs show a distinct transcriptional and methylation profile and are asso-
ciated with an aggressive tumour behaviour [3]. MAML3 regulates the transcription of NOTCH pathway 
genes by binding to the NOTCH intracellular domain (NICD). By contrast, MAML3-fusion proteins with 
UBTF or TCF4 as fusion partners, lack this binding motive and its canonical function [11] is altered by 
activating the Wnt signalling pathway and increasing β-catenin protein levels [3,11]. 

Despite the rarity of MAML3-driven tumours, understanding their metastatic behaviour and identi-
fying drug vulnerabilities is essential. Here, we gathered publicly available and novel transcription and 
methylation data to explore their specific characteristics. Our findings indicate a 3.65 % prevalence of the 
fusion and a significant association with a shorter time to progression, along with a tendency to accu-
mulate additional alterations in bona fide progression genes such as TERT and ATRX. Moreover, these 
tumours show increased expression of neuroendocrine-to-mesenchymal transition (Ne-MT) markers, 
MYC-targets, and angiogenesis-related genes. Consequently, we conducted a comprehensive study of the 
MAML3-tumour microenvironment (TME), revealing distinct vascular architecture and immune in-
filtration patterns with therapeutic implications. 

Materials and methods 

Series and clinical data 

The 779-patient cohort analysed in this study incorporates transcriptomic and methylation data from 
our group (CNIO series 1 and 2, and CNIO microarrays) and 3 published accessible cohorts 
(Supplementary Table 1). Transcriptional data from CNIO series 1 comprises 114 samples from 105 pa-
tients with PPGL (previously reported series [10]). CNIO series 2 includes 81 additional samples from 74 
PPGL patients with available clinical information (Table 1) on tumour behaviour, sex, age at first tumour 
diagnosis and presence of single or multiple PPGLs. Tumours were classified as aggressive if they ex-
hibited capsular or adipose tissue invasion, vascular infiltration, or showed multiple recurrences without 
definitive evidence of metastatic disease. PD-L1 immunohistochemistry (IHC) and break-apart fluores-
cence in situ hybridization (FISH) studies included samples from 84 patients (Supplementary Table 2). 
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Only patients who had provided informed consent were included in the study, in compliance with the 
principles of the Declaration of Helsinki. The protocol was approved by the following Ethics Committees: 
Hospital Universitario 12 de Octubre (15/024), Madrid, Spain; Universitäts Spital Zurich (2017–00771), 
Zurich, Switzerland; Klinikum der Universität (379−10), Munich, Germany; University of Würzburg (88/ 
11), Würzburg, Germany; Azienda Ospedaliera Universitaria Careggi (Prot. N. 2011/0020149), Florence, 
Italy; Berlin Chamber of Physicians (Eth-S-R/14), Berlin, Germany; Radboud University Medical Center 
(9803–0060), Nijmegen, The Netherlands; University Hospital Carl Gustav Carus at TU Dresden 
(EK210052017 and EK189062010), Dresden, Germany. 

Molecular characterization of PPGL series: driver pathogenic variants and secondary events involving ATRX 
and TERT 

The 81 new tumour samples were collected either in formalin-fixed paraffin-embedded (FFPE) or 
fresh-frozen (FF) and tumour selection (> 80% cancer cells) was performed by a pathologist (E.C.) on 
haematoxylin and eosin-stained slides. DNA and RNA isolation, quality control and library preparation 
were performed as previously described [10]. The prepared libraries were subsequently sequenced on a 
NovaSeq™ system (Illumina). 

Germline and somatic PV in PPGL driver genes were characterized using NGS AmpliSeq Custom DNA 
Panel (Illumina, San Diego, CA, USA), and confirmed by Sanger sequencing. TERT promoter (C228T and 
C250T mutations) and ATRX-PV were analysed in all CNIO tumour samples using a customized NGS panel  
[12]. While ATRX-PV data were available from The Cancer Genome Atlas (TCGA) and COMETE-derived 
series [3,13], TERT promoter mutational status was only described in the latter [13]. However, to acquire 
complete information on TERT status, TERT expression, TERT promoter hypermethylation and/or copy 
number gains were analysed in the whole series [12–15]. 

MAML3-fusion candidates identification 

MAML3-fusion candidates were identified through different approaches: (1) using a gene expression 
signature (n = 765) and a methylation probe one (n = 568), (2) FISH, and (3) PD-L1 IHC in samples with 
available FFPE material. Study workflow is summarized in Supplementary Figure 1. 

Identification of MAML3-fusion candidates using a gene expression signature 
ComBat-seq was used to merge the new CNIO series 2 (n = 81) with the CNIO series 1 + TCGA dataset 

generated by Calsina et al., 2023, and publicly available data sets (COMETE-derived [16], Evenepoel [14] 
and CNIO microarrays [17]) (Supplementary Figure 1). These six series were combined by Z-score, 

Table 1 
Clinical characteristics of 74 new patients in the CNIO series 2.    

Patient´s clinical characteristics New CNIO patients (n = 74)  

Primary tumor localization  
PCC 57 % (42) 
PGL 25 % (19) 
Multiple PGL 3 % (2) 
PCC+PGL 7 % (5) 
Metastasis 5 % (4) 
NA 3 % (2) 
Sex  
Female 49 % (36) 
Male 47 % (35) 
NA 4 % (3) 
Age at initial diagnosis of PCC/PGL; median (range) in years 48 (14−80) 
Clinical behavior  
Non-metastatic disease 67 % (50) 
Aggressive disease 7 % (5) 
Metastatic disease 26 % (19) 
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selecting the genes described in the TCGA transcriptomic profile as associated with MAML3-fusion (DVL3, 
MYC, WNT4, NKD1, FZD7, WNT5B, WNT7B, MAML3, PTCH1, GLI2, FZD3, FZD8 and miR-375) [3]. MicroRNA 
(miRNA) data was extracted from Calsina et al., 2019 [18] and merged into the same matrix by applying 
the same z-score transformation. Through hierarchical clustering based on Euclidian distance, tumours 
clustering together with previously reported MAML3-cases [3,10,13] were categorized as MAML3-fusion 
candidates. 

Identification of MAML3-fusion candidates using a hypomethylated probes signature 
First, we identified approximately 3000 differentially methylated probes between MAML3-fusion 

cases and other genotypes (log fold change [logFC] > 1 and False Discovery Rate [FDR] < 0.05) using 
Illumina Infinium HumanMethylation450 BeadChip data in the TCGA series [3] genotypes. Among these 
probes, 243 were also present on the Illumina Infinium HumanMethylation27 BeadChip, which was the 
platform used by most of the methylation data available (Supplementary Table 1). To merge the data 
from these 243 probes across three methylation cohorts (CNIO [19–22], TCGA [3] and COMETE-derived  
[9]) into a single matrix, beta-values of these probes were z-score transformed. By hierarchical clustering 
using Jaccard distance, tumours clustering together with previously reported MAML3-cases [3,10,13] 
were categorized as MAML3-fusion candidates. 

Break-apart FISH assay for MAML3-fusion identification 
A dual-colour break-apart FISH probe was developed using six bacterial artificial chromosome (BAC) 

clones from BACPAC Genomics (Supplementary Figure 2a). 
Three BAC clones (RP11–6A22, RP11–615B12, and RP11–903H21) located in MAML3 5′ region were 

labelled with Spectrum-Green using the Nick translation assay (Sigma Aldrich). The remaining three 
clones (RP11–625H13, RP11–876B4, and RP11–28L10) located in the 3′ region were labelled with 
Spectrum-Orange. 

Samples with available FFPE-whole slides or included in tissue microarrays (TMA) were used for this 
analysis (Supplementary Table 2). FFPE sections were mounted on positively charged slides (SuperFrost, 
Thermo Scientific) following the Histology FISH Accessory Kit (DAKO) instructions as previously de-
scribed [23]. Tissue sections were deparaffinized in xylene, rehydrated through a series of ethanol so-
lutions, and treated with 2-[N-morpholino] ethanesulphonic acid (MES) and pepsin for protein digestion. 
Then, samples were denatured in the presence of the FISH probe and allowed to hybridize overnight in a 
humid chamber. Subsequently, the slides were washed and mounted with DAPI (Sigma Aldrich). 

Two independent investigators (MCM and SR-P) manually scored the FISH signals by examining the 
number of nuclei with split signals, assessing presence of MAML3-fusions. 

PD-L1 quantification by immunohistochemistry (IHC) 
PD-L1 IHC was performed and evaluated as described in Calsina et al. [10]. Samples with available 

FFPE-whole slides or included in TMA were used for this analysis (Supplementary Table 2). 

MAML3-fusion validation techniques 

The MAML3-tumor candidates were validated using either PCR or an RNA fusion NGS panel. 

PCR 
Total RNA from candidate tumours was reverse-transcribed and used for PCR amplification with 

specific primers adjacent to upstream and downstream regions of the previously reported fusions [3,13]: 
upstream UBTF (exon 17: 5′-GGAGCAGCAAAAGCAGTACA-3′ and exon 19: 5′-CCCAAACCCCCCAAATC 
CAG-3′) and downstream MAML3 of the fusion transcript (5′ TCTCCATTAAGTGGTGGTGGATCGAG 3′). 
Fusion amplicons underwent sanger sequencing. 

RNA fusion NGS panel 
A customized Archer’s FusionPlex panel (FusionPlex MAML3 Supplement 22729 concatenated with 

FusionPlex Lung v2 18090 v1.3 v1.0, Archer®) was used. The design incorporated a spike-in panel con-
sisting of primers that covered the five MAML3 gene exons, both in 5′ and 3′ directions. 

M. Monteagudo, B. Calsina, M.E. Salazar-Hidalgo et al. Best Practice & Research Clinical Endocrinology & Metabolism xxx (xxxx) xxx 

5 



Library preparation used 300 ng of RNA input per sample with the Archer Universal RNA reagent Kit 
v2 and Archer Molecular Barcode (MBC) Adapters for Illumina, following the manufacturer’s instructions. 
Libraries were quantified using the KAPA Library Quantification Kit (Roche), and pooled equimolarly. 

Sequencing was performed on the MiSeq™ System from Illumina, ensuring at least 1 million paired- 
end reads with 150 bp read length. The generated sequencing data were analysed using Archer Analysis 
v7 software developed by ArcherDX. Samples were deemed positive if the fusion breakpoint had at least 
three unique start site reads. 

Additional OMIC-analyses on the Set 2 transcription matrix 

RNA-Seq analyses and TME profiling 
The data used for candidate identification through gene expression signature included microarrays 

(COMETE-derived, Evenepoel and CNIO microarrays) and RNA-Seq (CNIO series 1, 2 and TCGA) data. Due 
to the challenge of integrating data from both technologies for whole-transcriptomic analyses, micro-
array datasets were excluded from further analyses. Thus, we proceeded only with RNA-Seq data (CNIO 
series 1,2 and TCGA), comprising 349 samples and referred to as “Set 2″ hereafter. This set included a 
balanced number of non-metastatic and metastatic patient samples, employed for subsequent differ-
ential expression analysis (DE) using DESeq2 [24], gene set enrichment analysis (GSEA) and immune cell- 
type estimation. The study workflow is summarized in Supplementary Figure 1. 

Gene set enrichment analysis (GSEA) 
GSEA was performed using software version 2.2.2. (RRID:SCR_003199), focusing on the Molecular 

Signature Database (MSigDB) collections, specifically the ’H: hallmark gene sets’. Analysis was conducted 
using default settings, comparing MAML3-tumours against other genotypes using the Set 2 RNA-Seq 
matrix data. 

Immune cell type estimation 
The absolute abundance of 22 immune cell subtypes in each sample from Set 2 was estimated with 

CIBERSORTx [25] using the DESeq2 normalized expression matrix. Analysis parameters were as follows: 
(1) Gene signature matrix: LM22, containing gene expression profiles of 22 immune cell subsets; (2) 
1000 permutations to obtain robust and reliable results; (3) B-mode batch correction to account for any 
potential batch effects, and (4) Quantile normalization disabled. 

Immunohistochemistry and image data quantification 

IHC analysis of CD31, CD8, CD68, CD163 and perforin was conducted on a subset of available FFPE 
samples. Sections (2–3 µm) were prepared and dried overnight at 60 °C. Staining was performed using 
the BOND-MAX Automated IHC system from Leica Microsystems GmbH and AS-Link 48 from DAKO, 
following standard protocols. 

Sections were initially deparaffinised and pretreated with Epitope Retrieval Solution 2 (EDTA buffer 
pH 8.8) at 98 °C for 20 min. After washing, peroxidase blocking was conducted for 10 min using the Bond 
Polymer Refine Detection Kit DC9800 from Leica Microsystems GmbH. 

Tissues were washed and incubated with the appropriate primary antibodies: mouse anti-CD31 
(Ready to Use (RTU), mouse monoclonal [JC70A], Dako (IR610/IS610)), mouse anti-CD8 FLEX (RTU, mouse 
monoclonal [C8/144B], Dako (IR623), visualization system: EnVision FLEX + Mouse + Magenta), mouse 
anti-CD68 (RTU, mouse monoclonal [KP1]), mouse anti-CD163 (dilution: 1:200, mouse monoclonal 
[10D6], Leica (NCL-CD163)), and mouse anti-perforin (dilution: 1:50, Mouse Monoclonal [5B10], Abcam 
(ab89821). Dual IHC staining for CD8 and perforin was conducted. Cells positive for both CD8 and per-
forin were categorized as cytotoxic T lymphocytes (CTLs), whereas cells positive for perforin alone were 
classified as natural killer (NK) cells. 

Tissues were incubated with anti-mouse or anti-rabbit secondary antibody with polymer or envision 
flex for 10 min and developed with DAB or magenta chromogen for 10 min. The slides were then stained 
with haematoxylin, dehydrated, cleared, and mounted with a permanent mounting medium for mi-
croscopic evaluation. Whole slide images were scanned using the AxioScan Z1 from Zeiss and captured 
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with either Zen Blue software (ZEN Digital Imaging for Light Microscopy, Zeiss, RRID:SCR_013672) or 
AxioVision software (AxioVision Imaging System, RRID:SCR_002677). 

Vascular patterns (CD31) in whole tissue sections were examined by a pathologist (E. C.). Blood 
vessels were analysed using a workflow combining QuPath [26] and Fiji (Image J). Five regions of interest 
(ROIs) were chosen per tumour for vessel detection using QuPath. Images from each ROI were skele-
tonized in Fiji with default settings. Skeletonization data were processed using GraphPad Prism 9 and 
Microsoft Excel obtaining vessel length, number and branching data, subsequently combined to classify 
the seven vascular phenotypes described in the article. 

CD8 + , CD68 + , and CD163 + cell counts were analysed using a digital image workflow in QuPath. The 
analysis focused on the same 2.5×107 µm2 ROI of each slide stained with each antibody. The pipeline 
automatically detected and quantified positive cells for each antibody among tumour infiltrating cells, 
excluding regions with immune nodules and immune cells near or within blood vessels. 

Quantification, statistical analysis and sample clustering 

Statistical analyses were conducted using different software packages: GraphPad Prism 9, R version 
3.2.2., and IBM SPSS Statistics v19. 

Categories for p-values are the following: p-value <  0.001: denoted as * ** , p-value between 0.001 
and 0.01, denoted as * * and p-value between 0.01 and 0.05, denoted as * . Type of test performed, and p- 
values are given for each experiment. 

Time-to-progression curves (from Set 1) were plotted based on the interval between primary tumour 
diagnosis and metastasis and/or recurrence onset. The risk of early metastasis or aggressive disease was 
assessed using a univariate logistic regression model. 

Morpheus software, available at https://software.broadinstitute.org/morpheus, was used for gra-
phical visualization, classification, and sample clustering. 

Results 

Transcription and methylation signatures, FISH and PD-L1 IHC are accurate screening tools to detect MAML3- 
fusion candidates 

Unsupervised hierarchical clustering on Series 1 omics data, grouped together a total of twelve wild 
type (WT) cases with previously reported MAML3-fusion tumours [3,10,13]. Therefore, they were con-
sidered as MAML3-fusion candidates (Fig. 1a and b). 

Four additional candidates were identified by FISH in available TMAs, and one more by positive PD-L1 
IHC staining, characteristic of MAML3-tumours [10]. Consequently, based on omic analysis, FISH, and IHC, 
we identified 17 MAML3-fusion candidates (Fig. 1c and Supplementary Table 3). 

We validated MAML3-fusion by RNA Fusion NGS Panel and/or PCR in 11 of these tumours. No re-
maining tumour tissue was available for PCR/NGS validation on candidates #1, #16 and #17 from CNIO. 
However, #1 and #16 were considered as positive based on FISH results. #19, #34, #35 remained as 
candidates since they belong to publicly available series, and we do not have access to them for vali-
dation. The fusions involved either exons 15, 17 or 19 of UBTF (ENST00000436088.6; NM_014233), or 
exon 15 of TCF4 (ENST00000354452.8; NM_001083962.2) as the 5′ partner, and exon 2 of MAML3 
(ENST00000509479.6; NM_018717.5) as the 3 ́  partner. Fig. 1c and Supplementary Table 3 summarize 
details on the 35 MAML3-related/potentially-related patients, including the poor-prognosis related 
secondary events in ATRX and TERT related aberrations: C228T (c.–124 C > T) mutation, TERT expression, 
promoter hypermethylation, and copy number gains. 

Considering only the 31 validated cases, the overall prevalence of the fusion was 3.65% (n = 31/850) 
(Fig. 1c) and clinical data revealed 48% of the cases had aggressive or metastatic disease (n = 15/31). 
Excluding non-metastatic patients with less than 2 years of follow-up (n = 8) increased this percentage to 
65% (n = 15/23), which is comparable to the percentage of metastatic cases in SDHB-carriers [8]. Most 
patients had single PCC (29/31, 93%) with a predominantly noradrenergic phenotype (27/31, 87%). Sex 
distribution was 58% male and 42% female, with a mean diagnosis age of 53 years (Fig. 1c and Supple-
mentary Table 3). 

M. Monteagudo, B. Calsina, M.E. Salazar-Hidalgo et al. Best Practice & Research Clinical Endocrinology & Metabolism xxx (xxxx) xxx 

7 



Fig. 1. MAML3 screening on Set 1. a Unsupervised hierarchical clustering of transcriptomic MAML3-fusion associated profile 
(Average Euclidean distance). Previously reported MAML3-fusion cases from their respective series coloured in red, new MAML3- 
candidates in blue and MAML3-TCF4 fusion cases in yellow. b Unsupervised hierarchical clustering of methylation profiles (Jaccard 
distance). Previously reported MAML3-fusion cases from their respective series coloured in red, new MAML3-candidates in blue and 
MAML3-TCF4 fusion cases in yellow. c MAML3-related/potentially-related patients overview: clinical and molecular characteristics. 
Figure based on results from primary tumours. Black dots in the series represent previously reported cases. Fusion study was 
performed in available metastases. 
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Somatic post-zygotic MAML3-fusions cause multiple tumours 

Candidate #13, identified by FISH, did not group with UBTF-MAML3 tumours (Fig. 1a and b). Subse-
quently, NGS fusion detection panel uncovered a TCF4 E15-MAML3 E2 fusion, explaining the distinct omic 
profile. This patient presented with a PCC and multiple PGLs. The NGS fusion detection panel identified 
the same fusion in two PGLs, but not in the blood. Additionally, both FFPE tumours showed positive PD- 
L1 IHC. 

In the COMETE-derived series, patient #20 with a PCC and two PGLs clustered with the MAML3 group. 
Both PGLs exhibited the UBTF E17-MAML3 E2 fusion, but the PCC and blood could not be tested. 
Interestingly, one PGL had a secondary ATRX-PV, and the other had TERT alteration (Fig. 1c). These 
findings in two patients with multiple PPGLs suggest a somatic post-zygotic MAML3-fusion event. 

Impact of ATRX-PV and TERT alterations on risk of metastases in MAML3-tumours 

Univariate logistic regression showed that MAML3-fusions significantly increases metastatic risk (OR 
[95% CI]: 4.696 [2.158–11.443], p = 1.654 E-04), similar to SDHB-tumours (OR [95% CI]: 11.440 
[6.161–21.240], p = 1.717 E-14). Additionally, MAML3-tumours had a shorter time to progression (p = 1.712 

Fig. 2. Set 1 Time to Progression Curves. a Kaplan–Meier plot of time to progression according to cluster and genotype. C1 
included all pseudohypoxic tumours except SDHBs. Each group is indicated in a different colour (time to progression: time elapsed 
between the diagnosis of the first PPGL and the first documented metastasis/aggressive signs). Log rank <  0.0001. b MAML3+SDHB 
samples grouped according to ATRX-PV and TERT events (TERT promoter mutations, TERT promoter hypermethylation, copy number 
alteration in 5p and TERT overexpression). Patients without metastases were censored at the date of the last follow-up. Log rank 
<  0.01. Mantel-Cox and Logistic Regression are shown in respective tables. 
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E-24) compared to C1 and C2 clusters (Fig. 2a). Due the fact that both SDHB and MAML3 show a much 
higher risk of metastasis than other genotypes, we grouped them together for further analysis on the 
effect of TERT and ATRX alterations on this risk, given their association with PPGL aggressiveness [12,13]. 
We evaluated their prognostic value and found that MAML3/SDHB-cases with these secondary alterations 
presented a shorter time to progression compared to the ones without them (HR[95% CI]: 2.553 
[1.309–4.978], p = 0.006) (Fig. 2b). 

Impact of MAML3-fusion on MYC-targets, angiogenesis, and Ne-MT processes 

We performed DE and GSEA analysis comparing MAML3-tumours vs other genotypes. A significant 
positive normalized enrichment score (NES > 1.22; FDR < 0.2) was obtained for three main processes: 
MYC-targets, Epithelial to Mesenchymal Transition (EMT), and Angiogenesis (Fig. 3a). 

The upregulation of MYC-targets has been studied in several types of tumours, displaying an asso-
ciation with decreased survival and disease progression [27], along with alterations in the TME [28]. 

Exploring genes implicated in Ne-MT process, we observed that MAML3-tumours highly expressed 
mesenchymal genes such as SNAI2 (versus C1 adj. p: 5.316 E−05; C2 adj. p: 4.351 E−09; SDHB adj. p: 9.761 
E−07) and CDH2 (C1 adj. p: 0.001; SDHB adj. p: 4.890 E−08), while neuroendocrine markers like ENO2 (C1 
adj. p: 0.016; C2 adj. p: 1.34 E−04; SDHB adj. p: 1.49 E−05) and INSM1 (C1 adj. p: 0.09; C2 adj. p: 0.07) 
showed lower expression (Fig. 3b). This mesenchymal phenotype suggests dedifferentiation and re-
inforces their aggressiveness. 

Similar to VHL- and SDHB-tumours, overexpression of VEGF, EPAS1, and HK2 genes in MAML3-tumours 
has been described [29]. Following the identification of Angiogenesis as an enriched gene set in the GSEA 
analysis, our RNA-Seq data also showed significantly higher expression levels of these genes in MAML3- 
compared to C2- and CSDE1-tumours (p-value < 0.001) (Supplementary Figure 4a). 

Fig. 3. Depiction of Cancer Hallmarks gene sets Enriched in MAML3-tumours from Set 2. a GSEA of the Cancer Hallmarks 
shows enriched pathways in MAML3-tumours compared to the rest of PPGLs with known driver gene. b Differential expression of 
Ne-MT genes and proliferation markers. Results obtained from DE analysis comparing MAML3-tumours vs ALL (C1 +C2 +CSDE1), C1, 
C2 and SDHB-tumours. 
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Additional analyses pointed to more differences between MAML3- and CSDE1–tumours. GSEA re-
vealed significant positive NES (NES > 1.64; p-val < 0.0001) in several cancer hallmarks gene sets 
(Supplementary Figure 3), highlighting differences in vascular processes and immune infiltration within 
cluster C3 counterparts. This suggests that MAML3 and CSDE1 tumours do not belong to the same 
transcriptional cluster as has been described before. 

MAML3-tumours show unique vascular architecture 

CD31 IHC analysis revealed a heterogeneous vascular pattern in MAML3- and in metastatic tumours 
from other genotypes, but a homogeneous pattern in non-metastatic cases. MAML3-tumours had the 
highest number of vessels and a greater proportion of long vessels compared to VHL-tumours and other 
PPGLs (Fig. 4a and Supplementary Figure 6). For vessel branching, the highest values were detected in 
MAML3-, VHL- and metastatic SDHB-tumours. 

Fig. 4. Vascular Landscape of PPGLs. a Vessel length measurements per vessel. The number of vessels detected by QuPath is 
shown. Each column represents one tumour from one patient. Genotypes are represented by a colour. p-values from unpaired t-test 
comparing medians from each group are displayed. b PCA based on vessel length, number of branches per vessel and total number 
of vessels. MAML3-, VHL- and metastatic SDHB-tumours group together; as well as CSDE1- and C2-tumours. met: metastatic case. 
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Fig. 5. Schematic Vasculature Profile. Schematic representation of the vascular phenotypes based on skeletonization data. 
Classification levels: (1) Vascular pattern: pattern of homogeneity/heterogeneity from whole tissue section based on pathologist 
evaluation, (2) Vessel length: length of the detected vessels, (3) Vessel number: number of vessels counted, and (4) Branching: 
number of total branches in the detected vessels. Vascular phenotype: classification of tumours according to 7 observed pheno-
types: Maze, Meteors, Dove Footprints, Waterfall, Raindrops, Starry Night and Fireflies. Genotypes in each vascular phenotype are 
presented. met: metastatic case. Figure created with BioRender.com. 

M. Monteagudo, B. Calsina, M.E. Salazar-Hidalgo et al. Best Practice & Research Clinical Endocrinology & Metabolism xxx (xxxx) xxx 

12 



Principal component analysis (PCA) based on these 3 features clustered MAML3-, VHL- and metastatic 
SDHB-tumours together, while C2- and CSDE1-tumours formed a separate group (Fig. 4b). Based on this, 
we created a classification system comprising 7 vascular phenotypes (Fig. 5). 

The ’Maze’ phenotype, exclusive to MAML3-tumours, featured a highly heterogeneous vascular pat-
tern with extensive, numerous and richly branched vessels, forming long arches and networks (Fig. 5, 
Supplementary Figures 6 and 7). 

The ’Meteors’ and ’Dove footprints’ phenotypes resembled MAML3-tumours but with less aggressive- 
related vascular features (Fig. 5 and Supplementary Figures 6 and 7), while ’Waterfall’, ’Raindrops’, 
’Starry night’ and ’Fireflies’ displayed homogeneous patterns with few, short, and low branched vessels 
(Fig. 5 and Supplementary Figure 6 and 7). 

Given the vascular pattern of MAML3-tumours, we aimed to study the extracellular matrix (ECM) 
features and identified a signature of 90 significant (adj. p-value < 0.05) ECM-related genes from a 
previously described list of 328 [30], the dysregulation of which likely impacts vascular architecture and 
metastatic potential (Supplementary Figure 5). 

Immune infiltration in MAML3-tumours 

DE analysis of MAML3-tumours compared to C1-, C2-, and SDHB-tumours identified higher expres-
sion of several immunoregulators [31] like CD274 (PD-L1), CD40, IL1A, IL1B and PRF1 (perforin) (adj. p- 
value < 0.1), with lower expression of MHC antigen-presenting molecules like HLA-DQB2 (Fig. 6a). With 
the aim to explore the immune infiltration of these tumours, we used the CIBERSORT output, unveiling a 
significantly higher abundance of NK-resting cells and a lower number of activated dendritic cells (DC) in 
MAML3- compared to other groups (Fig. 6b; Supplementary Figure 8). CD8 and perforin IHC staining 
confirmed increased CD8 + lymphocyte infiltration in MAML3-tumours [10], and revealed NK cell pre-
sence in PPGL for the first time (Fig. 7a and d). Finally, CD68 and CD163 IHC staining, showed higher M2 

Fig. 6. Immune Infiltration Overview. a DE of significant immune markers (Thorsson et al., 2018), obtained from comparisons 
between MAML3-tumours vs ALL samples (C1 +C2 +CSDE1), C1 samples, C2 samples and SDHB-tumours. b Detailed representation 
of immune populations showing statistically significant differences when comparing MAML3-tumours versus C1 (excluding SDHB- 
tumours), C2, SDHB- and CSDE1-tumours. 
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macrophages abundance in MAML3- and other metastatic tumours from different genotypes (Figs. 7b 
and 7c, Supplementary Figure 9), in agreement with previous reports [10]. 

Discussion 

This study characterizes MAML3-positive PPGLs, revealing their unique TME and demonstrating that 
MAML3-fusions are somatic events often found in single noradrenergic PCCs with higher metastatic 
potential compared to other genotypes [32,33]. 

The presence of the same fusion in multiple tumours within the same patient suggests post-zygotic 
somatic mosaicism. While post-zygotic events have been described in EPAS1- and H3–3A-tumours  
[34,35], MAML3-fusions have not been associated with such events. Therefore, although most MAML3- 
positive patients have a single noradrenergic PCC, WT-patients with multiple tumours could also be 
fusion-candidates, though this occurrence is very rare (7% of MAML3-cases and 0.25% of all PPGLs). 

Fig. 7. Detailed Immune Infiltration of MAML3-tumours. a Percentage of CD8 + cell count per total number of cells. b Percentage 
of CD163 + cell count per total number of cells. c Percentage of CD68 + cell count per total number of cells. Each genotype is 
represented by a colour. p-values from unpaired t-test comparing medians from each group are displayed. Each column represents 
one tumour from one patient. Metastatic and aggressive cases are indicated with “* ”. d Analysis of CD8 + lymphocyte and NK 
population in available MAML3-tumours: percentage of CD8 + lymphocytes (CD8 staining, in grey), CTLs (CD8 and perforin staining, 
in purple) and NK cells (perforin staining, in green) over the total number of positively stained cells. Each circle represents one 
tumour from one patient. 
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SDHB-loss has been previously associated with poor prognosis [36]. Herein we demonstrate that 
MAML3-fusions exhibit a similar behaviour; therefore, MAML3-tumour patients could be clinically 
managed in a similar manner. Both genotypes show shorter time to progression compared to C1- and C2- 
tumours, consistent with TCGA data [3]. When TERT and ATRX events are considered, the time to pro-
gression decreases significantly, suggesting these secondary events are key factors determining higher 
metastatic risk [12,13]. Somatic ATRX-PVs are mainly found in fusion-positive tumours, potentially linked 
to higher instability, neoantigen load, and tumour mutational burden in MAML3-tumours [10]. TERT 
events are more frequent in SDHB-related tumours [10,13]. Further research is needed to understand the 
accumulation of poor prognostic secondary events in these two genotypes. 

MAML3-fusion-Induced Wnt and MYC pathways dysregulation may promote tumour aggressiveness 

MAML3-driven tumours activate the Wnt/β-catenin pathway [3], and stable β-catenin relocates to the 
nucleus, where its binds transcription factors activating target genes, such as MYC [37]. In our series, 
MAML3-tumours overexpress MYC and activate MYC-targets. UBTF and TCF4 are MYC-targets [38–42], 
and also bind β-catenin. That would establish a positive feedback loop on the Wnt-pathway, which is 
associated with cell progression, growth, and enhanced viability [11]. This metastatic potential could be 
additionally explained by the increased expression of mesenchymal markers like SNAI2 [43–46]. Inter-
estingly, several drugs targeting Wnt-signaling pathway are being tested in clinical trials [47]. 

MAML3-tumours: unique vascular and ECM characteristics 

Heterogeneous vascular patterns in PPGLs have been linked to higher metastatic risk, while homo-
geneous patterns are seen in non-metastatic PPGLs [48]. Our study finds that MAML3-tumours exhibit 
these metastatic-associated vascular patterns. Detailed vessel analysis classifies MAML3-tumours into a 
distinct group, significantly different from other genotypes, including CSDE1-PPGLs. 

The composition of the ECM plays a pivotal role in angiogenesis [49,50]. Herein, we show that 
MAML3- tumours exhibit a distinct ECM profile, characterized by VEGF overexpression that could lead to 
the formation of new blood vessels [3,11,51]. Moreover, they present a transcriptional profile between C1 
and C2, distinct from CSDE1-tumours [29], with pseudohypoxic features such as EPAS1 overexpression, 
linked to tumour migration and invasion [52]. 

Unique immune characteristics of MAML3-tumours open the window to potential new therapeutic strategies 

The clonal development of malignant cells relies on a specific tissue environment referred to as the 
TME, which aggregates cellular and noncellular components, such as immune cells and the ECM [53]. 
Although PPGL are considered "immunologically cold" tumours [54], those related to MAML3-fusions 
present a major CD8 + lymphocytes and M2 macrophages abundance, together with a higher PD-L1 
expression compared to other genotypes [10]. 

In addition, our findings reveal the presence of NK-resting cells, which represent a potential target 
treatment [55,56]. DCs interactions with NK and CD8 + lymphocytes are fundamental in TME modulation 
and promotion of anti-tumour responses [57]. Mature tumour-infiltrating DC enhance NK activity 
through IL12 secretion [58]. Although MAML3-tumours present infiltrated NK cells, their inactivity is 
possibly related to the presence of catecholamines [59] and a lower DC abundance, which could be also 
influenced by elevated levels of VEGF [60]. 

Our study identifies not only elevated PD-L1 levels, but also CD40 overexpression in these samples, 
reinforcing the need to develop patient-specific immunotherapies. CD40 agonists have been used to 
enhance antitumour immunity [61]. These agents have shown efficacy in PPGL mouse models [62] and in 
clinics, particularly when used together with anti-VEGF [63,64]. Considering the VEGF overexpression 
and rich vasculature observed in MAML3-tumours, this combination emerges as a promising therapeutic 
option for these patients. 

Given that CD8+ activation [65] and NK regulation impact anti-PD1/PD-L1 response [66], activation of 
the NK-DC axis arises as a potential therapeutic strategy to increase anti-PD1/PD-L1 sensitivity in 
MAML3-tumours. In this respect, it is important to note that anti-PD1/PD-L1 therapy has already been 
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tested in mPPGLs, with limited efficacy [67]. However, MAML3 genotype status was unknown in this 
study, and it is tempting to speculate that these patients might benefit from immunotherapy. 

Globally, our work aimed to establish the MAML3 fusion prevalence on an outstanding series, char-
acterize the associated phenotype, and uncover vulnerabilities. The 3.65% prevalence of MAML3-fusion in 
this series may be underestimated, as only UBTF-MAML3 tumours and not TCF4-MAML3, showed con-
sistent clustering in omic data. For MAML3-fusion screening within the genetic diagnosis framework, we 
recommend testing clinically suspicious WT patients (single PCC, noradrenergic secretion) without fa-
milial history. In candidates, PD-L1 IHC staining should be performed, followed by fusion validation 
through FISH, NGS or PCR. With their distinctive microenvironment marked by a rich vasculature and 
unique immune profile, MAML3-tumours present new opportunities for targeted and combination 
therapies. 

Research agenda   

• Further investigation into the use of CD40 agonists and anti-VEGF for MAML3-related PPGLs 
treatment is necessary.  

• Evaluating MAML3 genotype in previous trials with limited anti-PD1/PD-L1 response could 
reveal potential benefits of immunotherapy for these patients.  

• Targeting NK-DC axis activation in MAML3-tumors could be a promising strategy to improve 
anti-PD1/PD-L1 therapy effectiveness. 

Practice points   

• Up to 70% of PPGL patients carry germline or somatic pathogenic variants in known disease- 
causing genes.  

• Genetic profiling of PPGLs is currently part of the routine clinical practice and guides patient 
management and follow-up.  

• Around 20% of the patients present with metastatic disease and current treatments show 
limited efficacy, besides their molecular and biochemical differences.  

• MAML3-fusion related PPGLs show a distinct transcriptional and methylation profile and are 
associated with an aggressive tumour behaviour.  

• MAML3-fusions occur in 4% of tumours and tend to accumulate secondary events.  

• PD-L1 overexpression is a characteristic of MAML3 tumours.  

• MAML3-tumours show elevated expression of neuroendocrine-to-mesenchymal transition 
markers, MYC-target genes, and angiogenesis-related genes.  

• MAML3-tumours present a distinctive microenvironment, marked by a rich vasculature and 
unique immune profile, which present new opportunities for targeted and combined 
therapies.  
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