
Statistica Sinica 33 (2023), 2405-2429
doi:https://doi.org/10.5705/ss.202021.0238

BAYESIAN PREDICTIVE INFERENCE

WITHOUT A PRIOR

Patrizia Berti, Emanuela Dreassi, Fabrizio Leisen,

Luca Pratelli and Pietro Rigo
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Abstract: Let (Xn : n ≥ 1) be a sequence of random observations. Let σn(·) =

P (Xn+1 ∈ · | X1, . . . , Xn) be the nth predictive distribution and σ0(·)=P (X1 ∈ ·)
be the marginal distribution of X1. To make predictions on (Xn), a Bayesian

forecaster needs only the collection σ = (σn : n ≥ 0). From the Ionescu–Tulcea the-

orem, σ can be assigned directly, without passing through the usual prior/posterior

scheme. One main advantage is that no prior probability has to be selected. This

point of view is adopted in this paper. The choice of σ is subject to only two

requirements: (i) the resulting sequence (Xn) must be conditionally identically dis-

tributed and (ii) each σn+1 must be a simple recursive update of σn. Various new

σ satisfying (i) and (ii) are introduced and investigated. For such σ, we determine

the asymptotics of σn as n → ∞. In some cases, we also evaluate the probability

distribution of (Xn).

Key words and phrases: Asymptotics, Bayesian nonparametrics, conditional iden-

tity in distribution, exchangeability, predictive distribution, sequential prediction,

total variation distance.

1. Introduction

Consider a Bayesian forecaster who makes predictions on a sequence (Xn :

n ≥ 1) of random observations. At each time n, she aims to predict Xn+1 based

on (X1, . . . , Xn). To this end, she needs to assign the conditional distribution of

Xn+1 given (X1, . . . , Xn), usually called the nth predictive distribution.

To formalize this problem, we fix a measurable space (S,B), and take Xn to

be the nth coordinate random variable on S∞, that is

Xn(s1, . . . , sn, . . .) = sn for all n ≥ 1 and (s1, . . . , sn, . . .) ∈ S∞.

To avoid technicalities, we assume that S is a Borel subset of a Polish space and
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B is the Borel σ-field on S. Moreover, following Dubins and Savage (1965), we

introduce the notion of strategy.

Let P denote the collection of all probability measures on B. A strategy is a

sequence σ = (σ0, σ1, . . .) such that

• σ0 ∈ P and σn = {σn(x) : x ∈ Sn} is a collection of elements of P;

• the map x 7→ σn(x)(A) is Bn-measurable for fixed n ≥ 1 and A ∈ B.

Here, σ0 should be regarded as the marginal distribution of X1 and σn(x) as

the conditional distribution of Xn+1 given that (X1, . . . , Xn) = x. Moreover,

σn(x)(A) denotes the probability attached to the event A by the probability

measure σn(x).

An important special case is when the strategy σ is dominated by a fixed

measure λ on (S,B). This means that σn(x) has a density with respect to λ, say

fn(· | x), for all n and x. Hence, σn(x) can be written as

σn(x)(A) =

∫
A
fn(z | x)λ(dz) for all A ∈ B.

For instance, if S is countable, any strategy σ is dominated by λ = counting

measure. Or else, if S = R, some meaningful strategies are dominated by λ =

Lebesgue measure. Clearly, in the dominated case, the strategy σ can be identified

with the sequence (f0, f1, . . .) of predictive densities. However, in this paper, we

deal with general strategies, and dominated strategies are just a (remarkable)

special case.

For any strategy σ (dominated or not), there is a unique probability measure

Pσ on (S∞,B∞) such that

Pσ(X1 ∈ ·) = σ0 and Pσ
(
Xn+1 ∈ · | (X1, . . . , Xn) = x

)
= σn(x)

for all n ≥ 1 and Pσ-almost all x ∈ Sn.

The above result, from Ionescu–Tulcea, provides the theoretical foundations

for Bayesian predictive inference. To make predictions on (Xn), one needs pre-

cisely a strategy σ. The Ionescu–Tulcea theorem guarantees that, for any σ,

predictions based on σ are consistent with a unique probability distribution Pσ
for the data sequence (Xn).

However, (Xn) is usually required some distributional properties, suggested

by the specific problem under consideration. For instance, (Xn) may be required

to be exchangeable, stationary, Markov, and so on. In these cases, the strategy

σ cannot be arbitrary, because Pσ must belong to some given class of probability
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measures on (S∞,B∞).

1.1. Motivations

In a Bayesian framework, (Xn) is typically assumed to be exchangeable. In

that case, there are essentially two approaches for selecting a strategy σ. For

definiteness, as in Berti et al. (2021a), we call them the standard approach (SA)

and the non-standard approach (NSA). Both are admissible, from a Bayesian

point of view, and both lead to a full specification of the probability distribution

of (Xn).

According to SA, to obtain σ, one should:

• select a prior π, that is, a probability measure on P;

• calculate the posterior of π given that (X1, . . . , Xn) = x, say πn(x);

• evaluate σ as

σn(x)(A) =

∫
P
p(A)πn(x)(dp) for all A ∈ B,

where π0(x) is meant as π0(x) = π.

Instead, according to NSA, the strategy σ can be assigned directly, without

passing through the above prior/posterior scheme. Rather than choosing π and

evaluating πn and σn, the forecaster merely selects her predictive σn. This pro-

cedure makes sense because of the Ionescu-Tulcea theorem. See, for example,

Berti, Regazzini and Rigo (1997), Berti et al. (2009), Berti et al. (2021a), Berti

et al. (2021b), Cifarelli and Regazzini (1996), Fong, Holmes and Walker (2023),

Fortini, Ladelli and Regazzini (2000), Fortini and Petrone (2012), Fortini and

Petrone (2020), Hahn, Martin and Walker (2018), Hill (1993), Lee et al. (2013),

Pitman (1996) and Pitman (2006).

The merits and drawbacks of SA and NSA are discussed in Berti et al.

(2021a). In short, SA is a cornerstone of Bayesian inference but is not moti-

vated by prediction alone. Its main scope is to make inference on other features

of the data distribution, such as a random parameter (possibly infinite dimen-

sional). However, when prediction is the main target, SA is clearly involved. In

turn, NSA has essentially four merits:

• NSA requires the assignment of probabilities on observable facts only. The

next observation Xn+1 is actually observable, whereas π and πn (being prob-

abilities on P) do not deal with observable facts.
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• The data sequence (Xn) is not forced to satisfy any distributional assump-

tion. In particular, (Xn) may fail to be exchangeable.

• The strategy σ may be assigned stepwise. At each time n, the forecaster

has observed x = (x1, . . . , xn) ∈ Sn, and has already selected σ0, σ1(x1), . . . ,

σn−1(x1, . . . , xn−1). Then, to predict Xn+1, she is still free to select σn(x)

as she wants. No choice of σn(x) is precluded. We believe this is consistent

with the Bayesian view, where the observed data are fixed and one should

condition on them. A similar point of view is highlighted in Fong, Holmes

and Walker (2023).

• NSA is more straightforward than SA when prediction is the main goal. In

this case, why select the prior π explicitly? Rather than wondering about

π, it seems reasonable to reflect on how Xn+1 is affected by (X1, . . . , Xn).

The above remarks refer to any (Bayesian) prediction problem, whether para-

metric or nonparametric. However, NSA is especially appealing in the nonpara-

metric case, where selecting a prior with large support is usually difficult. For

instance, NSA is quite natural when dealing with species sampling sequences. In-

deed, this paper has been written having the nonparametric framework in mind.

However, if (Xn) is assumed to be exchangeable, NSA has a drawback. To

apply NSA to exchangeable data, one should first characterize those strategies σ

that make (Xn) exchangeable under Pσ. A nice characterization is Fortini, Ladelli

and Regazzini (2000, Thm. 3.1). However, the conditions on σ that make (Xn)

exchangeable are quite difficult to check in practice.

To bypass this drawback, the exchangeability assumption could be weakened.

One option is to assume (Xn) is conditionally identically distributed (c.i.d.). We

refer to Subsection 2.2 for c.i.d. sequences. Here, we mention a few reasons for

taking c.i.d. data into account:

• Essentially, (Xn) is c.i.d. if, at each time n, future observations (Xk : k > n)

are identically distributed given the past (X1, . . . , Xn). This assumption is

quite natural in many prediction problems.

• The asymptotic behavior of c.i.d. sequences is very similar to that of ex-

changeable sequences.

• A meaningful part of the usual Bayesian machinery can be developed under

the sole assumption that (Xn) is c.i.d.; see Fong, Holmes and Walker (2023).

• A number of interesting strategies cannot be used if (Xn) is required to

be exchangeable, but are available if (Xn) is only required to be c.i.d.; see
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e.g. Berti et al. (2021a). Furthermore, conditional identity in distribution

is sometimes more reasonable than exchangeability. Examples occur in var-

ious fields, including clinical trials, generalized Polya urns, species sampling

models, and disease surveillance; see Airoldi et al. (2014), Bassetti, Crimaldi

and Leisen (2010), Berti, Pratelli and Rigo (2004) and Cassese et al. (2019).

• It is straightforward to characterize the strategies σ that make (Xn) c.i.d.

under Pσ; see Theorem 1. Therefore, unlike the exchangeable case, NSA

can be implemented easily.

1.2. Our contribution

This paper aims to develop NSA for c.i.d. data. It is the natural follow up

of Berti et al. (2021a), but all results and examples are new (with the exception

of Example 3). Our main goal is to introduce and investigate new strategies σ

that satisfy the following two properties:

(i) the sequence (Xn) is c.i.d. under Pσ;

(ii) σn+1 is a simple recursive update of σn for each n ≥ 0.

Condition (i) has already been discussed. Condition (ii) enables a fast online

Bayesian prediction, in the spirit of Hahn, Martin and Walker (2018). Ideally,

condition (ii) should imply that each predictive can be evaluated through a simple

recursion on the previous one.

To make some examples, for all x = (x1, . . . , xn) ∈ Sn and y ∈ S, write

(x, y) = (x1, . . . , xn, y).

In this notation, (x, y) is a point of Sn+1, x is the sub-vector containing the first

n coordinates, and y is the (n + 1)th coordinate. Then, for instance, condition

(ii) holds if σ satisfies the recursive equations

σ0 = α0 and σn+1(x, y) = qn(x)σn(x) + {1− qn(x)}αn+1(x, y) (1.1)

for all n ≥ 0, x ∈ Sn, and y ∈ S, where qn : Sn → [0, 1] is any measurable

function and α = (α0, α1, . . .) is a given strategy.

According to (1.1), the predictive σn+1(x, y) is a convex combination of the

previous predictive σn(x) and the new contribution αn+1(x, y), with a weight

qn(x) not depending on the last observation y. A possible interpretation is that,

at time n+1, after observing (x, y), the next observation is drawn from σn(x) with

probability qn(x) or from αn+1(x, y) with probability 1 − qn(x). Even if simple,
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this updating rule is able to model various real situations; see Examples 1−9.

Moreover, no prior probability is required. The forecaster has only to choose the

weights q0, q1, . . . and the strategy α.

An obvious criticism of (1.1) is that, to calculate σ, the forecaster needs

to first select another strategy α (in addition to the weights q0, q1, . . .). And,

in general, choosing α is as difficult as choosing σ. This is only partially true,

because the choice of α is often not so difficult in practice. Exploiting an idea from

Hahn, Martin and Walker (2018), for instance, α can be obtained via copulas;

see Example 1. Alternatively, α can be built using iterated conditioning; see

Example 2. More importantly, the choice of α is simpler in the Markovian case.

In this paper, a strategy α is said to be Markovian if

αn(x, y) = α∗n(y) for all n ≥ 2, x ∈ Sn−1 and y ∈ S,

where α∗n : S → P is any measurable map. With a slight abuse of notation, when

α is Markovian, we write αn(y) instead of α∗n(y).

In addition to (ii), σ is required to satisfy condition (i). Our first result is

that if σ satisfies (1.1), then (Xn) is c.i.d. under Pσ provided

σn(x)(A) =

∫
αn+1(x, y)(A)σn(x)(dy) for all n ≥ 0, x ∈ Sn and A ∈ B.

Such a condition becomes simpler if α is Markovian. Suppose α is Markovian,

and recall that a filtration on (S,B) is an increasing sequence G0 ⊂ G1 ⊂ · · · ⊂ B
of sub-σ-fields of B. Then, (Xn) is c.i.d. under Pσ if αn+1 is the conditional

distribution of α0 given Gn, for all n and some filtration (Gn). Formally,

αn+1(·)(A) = Eα0

(
1A | Gn

)
, a.s. with respect to α0, (1.2)

for all n ≥ 0, all A ∈ B, and some filtration (Gn).

For instance, if Gn = B for all n, condition (1.2) yields αn+1(y) = δy for all

y ∈ S, where δy denotes the unit mass at the point y. Indeed, some popular

strategies admit the representation (1.1) with αn+1(y) = δy. Well known exam-

ples are Dirichlet sequences, Beta-GOS sequences, exponential smoothing, and

generalized Polya urns; see Airoldi et al. (2014), Bassetti, Crimaldi and Leisen

(2010), and Berti et al. (2021a, Sec. 4). In all these cases, (Xn) is c.i.d. under

Pσ. At the opposite extreme, if Gn is the trivial σ-field for all n, condition (1.2)

implies αn+1(y) = α0 for all y ∈ S. In this case, under Pσ, (Xn) is independent

and identically distributed (i.i.d.) with common distribution α0.

More interestingly, take Gn to be the σ-field generated by a countable parti-
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tion Hn of S, where H ∈ B and α0(H) > 0 for all H ∈ Hn. In this case, condition

(1.2) implies

αn+1(y) =
∑
H∈Hn

1H(y)α0(· | H) = α0

(
· | Hn

y

)
,

where Hn
y is the only H ∈ Hn such that y ∈ H. Moreover, Gn ⊂ Gn+1 if the

partition Hn+1 is finer than Hn. With this choice of α, we can obtain several

meaningful strategies satisfying (i) and (ii). For instance, if qn = (n+c)/(n+1+c)

for some constant c > 0, one obtains

σn(x) =
c α0 +

∑n
i=1 α0

(
· | H i−1

xi

)
n+ c

.

The above strategy σ is analogous to that of a Dirichlet sequence, that is

βn(x) =
c α0 +

∑n
i=1 δxi

n+ c
.

However, σ and β give rise to different behaviors for (Xn). First, (Xn) is ex-

changeable under Pβ and only c.i.d. under Pσ. Second, if G = {Xi = Xj for some

i 6= j}, one obtains Pσ(G) = 0 and Pβ(G) = 1 provided α0 is non-atomic. Note

that attaching probability zero to G is often useful in practice.

This is just an example. Various other strategies come to the fore with suit-

able choices of Hn and qn; see Section 3.

In addition to (1.1), we introduce and investigate a second class of strategies.

Let S = R and un be a sequence of real numbers such that 0 = u0 < u1 < u2 <

· · · < 1. Define f0(x) = 0 and

fn+1(x, y) =

√
un+1 − un

1− un
y +

(
1−

√
un+1 − un

1− un

)
fn(x)

for all n ≥ 0, x ∈ Sn, and y ∈ S. Furthermore, define a strategy σ as

σn(x) = N
(
fn(x), 1− un

)
for all n ≥ 0 and x ∈ Sn.

Here, σ satisfies condition (ii) because σn+1(x, y) depends only on the last ob-

servation y and the mean of σn(x). As shown in Section 4, σ satisfies condition

(i) as well. Moreover, under Pσ, the sequence (Xn) is Gaussian with mean 0,

variance 1, and a known covariance structure.

Because of its simple form, the above σ is potentially useful in applications.

In addition, σ is just a special case of a larger class of strategies satisfying (i) and

(ii). In fact, the normal distribution can be replaced by any symmetric stable
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law. For instance, the normal could be replaced by the Cauchy if heavier tails

are viewed as being more suitable for prediction.

The last part of this paper is devoted to the asymptotics of σn as n → ∞.

In fact, from condition (i), we have

Pσ
(
σn → µ weakly

)
= 1

for some random probability measure µ on (S,B); see Subsection 2.2. Hence, it is

quite natural to investigate µ, and this is exactly the scope of Section 5. We give

conditions for µ � σ0 a.s., for µ to be degenerate a.s., and for ‖σn − µ‖
a.s.−→ 0

where ‖·‖ is total variation norm.

Finally, we discuss some applications in Section 6.

To make the paper more readable, all proofs are gathered in the Supplemen-

tary Material.

2. Preliminaries

2.1. Some further notation

Let λ, ν ∈ P. We write λ� ν to mean that λ is absolutely continuous with

respect to ν, that is, λ(A) = 0 whenever A ∈ B and ν(A) = 0. Moreover, λ and

ν are singular if λ(A) = ν(Ac) = 0 for some A ∈ B.

We denote by x a point of Sn where n is an integer or n = ∞. In both

cases, xi is the ith coordinate of x. If n = 0 and σ is a strategy, σ0(x) is meant

as σ0(x) = σ0. Moreover, if x ∈ S∞ and f is any map on Sn, we write f(x) to

denote f(x) = f(x1, . . . , xn). In particular,

σn(x) := σn(x1, . . . , xn) for all x ∈ S∞.

2.2. Conditional identity in distribution

C.i.d. sequences are introduced in Berti, Pratelli and Rigo (2004) and Kallen-

berg (1988) and investigated in various papers; see, for example, Airoldi et al.

(2014), Bassetti, Crimaldi and Leisen (2010), Berti et al. (2009), Berti, Pratelli

and Rigo (2012), Berti, Pratelli and Rigo (2013), Berti et al. (2021a), Berti et al.

(2021b), Cassese et al. (2019), Fong, Holmes and Walker (2023), Fortini, Petrone

and Sporysheva (2018), Fortini and Petrone (2020).

Let P be a probability measure on (S∞,B∞). Say that (Xn) is c.i.d. (or that

P is c.i.d.) if X2 ∼ X1 and

P
(
Xk ∈ · | X1, . . . , Xn

)
= P

(
Xn+1 ∈ · | X1, . . . , Xn

)
a.s. for all k > n ≥ 1.
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Thus, at each time n, the future observations (Xk : k > n) are identically dis-

tributed given the past. This is actually weaker than exchangeability. Indeed,

(Xn) is exchangeable if and only if it is stationary and c.i.d.

The asymptotics of c.i.d. sequences is similar to that of exchangeable ones.

To see this, suppose P is c.i.d. and define the empirical measures

µn(x) =
1

n

n∑
i=1

δxi for all n ≥ 1 and x ∈ S∞.

Define also

µ(x) = lim
n
µn(x) if the limit exists, and µ(x) = δx1

otherwise,

where x ∈ S∞ and the limit is meant as a weak limit of probability measures.

The random probability measure µ is a meaningful parameter of P (even if

not as crucial as in the exchangeable case; see Berti et al. (2021a, Ex. 17)). In

fact,

µn(A)
a.s.−→ µ(A) for each A ∈ B.

Moreover, for fixed n ≥ 0 and A ∈ B, one obtains

EP
{
µ(A) | X1, . . . , Xn

}
= P

(
Xn+1 ∈ A | X1, . . . , Xn

)
a.s.

By martingale convergence, this equality implies

P
(
Xn+1 ∈ A | X1, . . . , Xn

) a.s.−→ µ(A) for each A ∈ B.

We also note that (Xn) is asymptotically exchangeable, in the sense that the

probability distribution of the shifted sequence (Xn, Xn+1, . . .) converges weakly

to an exchangeable probability measure Q on (S∞,B∞). Furthermore, Q = P

on the σ-field generated by µ.

Finally, we report from Berti, Pratelli and Rigo (2012) a characterization of

c.i.d. sequences in terms of strategies. The next result is fundamental to this

paper.

Theorem 1. (Berti, Pratelli and Rigo (2012, Thm. 3.1)). For any strategy

σ, (Xn) is c.i.d. under Pσ if and only if

σn(x)(A) =

∫
σn+1(x, y)(A)σn(x)(dy)

for all n ≥ 0, all A ∈ B, and Pσ-almost all x ∈ Sn.
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Henceforth, we say “Pσ is c.i.d.” to mean that “(Xn) is c.i.d. under Pσ”.

3. Convex Combinations of Random Probability Measures

Let α = (α0, α1, . . .) be a strategy and qn : Sn → [0, 1] a sequence of measur-

able functions, where n ≥ 0 and q0 is constant. For ease of notation, we write ν

instead of α0, that is, we fix ν ∈ P and let α0 = ν. Recall that α is Markovian if

αn(x) = α∗n(xn) for all n ≥ 2 and x ∈ Sn, where α∗n : S → P is any measurable

map. In this case, with a slight abuse of notation, we write αn(xn) instead of

α∗n(xn).

In this section, the strategy σ satisfies equation (1.1), that is

σ0 = ν and σn+1(x, y) = qn(x)σn(x) + (1− qn(x))αn+1(x, y)

for all n ≥ 0, x ∈ Sn, and y ∈ S. By induction, it follows that

σn(x) = ν

n−1∏
j=0

qj +

n∑
i=1

αi(x1, . . . , xi) (1− qi−1)
n−1∏
j=i

qj (3.1)

for all n ≥ 1 and x = (x1, . . . , xn) ∈ Sn. In formula (3.1),
∏n−1
j=i qj is meant as 1

when i = n, and qj is shorthand notation that denotes

qj = qj(x1, . . . , xj).

Our first goal is to provide conditions under which Pσ is c.i.d.

Theorem 2. Pσ is c.i.d. provided that

σn(x)(A) =

∫
αn+1(x, y)(A)σn(x)(dy) (3.2)

for all n ≥ 0, all A ∈ B, and Pσ-almost all x ∈ Sn. Moreover, if α is Markovian,

condition (3.2) follows from

αn(x)(A) =

∫
αn+1(y)(A)αn(x)(dy) (3.3)

for all n ≥ 0, all A ∈ B, and ν-almost all x ∈ S.

In the Markovian case, Theorem 2 applies if αn+1 is a conditional distribution

of ν given Gn for all n, where (Gn) is any filtration on (S,B).

Corollary 1. Let G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ B be an increasing sequence of sub-σ-

fields of B. If α is Markovian, then Pσ is c.i.d. whenever
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αn+1(·)(A) = Eν
(
1A | Gn

)
, ν-a.s., for all n ≥ 0 and A ∈ B.

We are now able to provide examples of strategies that satisfy equation (1.1)

and make (Xn) c.i.d.

Example 1. (Copulas). A simple way to obtain the strategy α is to exploit

an idea by Hahn, Martin and Walker (2018). To this end, we write “density”

to mean “density with respect to Lebesgue measure”. We also recall that, if

C is a bivariate copula and F1 and F2 are distribution functions on R, then

F (x, y) = C
{
F1(x), F2(y)

}
is a distribution function on R2. In addition, if C, F1

and F2 have densities, then

f(x, y) = c
{
F1(x), F2(y)

}
f1(x) f2(y), (x, y) ∈ R2,

is a density of F , where c, f1, and f2 are the densities of C, F1, and F2, respec-

tively.

Having noted this fact, let S = R and suppose that ν has a density f0.

Moreover, fix a sequence C1, C2, . . . of bivariate copulas with densities c1, c2, . . .

For the sake of simplicity, assume f0 > 0 and cn > 0 for all n ≥ 1. Define σ0 = ν

and denote by F0 the distribution function corresponding to σ0. Next, for each

x ∈ R, let

α1(x)(dz) = f1(z | x) dz where f1(z | x) = c1
{
F0(z), F0(x)

}
f0(z).

Then, define σ1(x) = q0 σ0 + (1 − q0)α1(x) and call F1(· | x) the distribution

function corresponding to σ1(x). Next, for each (x, y) ∈ R2, let α2(x, y)(dz) =

f2(z | x, y) dz where

f2(z | x, y) = c2
{
F1(z | x), F1(y | x)

}
f1(z | x).

Then, define σ2(x, y) = q1(x)σ1(x) + (1 − q1(x))α2(x, y). In general, suppose

σn(x) has been defined for all x ∈ Rn and denote by fn(· | x) and Fn(· | x) the

density and the distribution function of σn(x). Then, it suffices to let

αn+1(x, y)(dz) = fn+1(z | x, y) dz for all x ∈ Rn and y ∈ R
where fn+1(z | x, y) = cn+1

{
Fn(z | x), Fn(y | x)

}
fn(z | x).

Because fn+1(· | x, y) is a density, α is a strategy dominated by Lebesgue measure.

In addition, Fubini’s theorem yields
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αn+1(x, y)(A)σn(x)(dy) =

∫ ∫
A
fn+1(z | x, y) dz fn(y | x) dy

=

∫
A

∫
cn+1

{
Fn(z | x), Fn(y | x)

}
fn(z | x) fn(y | x) dy dz

=

∫
A
fn(z | x) dz = σn(x)(A) for all A ∈ B.

Hence, Pσ is c.i.d. from Theorem 2.

To implement Example 1, one needs only f0 and the copula densities cn.

Some useful choices of cn are suggested in Hahn, Martin and Walker (2018). In

particular, one can let cn = c1 for all n. Furthermore, one can use conditional

copulas instead of plain copulas, in the sense that cn+1 is allowed to depend on the

observed data x ∈ Rn. We also note that, letting qn = 0 for all n, the strategies

obtained in Hahn, Martin and Walker (2018) are a special case of Example 1.

In Example 1, the idea for building α is borrowed from Hahn, Martin and

Walker (2018). A different idea is sketched in the next example.

Example 2. (Iterated conditioning). For each τ ∈ P and each sub-σ-field

G ⊂ B, let τ(· | G) =
{
τ(· | G)(x) : x ∈ S

}
denote a (regular) version of the

conditional distribution of τ given G. This means that τ(· | G)(x) is a probability

measure on B, for fixed x ∈ S, and

τ(A | G)(·) = Eτ (1A | G), τ -a.s., for all A ∈ B.

For each n ≥ 0, take a sub-σ-field Gn ⊂ B. Define σ0 = ν and

α1(x) = ν
(
· | G0

)
(x) for all x ∈ S.

To realize equation (1.1), define also σ1(x) = q0 σ0 + (1 − q0)α1(x). Next, for

each (x, y) ∈ S2, define

α2(x, y) = σ1(x)
(
· | G1

)
(y) and σ2(x, y) = q1(x)σ1(x) + (1− q1(x))α2(x, y).

In general, after σn(x) has been defined for all x ∈ Sn, it suffices to let

αn+1(x, y) = σn(x)
(
· | Gn

)
(y) for all x ∈ Sn and y ∈ S.

By construction, this strategy α satisfies condition (3.2). Hence, Pσ is c.i.d. from

Theorem 2.

As an example, take qn = (n+ c)/(n+ 1 + c) and Gn = G for all n ≥ 0,

where c > 0 is a constant and G ⊂ B a sub-σ-field. Then, formula (3.1) yields
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σn(x) =
c ν +

∑n
i=1 αi(x1, . . . , xi)

n+ c
=
c ν +

∑n−1
i=0 σi(x1, . . . , xi)

(
· | G

)
(xi+1)

n+ c
.

A special case of the latter strategy is discussed in Examples 4 and 5.

Compared with Example 1, Example 2 replaces the choice of the copula den-

sities cn with that of the sub-σ-fields Gn. In principle, since the Gn are arbitrary,

this provides more degrees of freedom when modeling real situations. However,

the practical calculation of σn(x)
(
· | Gn

)
(y) may be very difficult.

We next turn to the Markovian case. In the rest of this section, α is Marko-

vian (i.e., αn(x) = αn(xn) for all n ≥ 2 and x ∈ Sn).

Example 3. (Example 13 of Berti et al. (2021a)). For each n ≥ 0, let Hn
be a countable partition of S such that H ∈ B and ν(H) > 0 for all H ∈ Hn.

Define

αn+1(y) =
∑
H∈Hn

1H(y) ν(· | H) = ν
(
· | Hn

y

)
for all y ∈ S,

where Hn
y denotes the only H ∈ Hn such that y ∈ H. If Gn is the σ-field

generated by Hn, one obtains αn+1(·)(A) = Eν
(
1A | Gn

)
for all A ∈ B. Moreover,

Gn ⊂ Gn+1 provided that Hn+1 is finer than Hn for all n ≥ 0 (as we assume).

Therefore, Pσ is c.i.d. from Corollary 1.

Example 3 can be developed in various ways. For any partition H of S, let

U(H) = sup
H∈H

sup
y,z∈H

d(y, z) where d is the distance on S.

Example 4. (Dirichlet-like sequences). Fix a constant c > 0 and define

qn =
n+ c

n+ 1 + c
, αn+1(y) = ν

(
· | Hn

y

)
, νn(x) =

∑n
i=1 ν

(
· | H i−1

xi

)
n

.

Then, formula (3.1) yields

σn(x) =
c ν +

∑n
i=1 ν

(
· | H i−1

xi

)
n+ c

=
c

n+ c
ν +

n

n+ c
νn(x).

In turn, the predictives of a Dirichlet sequence are

βn(x) =
c

n+ c
ν +

n

n+ c
µn(x)

where µn(x) = (1/n)
∑n

i=1 δxi is the empirical measure. The strategies σ and β

have similar structures. Moreover, σn(x) and βn(x) are usually close for large n.
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In fact, for various distances D on P, one obtains

lim
n
D
[
σn(x), βn(x)

]
= 0 for each x ∈ S∞ (3.4)

provided that limn U(Hn) = 0. For instance, relation (3.4) holds if D is the

bounded Lipschitz metric; see Theorem 4. However, despite (3.4), σ and β conflict

under a fundamental aspect. Indeed, σn(x)� ν for all n ≥ 0 and x ∈ Sn whereas

this is not true for βn(x). As a result, Pσ and Pβ are even singular when ν is

non-atomic; see Theorem 4.

Example 5. (Example 4 continued). The situation in Example 4 may appear

strange. Suppose ν is non-atomic and limn U(Hn) = 0. On the one hand, because

Pσ and Pβ are singular, σ and β induce completely different distributions on the

data. On the other hand, because of (3.4), σ and β provide similar predictions

for large n.

Such a situation depends mostly on the distance D. In fact, σn(x) and βn(x)

are no longer close if D is replaced by some stronger distance on P, such as the

total variation distance.

More precisely, suppose the target is to predict f(Xn+1) based on (X1, . . . ,

Xn), where f : S → R is a bounded measurable function. Then, σ and β actually

yield similar predictions for large n. As an example, if f is Lipschitz and D is

the bounded Lipschitz metric, one obtains∣∣∣Eσ{f(Xn+1) | (X1, . . . , Xn) = x
}
− Eβ

{
f(Xn+1) | (X1, . . . , Xn) = x

}∣∣∣
=
∣∣∣∫ f(t)σn(x)(dt)−

∫
f(t)βn(x)(dt)

∣∣∣ ≤ kD[σn(x), βn(x)
]

for some constant k depending only on f .

However, σ and β give conflicting predictions in more elaborate problems.

For instance, suppose we wish to predict whether the next observation is new.

Letting Gn = {Xn+1 = Xi for some i ≤ n}, one obtains

Pσ
(
Gn | (X1, . . . , Xn) = x

)
= σn(x)({x1, . . . , xn}) = 0 while

Pβ
(
Gn | (X1, . . . , Xn) = x

)
= βn(x)({x1, . . . , xn}) =

n

n+ c
.

Example 6. (Exponential smoothing-like sequences). Let

βn(x) = qnν + (1− q)
n∑
i=1

qn−iδxi
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where q ∈ [0, 1] is any constant. Making predictions using β may be reasonable

when the forecaster has only vague opinions on the dependence structure of the

data, but feels that the weight of the ith observation xi should be an increasing

function of i; see Bassetti, Crimaldi and Leisen (2010) and Berti et al. (2021a).

Now, if qn = q and αn+1(y) = ν
(
· | Hn

y

)
, formula (3.1) reduces to

σn(x) = qnν + (1− q)
n∑
i=1

qn−iν
(
· | H i−1

xi

)
.

Essentially, the same remarks from Examples 4 and 5 about the connections

between σ and β hold for this example.

Exploiting countable partitions is a flexible idea that can be realized in var-

ious ways. We support this claim using two further examples.

Example 7. (Mixed strategies). Let H ⊂ B be a fixed countable partition

of S, and let A0 ⊂ A1 ⊂ A2 ⊂ · · · be an increasing sequence of elements of B.

Assume ν(Acn ∩H) > 0 whenever Acn ∩H 6= ∅ and define

αn+1(y) = 1An(y) δy + 1Acn(y) ν
(
· | Acn ∩Hy

)
,

where Hy is the only H ∈ H such that y ∈ H. Then, αn+1 satisfies Corollary 1

with Gn the σ-field generated by the sets A ∩ An and H ∩ Acn for all A ∈ B and

H ∈ H. Since Gn ⊂ Gn+1 for all n, it follows that Pσ is c.i.d.

For instance, take

S = R, H =
{

(−∞, 0), {0}, (0,∞)
}
, An = [−un, un],

where 0 < u0 < u1 < u2 < · · · are any constants. Suppose further that, at each

time n, an observation y is informative about the future observations whenever

|y| ≤ un. Otherwise, if |y| > un, the only relevant information provided by y is

its sign. Then, choosing αn+1 as above may be reasonable. Finally, taking qn as

in Example 4, one obtains

σn(x) =
c ν +

∑n
i=1 αi(xi)

n+ c

=
c ν +

∑n−1
i=0

{
1Ai(xi+1)δxi+1

+ 1Bi(xi+1) ν(· | Bi) + 1Ci(xi+1) ν(· | Ci)
}

n+ c

where Bi = (−∞,−ui) and Ci = (ui,∞).
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Example 8. (Occupancy models). At each time n, a random integer rn is

selected and rn particles are placed randomly into p boxes. The ith observation

is xi = (j1(i), . . . , jp(i)) where jk(i) is the number of particles in box k at time i.

To model this situation, set S = {0, 1, 2, . . .}p and take Hn = F for all n, where

F is the partition of S with elements

Fr =

{
(j1, . . . , jp) ∈ S :

p∑
k=1

jk = r

}
for r = 0, 1, 2, . . . .

Moreover, take ν to be the probability distribution of (Y1, . . . , Yp) where Y1, . . . , Yp
are i.i.d. Poisson random variables. The conditional distribution of (Y1, . . . , Yp)

given
∑p

k=1 Yk = r is multinomial with index r and equal cell probabilities 1/p.

Therefore,

ν
(
{(j1, . . . , jp)} | Fr

)
=

1

pr
r!

j1! . . . jp!
for all (j1, . . . , jp) ∈ Fr.

Hence, denoting by x∗i =
∑p

k=1 jk(i) the sum of the coordinates of xi, the strategy

σ is

σn(x) = ν

n−1∏
j=0

qj +

n∑
i=1

ν
(
· | Fx∗

i

)
(1− qi−1)

n−1∏
j=i

qj .

The choice of qj depends on the specific problem. For instance, qj could be as in

Examples 4, 6, or 9. We just note that exchangeability is useful in the framework

of occupancy models, and Pσ is actually exchangeable (and not only c.i.d.) if

qj = (j + c)/(j + 1 + c); see Berti et al. (2023) and Collet et al. (2013).

Our last example deals with a more elaborate choice of qn.

Example 9. (Reinforcements). For each n ≥ 1, fix a set Cn ∈ Bn, two

constants 0 < an < 1/2 < bn < 1, and define

qn(x) = bn 1Cn(x) + an {1− 1Cn(x)} for all x ∈ Sn.

Roughly speaking, the underlying idea is that σn(x) exhibits good predictive

performance whenever x ∈ Cn. Therefore, if (X1, . . . , Xn+1) = (x, y) and x ∈ Cn,

to predict Xn+2, the forecaster is inclined to reinforce σn(x) with respect to

αn+1(y). (Recall that an < 1/2 < bn).

As a concrete example, let S = [0, 1] and q0 = 1/2. For all n ≥ 1 and x ∈ Sn,

let xn = (1/n)
∑n

i=1 xi be the sample mean of x and mn(x) be any (measurable)

predictor of Xn+1 based on σn(x). For definiteness,
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mn(x) =

∫
t σn(x)(dt).

If mn(x) is regarded as a predictor of past observations xi, for i ≤ n, then

xn −mn(x) =
1

n

n∑
i=1

{
xi −mn(x)

}
is the arithmetic mean of the prediction errors. In a sense, σn(x) works nicely

whenever xn −mn(x) is small. Hence, given ε > 0, one could let

Cn =
{
x ∈ Sn : |xn −mn(x)| < ε

}
.

To close this section, we note that the strategies obtained so far have appli-

cations beyond the predictive framework of this paper. In fact, various species

sampling sequences correspond to strategies of the form (3.1). And, in Bayesian

nonparametrics, species sampling sequences may be used to define priors; see

Airoldi et al. (2014).

4. Predictions Using Stable Laws

In this section, we let S = R, fix a constant γ ∈ (0, 2], and introduce a

further class of strategies. Such strategies need not satisfy equation (1.1) (unless

qn = 0 for all n). However, they meet conditions (i) and (ii), and the probability

measure σn(x) is γ-stable for all n ≥ 0 and x ∈ Sn. (The exponent γ of a stable

law is usually denoted by α, but in this paper α denotes a strategy).

Let Z be a real random variable with characteristic function

E
{

exp(i t Z)
}

= exp

(
− |t|

γ

2

)
for all t ∈ R.

For a ∈ R and b > 0, denote by S(a, b) the probability distribution of a+ b1/γZ,

that is

S(a, b)(A) = P
(
a+ b1/γZ ∈ A) for all A ∈ B.

Note that S(a, b) = N (a, b) if γ = 2, where N (a, b) is the Gaussian law on B
with mean a and variance b. Similarly, S(a, b) = C(a, b) if γ = 1, where C(a, b)
is the probability measure on B with density f(x) = (2 b/π)[1/{b2 + 4 (x− a)2}].
(Incidentally, in this parametrization, the standard Cauchy distribution is C(0, 2)

and not C(0, 1)).
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Next, fix the real numbers

0 = u0 < u1 < u2 < · · · < u,

and define f0 = 0 and

fn+1(x, y) = fn(x)

{
1−

(
un+1 − un
u− un

)1/γ
}

+ y

(
un+1 − un
u− un

)1/γ

for all n ≥ 0, x ∈ Sn, and y ∈ S.

In this section, we focus on the strategy

σn(x) = S
(
fn(x), u− un

)
for all n ≥ 0 and x ∈ Sn. (4.1)

Note that σ0 = S(0, u) and σn+1(x, y) can be evaluated easily based on y and the

median of σn(x). Hence, condition (ii) holds. We now turn to condition (i).

Theorem 3. If σ is given by (4.1), then Pσ is c.i.d.

In the rest of this section, σ denotes the strategy (4.1).

A useful feature of σ is its asymptotic behavior. Define

L =
{
x ∈ S∞ : lim

n
fn(x) exists and is finite

}
and f(x) = limn fn(x) for each x ∈ L. Since Pσ is c.i.d., it follows that Pσ(L) = 1.

Moreover, for each x ∈ L, one obtains

σn(x) −→ δf(x) weakly if sup
n
un = u and

σn(x) −→ S
(
f(x), u− sup

n
un

)
in total variation if sup

n
un < u.

Refer to the proof of Theorem 6 for more details. Here, we provide some examples.

Example 10. (Cauchy and Normal distributions). The most popular cases

are γ = 1 and γ = 2. Indeed,

σn(x) = C
(
fn(x), u− un

)
or σn(x) = N

(
fn(x), u− un

)
according to whether γ = 1 or γ = 2. Both strategies can be useful in real

problems. Note too that fn(x) is just a weighted average of the first n observations

x1, . . . , xn and, in the normal case, the weights are connected to the conditional

variances.

The next example provides further information on the sequence (Xn).
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Example 11. (Finite-dimensional distributions). Let

Yn+1 =

n∑
i=1

(ui − ui−1)1/γ Zi + (u− un)1/γ Zn+1 for all n ≥ 0,

where Z1, Z2, . . . is an i.i.d. sequence with Z1 ∼ S(0, 1). Then, Y1 ∼ S(0, u).

Furthermore,

(Y1, . . . , Yn) = gn(Z1, . . . , Zn) and

n∑
i=1

(ui − ui−1)1/γ Zi = fn(Y1, . . . , Yn)

where gn is an invertible linear transformation. Therefore,

P
(
Yn+1 ∈ · | Y1, . . . , Yn

)
= P

(
Yn+1 ∈ · | Z1, . . . , Zn

)
= P

(
fn(Y1, . . . , Yn) + (u− un)1/γ Zn+1 ∈ · | Z1, . . . , Zn

)
= S

(
fn(Y1, . . . , Yn), u− un

)
= σn(Y1, . . . , Yn) a.s.

In other words, the predictive distributions of the sequence (Yn) agree with those

of σ, which implies

Pσ(B) = P
(
(Y1, Y2, . . .) ∈ B

)
for all B ∈ B∞.

This equation allows us to determine the finite-dimensional distributions of (Xn)

under Pσ. Here, we highlight two facts. First,

fn(Y1, . . . , Yn) =

n∑
i=1

(ui − ui−1)1/γ Zi ∼ u1/γn Z1 ∼ S(0, un).

Thus, fn ∼ S(0, un) under Pσ, that is, Pσ(fn ∈ A) = S(0, un)(A) for all A ∈ B.

Second, since gn is linear, the finite-dimensional distributions of (Xn) under Pσ
are Gaussian when γ = 2. In this case, since (Yn) is c.i.d., the moments are

EPσ(Xn) = 0, EPσ(X2
n) = u and

EPσ(XnXm) = E(YnYm) = E
[
YnE(Ym | Y1, . . . , Yn)

]
= E(Yn Yn+1) = un−1 +

√
(un − un−1)(u− un−1) for all 1 ≤ n < m.

The last example collects some miscellaneous remarks.

Example 12. (Choice of γ, u, and un). To work with σ, one has only to select

γ and u, u1, u2, . . . Obviously, the choice of γ depends on the specific problem at

hand. We just note that, in applications, γ ∈ {1, 2} is not the only meaningful
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choice. For instance, γ /∈ {1, 2} is quite common when modeling financial data;

see McCulloch (1996, Chap. 13). The numbers u and un are scale parameters

that control the dispersion structure of (Xn). If γ = 2, for instance, u and

un determine the variances and covariances of the Gaussian sequence (Xn); see

Example 11. An important distinction is supn un = u or supn un < u, because

the limiting distribution of σn is degenerate in the former case, but is not in

the latter. Finally, we mention a practically useful choice of un. Fix u > 0 and

q ∈ (0, 1) and define

un = u (1− qn) for all n ≥ 0.

Then, un+1 − un = (u− un)(1− q) and the updating rule for fn reduces to

fn+1(x, y) = (1− b) fn(x) + b y where b = (1− q)1/γ .

Equivalently, fn(x) = b
∑n

j=1(1− b)n−jxj for each x ∈ Sn.

5. Asymptotics

We first recall two popular distances on P. Let λ1, λ2 ∈ P and let F be

the set of all functions f : S → [−1, 1] such that |f(y) − f(z)| ≤ d(y, z) for all

y, z ∈ S, where d is the distance on S. The bounded Lipschitz metric and the

total variation distance are, respectively,

D(λ1, λ2) = sup
f∈F

∣∣∣∫ f dλ1 −
∫
f dλ2

∣∣∣ and ‖λ1 − λ2‖ = sup
A∈B
|λ1(A)− λ2(A)|.

It is not hard to see that D ≤ 2 ‖·‖. Moreover, D metrizes the weak convergence

of probability measures, in the sense that, for all λn, λ ∈ P,

λn → λ weakly ⇔ lim
n
D(λn, λ) = 0.

We next make precise some claims made in Example 4.

Theorem 4. Let σ and β be as in Example 4. If limn U(Hn) = 0, then

lim
n
D
[
σn(x), βn(x)

]
= 0 for each x ∈ S∞.

Moreover, Pσ and Pβ are singular if ν is non-atomic.

Next, for each x ∈ S∞, define

µ(x) = lim
n
µn(x) if the limit exists, and µ(x) = δx1

otherwise,
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where µn(x) = (1/n)
∑n

i=1 δxi is the empirical measure and the limit is meant

as a weak limit of probability measures. The random probability measure µ is a

meaningful object. In fact,

Pσ

{
x ∈ S∞ : σn(x)→ µ(x) weakly

}
= 1

for any strategy σ such that Pσ is c.i.d.; see Subsection 2.2. In the sequel, we

investigate µ when σ comes from Sections 3 and 4.

For each τ ∈ P, say that τ is degenerate if τ = δz for some z ∈ S. The

abbreviation “a.s.” stands for “Pσ-a.s.” For instance, µ� τ a.s. means µ(x)� τ

for Pσ-almost all x ∈ S∞. Recall too that qn(x) = qn(x1, . . . , xn) for all x ∈ S∞.

Theorem 5. If the strategy σ satisfies equation (1.1), then σn(x) converges in

total variation distance for each x ∈ S∞ such that
∑

n(1−qn(x)) <∞. Moreover,

if σ is as in Example 3, then:

• µ� ν a.s. and limn‖σn − µ‖ = 0 a.s. provided
∑

n(1− qn) <∞ a.s.;

• µ is degenerate a.s. provided limn U(Hn) = 0 and there are constants a > 0

and cn ≥ 0 such that∑
n

c2n =∞ and a ≤ qn ≤ 1− cn a.s. for all n ≥ 0. (5.1)

Theorem 5 can be applied to the examples in Section 3. Suppose in fact

limn U(Hn) = 0. Then, in Example 6, µ is degenerate a.s. In Example 9, µ� ν

a.s. if
∑

n(1 − bn) < ∞ and µ is degenerate a.s. if
∑

n(1 − bn)2 = ∞ and

infn an > 0. However, Theorem 5 does not work in Example 4, because in that

case, 1 − qn(x) = 1/(n + 1 + c) for all x ∈ S∞. Indeed, the behavior of µ in

Example 4 is an open problem.

Finally, we turn to the strategies of Section 4.

Theorem 6. In the notation of Section 4, let

L =
{
x ∈ S∞ : lim

n
fn(x) exists and is finite

}
,

f(x) = lim
n
fn(x) for each x ∈ L, and u∗ = sup

n
un.

If σ is the strategy (4.1) then, for each x ∈ L,

σn(x) −→ δf(x) weakly if u∗ = u, and

σn(x) −→ S
(
f(x), u− u∗

)
in total variation if u∗ < u.
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Moreover, Pσ(L) = 1 and f ∼ S(0, u∗) under Pσ, that is

Pσ(f ∈ A) = S(0, u∗)(A) for all A ∈ B.

6. Applications

In this section, we discuss some applications of the strategies obtained via

NSA. We let S = R and we denote by x ∈ Rn the observed data.

Roughly speaking, NSA replaces the choice of the prior with that of the strat-

egy σ; see Section 1. Thus, in general, NSA applies to any Bayesian prediction

problem. Practically, for any time series (Xn), the forecaster needs only choose

the strategy σ. In making this choice, she has no constraints other than her

feelings and the specific features of (Xn). Once σ is selected, its possible uses are

the usual ones. For instance, the forecaster can build a pointwise predictor for

Xn+1, such as the mean or the median of σn(x). Alternatively, given γ ∈ (0, 1),

she can build a prediction interval for Xn+1, that is, an interval In(x) such that

Pσ

(
Xn+1 ∈ In(x) | (X1, . . . , Xn) = x

)
= σn(x)

[
In(x)

]
≥ 1− γ.

The previous remarks, while reasonable, may look generic. Thus, we mention

a more concrete application based on martingale posterior distributions (m.p.d.’s)

as defined in Fong, Holmes and Walker (2023). An m.p.d. is the conditional distri-

bution of θ given the observed data, where θ = θ(X1, X2, . . .) is any (measurable)

function of the whole data sequence (X1, X2, . . .). Note that θ would be known

if we knew (X1, X2, . . .). Hence, the only source of uncertainty is the ignorance

about (Xn+1, Xn+2, . . .). Quoting from Fong, Holmes and Walker (2023, Abst.),

an m.p.d. “returns Bayesian uncertainty directly on any statistic of interest with-

out the need for the likelihood and prior”.

In applications, m.p.d.’s can be sampled using a computational scheme, called

predictive resampling ; see Algorithm 1. Based on predictive resampling, in Fong,

Holmes and Walker (2023), several applications to real data sets are provided,

including galaxy and air quality data sets, which are classic benchmarks used to

test new procedures.

M.p.d.’s are introduced in the framework of NSA. As in this paper, the

predictives are assigned directly and (Xn) is required to be c.i.d. Condition

(ii) is very useful as well. Therefore, each of the strategies of Sections 3 and

4 can be exploited to obtain m.p.d.’s. To implement Algorithm 1, in fact, one

needs to sample from a given predictive distribution. In turn, sampling from

the strategies of Sections 3 and 4 is straightforward. In this sense, using such
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Algorithm 1 A practical algorithm for predictive resampling

Assign σn(x) based on the observed data x = (x1, . . . , xn).
Set σ∗

n(x) = σn(x).
M and N > n are integers with N large.
for j ← 1 to M do

for i← n+ 1 to N do
Sample Yi ∼ σ∗

i−1 where σ∗
i−1 = σ∗

i−1(x, Yn+1, . . . , Yi−1).
Update σ∗

i ← {σ∗
i−1, Yi}.

end for
Compute the empirical measure µN = (1/N)(

∑n
i=1 δxi +

∑N
i=n+1 δYi).

Compute θ
(j)
N according to µN .

end for
Return θ

(1)
N , . . . , θ

(M)
N where the θ

(j)
N are estimates of θ based on µN .

strategies in predictive resampling is computationally efficient.

Supplementary Material

As already noted, all proofs are gathered in a Supplementary Material online

section. Precisely, such section includes the proofs of Corollary 1 and Theorems

2, 3, 4, 5, and 6.
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