
Journal of Cosmology and
Astroparticle Physics

     

OPEN ACCESS

Multiple soft limits of cosmological correlation
functions
To cite this article: Austin Joyce et al JCAP01(2015)012

 

View the article online for updates and enhancements.

You may also like
Bootstrap and amplitudes: a hike in the
landscape of quantum field theory
Henriette Elvang

-

The double-soft limit in cosmological
correlation functions and graviton
exchange effects
Allan L. Alinea, Takahiro Kubota and
Nobuhiko Misumi

-

The SAGEX review on scattering
amplitudes Chapter 11: Soft Theorems
and Celestial Amplitudes
Tristan McLoughlin, Andrea Puhm and
Ana-Maria Raclariu

-

This content was downloaded from IP address 195.231.119.125 on 14/11/2023 at 16:11

https://doi.org/10.1088/1475-7516/2015/01/012
https://iopscience.iop.org/article/10.1088/1361-6633/abf97e
https://iopscience.iop.org/article/10.1088/1361-6633/abf97e
https://iopscience.iop.org/article/10.1088/1475-7516/2017/01/034
https://iopscience.iop.org/article/10.1088/1475-7516/2017/01/034
https://iopscience.iop.org/article/10.1088/1475-7516/2017/01/034
https://iopscience.iop.org/article/10.1088/1751-8121/ac9a40
https://iopscience.iop.org/article/10.1088/1751-8121/ac9a40
https://iopscience.iop.org/article/10.1088/1751-8121/ac9a40


J
C
A
P
0
1
(
2
0
1
5
)
0
1
2

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Multiple soft limits of cosmological
correlation functions

Austin Joyce,a Justin Khouryb and Marko Simonovićc,d
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1 Introduction

Symmetries play a fundamental role in physics. Classically, they restrict the form of and
couplings allowed in the Lagrangian, while quantum-mechanically they constrain correlation
functions and S-matrix elements through Ward identities. In cases where symmetries are
spontaneously broken, there is still an avatar of the symmetry in the quantum theory; Ward
identities tell us about correlation functions in the presence of soft Goldstone modes.

In the last few years, it has become increasingly clear that this is a useful lens through
which to view primordial fluctuations in cosmology. For example, correlation functions of
spectator fields on de Sitter space are highly constrained by the linearly realized de Sit-
ter SO(4, 1) isometries, which at late times act as conformal transformations on spatial
slices [1–7]. Perturbations of the inflaton, meanwhile, can be understood as an effective field
theory for the Goldstone boson associated with spontaneously broken time translations [8, 9].1

The same framework has also been applied to the late universe to study systematically dark
energy [11] and modified gravity models [12].

1This point of view first appeared in the context of the ghost condensate in [10].
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Yet another perspective can be obtained by working in uniform-density gauge, where
scalar perturbations are encoded in the well-known variable ζ. In this gauge, ζ is immediately
recognized as the Goldstone boson (or dilaton) for the spontaneous breaking of the SO(4, 1)
conformal group on R3, down to its Euclidean subgroup [13, 14]:

SO(4, 1) −→ ISO(3) . (1.1)

Remarkably, this holds for any spatially-flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)
spacetime [14], except for exact de Sitter space.2 The non-linearly realized symmetries, spatial
dilations and special conformal transformations (SCTs), give rise to “soft pion” theorems:

lim
~q→0

〈ζ~qζ~k1 · · · ζ~kN 〉
′

P (q)
=

(
δD +

1

2
~q · δ~K

)
〈ζ~k1 · · · ζ~kN 〉

′ , (1.2)

where δD and δ~K are the dilation and SCT operators in momentum space, and primes denote
on-shell correlators. (See main text for details.) This consistency relation has been derived
through background-wave arguments [13, 15–19], through Ward identity machinery [20–24],
and holographic arguments [25–27]. The power of the consistency relation lies in its general-
ity: (1.2) holds in any single-field model, independent of the slow-roll approximation, sound
speed of perturbations etc., provided that the background is a dynamical attractor. It holds
for a broad class of initial quantum states satisfying certain analyticity conditions [28], which
includes the Bunch-Davies state.

Equation (1.2) implies that scalar correlation functions in the soft limit ~q → 0 are fully
determined up to O(q2) in terms of a lower-point correlation function. The O(q2) piece is
physical — it represents spatial curvature and hence is model-dependent [29]. By including
tensor perturbations γij , it is possible to constrain higher-order terms in q. In fact, there are
infinitely-many consistency relations involving a combination of soft scalar and tensor legs,
schematically of the form [21]:

lim
~q→0

∂n

∂qn

(
〈ζ~qO~k1,··· ,~kN 〉

P (q)
+
〈γ~qO~k1,··· ,~kN 〉

Pγ(q)

)
∼

N∑
a=1

∂n

∂kna
〈O~k1,··· ,~kN 〉 , (1.3)

where O~k1,...,~kN is an arbitrary operator built out of scalars and tensors. The n = 0, n = 1

relations reproduce (1.2) and its soft-tensor analogue. The n ≥ 2 identities only partially
constrain the soft limit of the amplitude at each order. The 3 → 2 relations have been
checked explicitly up to and including O(q3) [30]. All of these identities originate from a
single, master consistency relation, which follows from the Slavnov-Taylor identity for spatial
diffeomorphisms [23]. See also [24].

The consistency relations (1.3) are physical statements. They provide stringent null
tests of inflation: observing a violation of any one of these relations would immediately rule
out all standard single-field inflationary models! The presence of entropy perturbations,
departures from the attractor solution [31–34], dissipative effects [35] and modified initial
states [36–50] have all been shown to result in violations of the consistency relations.

In this paper we focus on another probe of the higher-q dependence of correlation
functions, namely multiple soft limits. For concreteness, we focus on scalar perturbations
only, with symmetry breaking pattern (1.1). Our original motivation for this work came
from pion physics. Low-energy theorems with two soft pions are sensitive to the non-Abelian

2In the de Sitter limit, ζ decouples, and the SO(4, 1) symmetries are restored.
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nature of the symmetry algebra [51, 52]. For instance, for the symmetry breaking pattern
SU(2)L × SU(2)R −→ SU(2)D, the following holds

lim
~qa,~qb→0

〈πa~qaπ
b
~qb
πi1~k1
· · ·πin~kn〉 =

1

2

∑
j

(~qa − ~qb) · ~kj
(~qa + ~qb) · ~kj

εabc〈πi1~k1 · · ·Xcπ
ij
~kj
· · ·πin~kn〉 , (1.4)

where Xc are SU(2) generators. Thus, in the presence of two soft external legs, the remaining
hard-momentum modes feel a momentum-dependent group transformation, given by the
commutator of the generators associated with the soft modes. The intuition is that when
taking two legs to be soft, it matters which momentum is taken to zero first, and this picks
out a path through the group.

In our case, since dilations and SCTs do not commute, one would expect by analogy
that the double-soft limit at O(q) should depend on the order in which the limit is taken.
Here however, the non-commutativity appears in a slightly more subtle form. The point is
that we are dealing with space-time symmetries, and as a result only one Goldstone field
is needed to non-linearly realize the conformal group.3 Indeed, the fact that the single-soft
relation (1.2) constrains correlators at O(q) can already be understood as a probe of the de
Sitter algebra. Nevertheless, we will see that there is still some trace of non-commutativity
in the double-soft relation: in the background wave derivation, it turns out that in order to
induce a physical long-wavelength mode at O(q) by a coordinate transformation, we must
do a dilation followed by a SCT in that order. If we choose to do the transformations in the
opposite order, we must do an additional compensating SCT to match to a physical mode,
capturing the non-commutativity of the de Sitter group.

The results we derive offer a new set of consistency relations for inflationary correlators.
For most of the paper we will focus on two soft legs. After briefly reviewing the conformal
symmetries of adiabatic modes (section 2), we turn to the derivation of double-soft consis-
tency relations, following two different methods: i) through the background wave method
(section 3); ii) by applying the Ward identity machinery to the fixed-time 1PI action [22, 23]
(section 4). These two approaches each have advantages and limitations. The higher-soft
limits are most easily phrased in terms of 1PI vertices, but the resummation from vertices
to correlation functions becomes increasingly tedious for higher-point correlation functions.
Multiple-soft limits are non-trivial to derive in the background wave argument, but the
derivation holds for arbitrary number of hard legs.

Our results can be summarized as follows: at zeroth order in the soft momenta, the
double-soft consistency relation following from dilation invariance is given by

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′

P (q1)P (q2)
=
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
δD〈ζ~k1 · · · ζ~kN 〉

′ + δ2D〈ζ~k1 · · · ζ~kN 〉
′ . (1.5)

The first term on the right-hand side comes from the exchange diagram in which two soft
modes combine and are attached to the hard modes via a soft internal line (left in figure 1).
The second term comes from the diagram where both soft lines come from a single vertex
(right in figure 1). Similar relations have appeared in the literature before [18, 19], however
these earlier results missed the second term. For resonant non-Gaussianities, for instance,
the second term dominates in the double-squeezed limit.

3This is a manifestation of what is often called the inverse Higgs effect [53].
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At higher-order in the soft momenta, the double-soft relation takes the following form,
which generalizes (1.2) to the double-soft case:

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′

P (q1)P (q2)
=
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

[(
δD+

1

2
~q · δ~K

)
〈ζ~k1 · · · ζ~kN 〉

′+qiqj
∂

∂κij
〈ζ~k1 · · · ζ~kN 〉

′
κ

]
+

(
δ2D +

1

2
~q · δ~KδD +

1

4
qi1q

j
2δKiδKj

)
〈ζ~k1 · · · ζ~kN 〉

′

+
q1iq2j

2

(
δij∇2

p − 2∇ip∇jp
) 〈ζ~pζ~k1 · · · ζ~kN 〉′

P (p)

∣∣∣∣
~p→0

, (1.6)

where ~q = ~q1 + ~q2. The last term in the second line, which can equivalently by re-written
as [29]

qiqj
∂

∂κij
〈ζ~k1 · · · ζ~kN 〉

′
κ =

qiqj
2
∇ip∇jp

〈ζ~pζ~k1 · · · ζ~kN 〉
′

P (p)

∣∣∣∣
~p→0

, (1.7)

captures effect of a single soft internal line produced by the two long modes at order O(q2).
At this order, the effect of the soft internal line is equivalent to being in a locally curved
anisotropic universe where the curvature κij is related to the second derivatives of this internal
long mode. From this we see that even at order O(q1 · q2) the double squeezed limit contains
“physical” terms that are not related to a change of coordinates. For this reason, at this
order, eq. (1.6) is not a standard consistency relation. In particular, it relates the soft limit
of an (N + 2)-point function to both the (N + 1)-point function and the N -point function.

In section 5, we perform some explicit checks of these identities in the simplest case of
4-point functions in the double-soft limit. Unfortunately, few examples of 4-point functions
have been computed in the literature. Our checks are therefore limited to resonant non-
Gaussianities (section 5.1) and models with small sound speed (section 5.2). In section 6,
we generalize the double-soft results to N > 2 soft legs. This is completely straightforward
at the level of the 1PI action, though once again the resummation to correlation functions is
non-trivial. For simplicity, we will focus on multiple dilations and make an intuitive argument
for the form of the identity in terms of correlators. In section 7, we apply our results to the
Large Scale Structure, and generalize known consistency relations [54–62] to the double-soft
case. Finally, we discuss future research directions in section 8.

2 Conformal symmetries and adiabatic modes

We begin by reviewing the residual symmetries of the gauge-fixed inflationary action, focusing
on scalar perturbations. Following [14, 21], we work in ζ-gauge, defined by an unperturbed
scalar field

δφ ≡ φ(~x, t)− φ̄(t) = 0 , (2.1)

and a conformally-flat spatial metric

hij = a2(t)e2ζ(~x,t)δij . (2.2)

We look for diffeomorphisms that preserve this gauge. To preserve δφ = 0, clearly the diffeo-
morphisms must be purely spatial, ξi(~x, t), but a priori can depend on time. To preserve the
conformal flatness of hij , the residual spatial diffeomorphisms are just conformal transfor-
mations on R3. This 10-parameter group includes 3 translations, 3 rotations, 1 dilation and

– 4 –
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3 SCTs. We henceforth ignore translations and rotations, since these are linearly realized on
ζ and therefore do not give rise to soft-pion theorems.

Dilations and SCTs act on the coordinates as (see, e.g., [63])

xi 7−→ eλ(t)xi , (dilation)

xi 7−→ xi − bi(t)~x2

1− 2~x ·~b(t) + ~x2~b2(t)
. (SCT) (2.3)

Under these transformations, the spatial part of the line element transforms as

δijdx
idxj 7−→ Ω2(~x, t)δijdx

idxj , (2.4)

where the conformal pre-factor is given by

Ωdil(~x, t) = eλ(t) ,

ΩSCT(~x, t) =
(

1− 2~x ·~b(t) + ~x2~b2(t)
)−1

. (2.5)

At the infinitesimal level, the Killing vectors that generate these transformations are

ξidil = λ(t)xi ;

ξiSCT = 2~x ·~b(t)xi − ~x2bi(t) . (2.6)

The change in the spatial line element by this conformal factor can be absorbed in a redefi-
nition of ζ; which infinitesimally transforms as

δdilζ = λ(t)
(

1 + ~x · ~∂ζ
)
,

δSCTζ = bi(t)

(
2xi +

(
2xixj∂j − ~x2∂i

)
ζ

)
. (2.7)

Thus far these transformations are just diffeomorphisms, and as such map solutions of
the equations of motion to other solutions. However, the δζ profiles induced by (2.7) do not
preserve boundary conditions: they map field configurations which fall off at infinity into
those which do not. If we want (2.7) to represent the long-wavelength limit of a physical
mode — with suitable fall-off behavior at infinity — then we must check whether the profiles
thus induced can satisfy the constraint equations away from ~k = 0. In other words, these
profiles cannot “accidentally” solve the equations simply because they are being hit by spatial
derivatives.

This was checked carefully in [13, 14, 21] by generalizing Weinberg’s original argu-
ment [64]. The result is that only a subset of the transformations can be extended to a physical
mode. For starters, the parameters of the transformations must be time-independent: λ̇ = 0,
ḃi = 0. Moreover, a SCT must be accompanied by a time-dependent translation [13, 14]:

ξi = ξiSCT − 2bi
∫ t dt′

H(t′)
. (2.8)

These are the adiabatic modes of scalar perturbations: field profiles that can be induced by a
coordinate transformation which are the q → 0 limit of a physical field configuration. In [21,
30], the analysis was generalized to include tensors. In this case, one finds an infinite number
of residual global diffeomorphisms which are non-linearly realized on the perturbations.

– 5 –
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Equation (2.8) can be understood physically by considering the linear solution with a
long-wavelength mode ζL. After solving the constraint equations for the lapse function and
shift vector, the perturbed line element to leading order in gradients [15, 65] takes the form
(see [13, 14, 21, 64] for details)

ds2 = −dt2 − 2

H
∂iζLdxidt+ a2(t) (1 + 2ζL) δijdx

idxj , (2.9)

where we have specialized to single-field, slow-roll inflation for simplicity. The aim is to
show that this metric can be generated by performing a suitable change of coordinates on
an unperturbed, homogeneous solution. Alternatively, we can think of removing a long-
wavelength ζ mode of this form by performing the inverse transformation. To generate the
desired hij while remaining in ζ-gauge, as discussed earlier, the only allowed transformations
are spatial dilations and SCTs. These preserve the conformal flatness of hij . Since ζ̇ ∼ k2ζ,
ζL is constant in time at linear order in gradients, hence the conformal transformations must
be time-independent as well. Working at linear order in ζL, it is easy to check that the
transformation

xi 7−→ xi + λxi + 2~x ·~b xi − ~x2bi , (2.10)

generates the desired spatial metric provided we make the identification

ζL = λ+ 2~b · ~x . (2.11)

In order to generate the complete metric (2.9), we need an additional change of coordi-
nates to induce the shift vector component g0i = −H−1∂iζL. This is achieved by performing
a time-dependent translation

xi 7−→ xi − 1

2H2a2
∂iζL . (2.12)

This confirms the result (2.8) that the linear-gradient adiabatic mode corresponds to a time-
independent SCT combined with a particular time-dependent translation. Since all corre-
lation functions we are interested in are translationally invariant, in practice the additional
transformation (2.12) will be of no consequence to our discussion and will henceforth be ig-
nored. Although we have focused here on slow-roll inflation for concreteness, it can be shown
that the construction of the adiabatic long mode is similar in any model of single-field in-
flation [13]. Furthermore, short-wavelength modes can be included non-perturbatively. The
relevant part of the coordinate transformation is always related to dilations and SCTs.

3 Background-wave derivation

One way to derive the consistency relations is based on the observation that in any single-field
model, a physical long mode is indistinguishable from a coordinate transformation. This has
been used to derive the inflationary consistency relations [13, 16–19], consistency relations for
the Conformal Mechanism [66] and consistency relations for Large Scale Structure in the late
universe [54–62]. The core of the derivation is based on the construction of a long adiabatic
mode [64]. In this section, we are going to use this technique to derive the consistency
relations for the multiple soft limits of inflationary correlation functions.

– 6 –
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3.1 Single-soft relation

Once the long mode has been identified with a change of coordinates, as in (2.11), the deriva-
tion of the consistency relation is straightforward. By performing a change of coordinates,
we can relate two different solutions, one with and one without a long mode. Consequently,
correlation functions in the presence of a long mode must equal correlation functions without
the long mode but in transformed coordinates:

〈ζ(~x1) · · · ζ(~xN )〉ζL = 〈ζ(~̃x1) · · · ζ(~̃xN )〉 , (3.1)

where x̃i = xi + ζ0Lx
i +~x · ~∂ζ0L xi−

1
2~x

2∂iζ0L and ζ0L is the value of the long-wavelength around
the (arbitrarily chosen) origin of coordinates. Expanding the right-hand side of (3.1) to linear
order in ζL, we obtain

〈ζ(~x1) · · · ζ(~xN )〉ζL ' 〈ζ(~x1) · · · ζ(~xN )〉

+

N∑
a=1

(
ζ0Lx

i
a −

1

2
∂jζ

0
L

(
~x2aδ

ij − 2xiax
j
a

)) ∂

∂xia
〈ζ(~x1) · · · ζ(~xN )〉 . (3.2)

We then average both sides over the long mode. Using the definition of a conditional proba-
bility, the left-hand side becomes an (N + 1)-point function:

〈ζL〈ζ(~x1) · · · ζ(~xN )〉ζL〉 = 〈ζL〉〈ζ(~x1) · · · ζ(~xN )〉ζL = 〈ζLζ(~x1) · · · ζ(~xN )〉, (3.3)

On the right-hand side, meanwhile, the first term gives a contribution proportional to 〈ζL〉,
which vanishes. The remaining terms are proportional to the 2-point function of ζL times
an operator acting on the short modes. Transforming to Fourier space and removing delta
functions, the result is the standard consistency condition relating (N + 1) and N -point
functions [13]:

lim
~q→0

〈ζ~qζ~k1 · · · ζ~kN 〉
′

P (q)
=

(
δD +

1

2
~q · δ~K

)
〈ζ~k1 · · · ζ~kN 〉

′ , (3.4)

where the primed correlators 〈· · · 〉′ are correlators without the momentum conserving delta
function:

〈O~k1,...,~kN 〉 = (2π)3δ3(~k1 + . . .+ ~kN )〈O~k1,...,~kN 〉
′ . (3.5)

The Fourier-space dilation and SCT operators are defined by

δD = −3(N − 1)−
N∑
a=1

~ka · ~∇ka ;

δKi =

N∑
a=1

(
−6∇ika + kia∇2

ka − 2~ka · ~∇ka∇ika
)
, (3.6)

and ∇ika ≡
∂
∂kia

. Thus (N + 1)-point correlation functions with a soft mode are fully deter-

mined up to O(q2) in terms of N -point functions without the soft mode.

– 7 –
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3.2 Double-soft dilation result

In order to generalize the preceding argument to multiple soft legs, we must find a change of
coordinates that induces a non-linear background of the long mode. Neither the change of
coordinates nor the metric can be linearized. For simplicity let us start by considering two
soft modes, which requires working at quadratic order in ζL. As we will see, this example is
sufficiently rich to capture all the relevant issues in the problem. We will discuss how our
results generalize to additional soft modes at the end of the paper.

We first focus on the relation at zeroth order in the soft momentum, corresponding to
dilations only. The only non-trivial part of the metric is the spatial line element:

d`2 = a2(t)e2ζLδijdx
idxj , (3.7)

where ζL is constant in both space and time. Clearly, ζL is generated non-linearly by a
dilation of the spatial coordinates

xi 7−→ x̃i = eζLxi . (3.8)

Therefore, evaluating an N -point function in the presence of a long-wavelength mode is
equivalent to working in rescaled coordinates:

〈ζ(~x1) · · · ζ(~xN )〉ζL = 〈ζ(~̃x1) · · · ζ(~̃xN )〉 . (3.9)

To derive the double-soft relation, we must expand the change of coordinates up to second
order in the long mode:

δxi = x̃i − xi '
(
ζL +

1

2
ζ2L

)
xi . (3.10)

Expanding the right-hand side of (3.9) to quadratic order in ζL, we obtain

〈ζ(~x1) · · · ζ(~xN )〉ζL = 〈ζ1 · · · ζN 〉+ δ〈ζ1 · · · ζN 〉 , (3.11)

where

δ〈ζ1 · · · ζN 〉 =
N∑
a=1

δ~xa · ~∇a〈ζ1 · · · ζN 〉+
1

2

N∑
a,b=1

δxiaδx
j
b∇

i
a∇

j
b〈ζ1 · · · ζN 〉 (3.12)

= ζL

N∑
a=1

~xa · ~∇a〈ζ1 · · · ζN 〉+
ζ2L
2

 N∑
a=1

~xa · ~∇a +

N∑
a,b=1

xiax
j
b∇

i
a∇

j
b

 〈ζ1 · · · ζN 〉 .
We will eventually average this relation over two long modes ζL(~x)ζL(~y). Before doing so,
note that the first term in (3.11), once averaged over the long modes, will contribute to
disconnected correlation functions. We will therefore drop it from our analysis by considering
only connected correlators. Averaging the second term will give two kind of contributions
— one that is proportional to the 3-point function of the long modes and a second one that
is proportional to two power spectra of the long modes. These two terms will come from
contributions in the second line of (3.12) respectively proportional to ζL and ζ2L.

Rewriting (3.12) in Fourier space, we get

δ〈ζ1 · · · ζN 〉 = lim
~q→0

∫
d3q

(2π)3
d3k1
(2π)3

· · · d
3kN

(2π)3
ei~q·~y(2π)3δ(3)(~P )〈ζ~k1 · · · ζ~kN 〉

′ (3.13)

×

ζ~q N∑
a=1

~ka · ~∇ka +
1

2

∫
d3Qζ~qζ ~Q−~q

 N∑
a=1

~ka · ~∇ka +

N∑
a,b=1

kiak
j
b∇

i
ka∇

j
kb

 ei∑a
~ka·~xa ,
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Figure 1. Contributions to the double squeezed limit (3.17). Left : two soft modes combine and are
connected to the hard modes via a soft internal line. Right : both soft lines come from the same vertex
as the hard modes, resulting in a double-dilation on the remaining hard modes.

where ~P = ~k1 + · · · + ~kN . We would like to rewrite this expression in a form where all
k-derivatives act on the primed correlation function 〈ζk1 · · · ζkN 〉′. Doing this requires a fair
amount of integration by parts, which will result in derivatives acting on the delta function
δ(~P ). These terms come in two flavors:

f(~ka)

N∑
a=1

kai∇kaiδ(~P )ei
∑

a
~ka·~xa = f(~ka)Pi∇Piδ(

~P )ei
∑

a
~ka·~xa ;

g(~ka)
N∑

a,b=1

kaikbj∇kai∇kbjδ(~P )ei
∑

a
~ka·~xa = g(~ka)PiPj∇Pi∇Pjδ(

~P )ei
∑

a
~ka·~xa . (3.14)

Integrating by parts again, the only non-zero terms are those where the derivatives act on
Pi, since all others are proportional to the integral of Piδ(~P ) which gives zero. The result is

f(~ka)

N∑
a=1

kai∇kaiδ(~P )ei
∑

a
~ka·~xa = −3f(~ka)δ(~P )ei

∑
a
~ka·~xa ;

g(~ka)

N∑
a=1

N∑
b=1

kaikbj∇kai∇kbjδ(~P )ei
∑

a
~ka·~xa = 12g(~ka)δ(~P )ei

∑
a
~ka·~xa . (3.15)

Putting all contributions together, the variation of the N -point function takes the form

δ〈ζ~k1 · · · ζ~kN 〉
′ = lim

~q→0

(
ζ~q δD +

1

2

∫
d3Qζ~qζ ~Q−~q δ

2
D

)
〈ζ~k1 · · · ζ~kN 〉

′ , (3.16)

The final step is to, insert this into (3.11), multiply the resulting expression by two long-
wavelength modes ζ~q1 and ζ~q2 and average. In this way we obtain the double-soft relation for
dilations:

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′

P (q1)P (q2)
=
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
δD〈ζ~k1 · · · ζ~kN 〉

′ + δ2D〈ζ~k1 · · · ζ~kN 〉
′ . (3.17)

This formula can be understood quite simply from a diagrammatic perspective, as shown in
figure 1. The two contributions to the soft limit come from different ways that an N -point
function can factorize when two of the external lines are taken to be soft. The first term
in (3.17) describes two soft modes combining and linking to the hard modes via a soft internal
line (left in figure 1). This causes the diagram to factorize into a 3-point function with no
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hierarchy between the modes times a two point function rescaled by the presence of a long-
wavelength mode. The second term in (3.17) corresponds to the case where both soft lines
come from a single vertex, which induces a double dilation on the remaining hard modes.

Equation (3.17) is a generalization of Maldacena’s consistency relation for a single soft
external leg. Similar relations have appeared in the literature before [18, 19]. However, these
relations only contained the first term on the right-hand side of (3.17). The second term
in our result comes from expanding everything up to second order in ζL consistently. It is
important to stress that in some cases these two terms may be of different order in slow-roll
parameters, with one being suppressed compared to the other. In single-field models with
reduced speed of sound, for instance, the 3-point function is not slow-roll suppressed, while
the second term is higher-order in slow-roll parameters. However, this is not generically true.
For example, in standard slow-roll inflation both terms are expected to be equally relevant
(second order in slow-roll parameters). Further — as we are going to show later in explicit
checks — for the model of resonant non-Gaussianities the second term is dominant in the
double-squeezed limit of the correlation functions.

Additionally, the presence of the second term in (3.17) is essential to recover the correct
result in the hierarchical limit q1 � q2. In this limit we can apply Maldacena’s consistency
relation (equation (3.4) at lowest order in q) to the 3-point function 〈ζ~q1ζ~q2ζ−~q〉′:

lim
~q1�~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′

P (q1)
= δDP (q2) δD〈ζ~k1 · · · ζ~kN 〉

′ + P (q2)δ
2
D〈ζ~k1 · · · ζ~kN 〉

′

= δD

(
P (q2)δD〈ζ~k1 · · · ζ~kN 〉

′
)
. (3.18)

This is precisely the answer one would obtain by applying Maldacena’s relation twice on an
(N + 2)-point function.

3.3 First order in derivatives

The above derivation is valid to zeroth order in the gradient expansion. In this case, as
we have seen, the long mode is a constant background that can be removed non-linearly by
performing a dilation of the spatial coordinates. We would like to extend the result to higher-
order in the gradient expansion and allow the long modes to have homogeneous gradients.
For simplicity, we focus again on the case where we have two soft modes. This means that we
must consistently work at second order in ζL. As a first step, for the time being we will work
to first order in the gradient expansion. In other words, one of the long modes is a linear
gradient profile, while the other is constant. The general, second-order calculation where
both soft modes have a linear gradient profile will be treated in section 3.4.

Up to second order in ζL and first order in the gradient expansion, the spatial line
element is given by

d`2 = a2(t)e2ζLd~x2

' a2(t)

(
1 + 2ζ0L + 2(ζ0L)2 + 2~x · ~∇ζ0L + 4ζ0L~x · ~∇ζ0L

)
d~x2 , (3.19)

where we have expanded the long mode around the origin

ζL(x) = ζ0L + ~x · ~∇ζ0L + · · · . (3.20)

The superscript indicates that the function is evaluated at the origin. Aside from the spatial
metric, the g0i components are also non-zero at linear order in gradients — see (2.9). Dilations
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do not change this part of the metric even non-linearly and, as in the single-soft case, we
expect that at this order in derivatives g0i can be removed by a time-dependent spatial
translation. Translations are linearly realized on ζ and hence do not affect the correlation
functions. We therefore ignore this transformation and focus on the spatial metric (3.19).

Obviously, the change of coordinates corresponding to the adiabatic long mode at this
order will involve one dilation and one SCT. However, given that these two transformations
do not commute, it is not immediately clear in which order they should be performed. The
choice is, of course, not arbitrary; only one of these orderings will generate a physical solution
with metric (3.19). Using (2.5), we see that doing a SCT first followed by a dilation gives4

(D ◦ SCT)d~x2 =
(

1 + 2λ+ 2λ2 + 4~b · ~x+ 12λ~b · ~x+ · · ·
)

d~x2 , (3.21)

while the other way around gives

(SCT ◦D)d~x2 =
(

1 + 2λ+ 2λ2 + 4~b · ~x+ 8λ~b · ~x+ · · ·
)

d~x2 . (3.22)

Comparing with (3.19), we see that only (3.22) can be matched by choosing λ and ~b suitably:

λ = ζ0L ; ~b =
1

2
~∇ζ0L . (3.23)

This exactly matches (2.11). In other words, to generate the the line element (3.19) we must
do the dilation first. We can, of course, choose to do the transformations in the opposite
order, but (3.21) differs from a physical long-wavelenth mode by an additional SCT, which
must also be tracked.

The full change of coordinates (up to an irrelevant spatial translation) that is equivalent
to a physical long mode up to second order in ζL and first order in derivatives is

δxi =

(
ζ0L +

1

2
(ζ0L)2 +

(
1 + ζ0L

)
~x · ~∇ζ0L

)
xi − 1

2

(
1 + ζ0L

)
~x2∇iζ0L . (3.24)

Following similar steps as in section 3.2, we can derive the double-soft consistency
relation at O(q). The starting point is again (3.11) with the variation of an N -point function
under a change of coordinates

δ〈ζ1 · · · ζN 〉 =

N∑
a=1

δ~xa · ~∇a〈ζ1 · · · ζN 〉+
1

2

N∑
a,b=1

δxiaδx
j
b∇

i
a∇

j
b〈ζ1 · · · ζN 〉+ · · · , (3.25)

where δx given by (3.24). Terms of order λ2 correspond to a double dilation and reproduce
the zeroth-order consistency relation (3.17). Terms of order b2 are second-order in derivatives
and can be ignored in our approximation. (We will come include these in section 3.4 below.)
Finally, terms of order bλ generate new contributions to the consistency relation at linear
order in the gradient expansion. Averaging the N -point variation (3.25) with two long modes
and going to momentum space, after a fairly long computation we obtain the double-soft
consistency relation at order q:

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′

P (q1)P (q2)
=
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
δD〈ζ~k1 · · · ζ~kN 〉

′ + δ2D〈ζ~k1 · · · ζ~kN 〉
′ (3.26)

+
1

2
qi
(
δKiδD〈ζ~k1 · · · ζ~kN 〉

′ +
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
δKi〈ζ~k1 · · · ζ~kN 〉

′
)
.

4Here we work to linear order in ~b, but keep terms of order λ~b and λ2. This is because we will see that
~b ∼ ~∇ζ, so we are working to first order in gradients, but second order in ζ.
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The first line matches the double-dilation result (3.17), as we expect. The second line is
a linear-gradient correction which arises from doing a dilation followed a by SCT on the
hard modes.

Had we chosen to do the SCT first, the operators in the first term of the second line
of (3.26) would appear in the opposite order, and the compensating SCT required to match
to a physical mode would induce an additional term which takes the form of a single δiK
acting on the N -point function. This is equivalent to swapping the ordering of the operators
in (3.26) and using the commutation relation

[δKi , δD] = δKi , (3.27)

of the conformal algebra.

3.4 Full coordinate transformation at O(q2)

To derive consistency relations at the next order in the gradient expansion — order in the
soft momentum — we must keep second-order terms in derivatives in the expansion (3.19).
To be consistent, we have to expand the long mode up to this order too. We can write

ζL(~x, t) = ζ0L(t) + ~x · ~∇ζ0L +
1

2
xixi∇i∇jζ0L + · · · , (3.28)

where we have allowed for time-dependence of the homogeneous part of the long-wavelength
mode because this term is of the same order as ∇2ζ. This can be explicitly seen by solving
the quadratic equation of motion for ζ0L(t) to fix (at leading order in slow-roll parameters) [29]

ζ0L(t) = ζ0L −
c2s

2a2H2
(1− 2ε)∇2ζ0L . (3.29)

With this in hand, we see that to order ∇2ζ the physical long-wavelength ζ profile is given by

ζL(~x, t) = ζ0L + ~x · ~∇ζ0L +
1

2
xixi∇i∇jζ0L −

c2s
2a2H2

(1− 2ε)∇2ζ0L . (3.30)

It is important to notice that the term ∼ ∇i∇jζ is related to the curvature of space. Indeed,
one can show that the solution in ζ-gauge with the long mode (3.30) is equivalent, up to
irrelevant change of coordinates, to the metric of a spatially curved universe [29]. The x-
dependent part of the long mode is related to the spatial curvature while the time dependent
homogenous term modifies the scale factor to match the background evolution in a spatially
curved universe.

The effects of curvature are of course physical and cannot be removed by a change of
coordinates. Therefore, we can conclude that if we want to be completely general and keep
all second order terms in derivatives, we cannot write down a consistency relation in the
usual sense. The effect of the long mode at this order is unavoidably physical. For example,
expanding a2(t)e2ζL to second order, we find a term of the form

ζ0Lx
ixi∇i∇jζ0L . (3.31)

Physically, this corresponds to a situation where one long mode in the double squeezed limit
is treated at homogeneous level (and it is equivalent to a dilation) while the effect of the
other long mode is physical.
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One might still hope that it is possible to write down the consistency relation at least
for some of the second order terms. One good guess would be terms proportional to ~q1 · ~q2,
because we expect them to come from two gradients of the two long modes which are both
separately removable by a change of coordinates. However, as we are going to see now, this
is not the case, and the physical effects of the long mode at this order are always present.

To see this explicitly, let us first focus on the case where the two long modes combine
and through a single soft internal line affect the remaining N hard legs. This is one of the
two kinds of diagrams that we have as we discussed in previous sections. In this case the
amplitude naturally factorizes in the following way

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′ ⊃ lim

~q→0

1

P (q)
〈ζ~q1ζ~q2ζ−~q〉

′〈ζ~qζ~k1 · · · ζ~kN 〉
′

= 〈ζ~q1ζ~q2ζ−~q〉
′
(
δD +

1

2
~q · δ~K

)
〈ζ~k1 · · · ζ~kN 〉

′ + 〈ζ~q1ζ~q2ζ−~q〉
′qiqj

∂

∂κij
〈ζ~k1 · · · ζ~kN 〉

′
κ , (3.32)

where in the second line we explicitly wrote the effects of the long mode up to O(q2) terms.
We get the first contribution using the conformal consistency relation while the second one
captures the physical effects of the long mode that we discussed before and that cannot be
traded for a change of coordinates. In order to write it we used the “curvature” consistency
relation of [29]

lim
~q→0

1

P (q)
〈ζ~qζ~k1 · · · ζ~kN 〉

′ ⊃ qiqj
∂

∂κij
〈ζ~k1 · · · ζ~kN 〉

′
κ , (3.33)

where the squeezed limit of an (N + 1)-point function at second order in gradients is pro-
portional to the N -point function evaluated in an locally anisotropic curved universe (this is
the meaning of the label κ), with the spatial curvature related to second derivatives of the
long mode. This expression can also be equivalently rewritten using (1.7). We can explicitly
see that the part ~q1 · ~q2 in expression (3.32) is related to the curvature of the long mode and
not removable by the change of coordinates.

A similar thing happens for the contact diagrams too. For simplicity, in what follows
we will ignore the constant part ζ0L and focus only on gradients. Expanding the spatial line
element to second order, we obtain

d`2 ∼
(
1 + 2ζL + 2ζ2L

)
d~x2

'
(

1 + 2~x · ~∇ζ0L + 2
(
~x · ~∇ζ0L

)2)
d~x2 . (3.34)

Our intuition tells us that at least part of the long mode at O(q2) should be removable by
an SCT at second order

d`2 ∼
(

1− 2~b · ~x+~b2~x2
)−2

d~x2

'
(

1 + 4~b · ~x+ 12
(
~b · ~x

)2
− 2~b2~x2

)
d~x2 . (3.35)

For the choice bi = 1
2∇iζ

0
L, the linear terms in ζ0L match up in the two expressions (3.34)

and (3.35). However, the quadratic terms have a different structure. In other words, at
this order in gradient expansion, preforming a non-linear SCT does not induce the correct
physical long-wavelength mode. The other way to see that the SCT cannot induce a correct
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profile of the long mode is notice that starting from an unperturbed FRW and doing a SCT
we do not generate any spatial curvature. On the other hand, for hij = a2e2ζLδij , the spatial
curvature at order we are interested in is proportional to

R(3) ∼ −2∇iζ0L∇iζ0L . (3.36)

Therefore, the effect of two gradients of the two long modes is physical, and only partially
can be removed by the non-linear SCT. The difference between the physical ζL and the profile
induced by the SCT in the line element is

e2~x·
~∇ζ0L − Ω2

sct

∣∣
bi=

1
2
∇iζ0L

= −
(
~x · ~∇ζ0L

)2
+

1

2
~x2
(
~∇ζ0L

)2
. (3.37)

The terms on the right-hand side are second order in ζL and contain “curvature” effects.
We expect them to contribute to the squeezed limit of an (N + 2)-point function in the
following way

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′ ⊃ P (q1)P (q2)q1iq2j

∂

∂R
(3)
ij

〈ζ~k1 · · · ζ~kN 〉
′
ζ~q1ζ~q2

, (3.38)

where R
(3)
ij is the part of the 3-curvature quadratic in ζ and the the subscript ζ~q1ζ~q2 on the

correlation function denotes the residual effects of two long modes on the short modes once
the SCT is taken into account. We should expect that this N -point function in the presence
of curvature should be related to an (N + 1)-point function with a long-wavelength mode
ζ ∼ x2. Given the tensor structure of (3.37), this curvature contribution will take the form

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′

P (q1)P (q2)
⊃ q1iq2j

1

2

(
δij∇2

p − 2∇ip∇jp
) 〈ζ~pζ~k1 · · · ζ~kN 〉′

P (p)

∣∣∣∣
~p→0

. (3.39)

We will not explicitly calculate this effect here, but we are going to see later using Ward
identities that this is indeed the correct expression.

We are finally ready to write down the consistency relation with two soft modes at order
O(q1 · q2). Putting together contributions from the exchange diagrams (3.32), effects of two
long modes shown in eq. (3.39) and the additional terms containing dilations and SCTs at
second order, we finally get

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′

P (q1)P (q2)
=
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

[(
δD+

1

2
~q · δ~K

)
〈ζ~k1 · · · ζ~kN 〉

′+qiqj
∂

∂κij
〈ζ~k1 · · · ζ~kN 〉

′
κ

]
+

(
δ2D +

1

2
~q · δ~KδD +

1

4
qi1q

j
2δKiδKj

)
〈ζ~k1 · · · ζ~kN 〉

′

+
q1iq2j

2

(
δij∇2

p − 2∇ip∇jp
) 〈ζ~pζ~k1 · · · ζ~kN 〉′

P (p)

∣∣∣∣
~p→0

. (3.40)

This is the main result of the paper. To summarize, the first line is related to the exchange
diagrams in which two long modes combine into a single soft internal line. In the last term
in the first line the N -point function should be calculated in a locally anisotropic and curved
universe (see [29]). The second line follows from performing a dilation and a SCT at second
order. The last term is related to the mismatch of the physical line element and the one
induced by a SCT at second order in gradients. Notice that in this expression we neglected
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terms of the order O(q21) and O(q22), because they are clearly related to the physical effects
of the long modes.

One important check of the above identity is that it does indeed reproduce the correct
result in the hierarchical limit, where the conformal consistency relation can be applied twice.
In the next section we will offer an alternative derivation of this result using Ward identity
machinery.

4 Ward identity derivation

The preceding derivation of double-soft consistency relations was based on the background-
wave argument, namely that long-wavelength ζ modes can be induced or removed by ap-
propriate symmetry transformations. However, as we saw, this procedure runs into trouble
when trying to remove a long-wavelength mode at second-order in gradients. In this section,
we will show how this deficiency can be circumvented by employing field-theoretic machinery
to derive Ward identities associated with the symmetries of section 2.

The technology we will employ is the one particle-irreducible (1PI) action Ward iden-
tities of [22] (see also [23]). These authors introduce a 3d Euclidean path integral over field
configurations at fixed time, which is sufficient to derive equal-time correlation functions.
The information about the prior history (in particular the initial state) is encoded in the
wavefunctional.5 In this formalism, one can define a 3d vertex functional or 1PI action Γ[ζ]
as usual as the Legendre transform of the connected generating functional. The 1PI vertices
are then given by

δNΓ[ζ]

δζ~k1 · · · δζ~kN

∣∣∣
ζ=0
≡ (2π)3δ(3)(~k1 + · · ·+ ~kN )Γ(N)(~k1, · · · ,~kN ) . (4.1)

We have factored out the momentum-conserving delta function for convenience, hence the
Γ(N) are on-shell vertices. In particular, we will always express the last momentum ~kN in
terms of the other (N − 1) momenta.

There are two identities satisfied by the Γ(N). The first is a consequence of dilation
symmetry [22]6

lim
~q→0

Γ(N+1)(~q,~k1, · · · ,~kN ) = (3−DN ) Γ(N)(~k1, · · · ,~kN ) , (4.2)

where the differential operator DN is defined as

DN =
N∑
a=1

~ka · ~∇ka , (4.3)

The second identity satisfied by Γ(N) is a consequence of SCT symmetry:

lim
~q→0
∇iqΓ(N+1)(~q,~k1, · · · ,~kN ) =

1

2
SiNΓ(N)(~k1, · · · ,~kN ) . (4.4)

where we have defined7

SiN =
N∑
a=1

Sia with Sia ≡ kia∇2
ka − 2~ka · ∇ka∇ika . (4.5)

5See [28] for subtleties regarding the initial state and identities it satisfies in this formalism.
6The factor of 3 in (4.2) comes from commuting the dilation operator past the delta function [2, 13, 22].
7Comparing with (3.6), we see that δKi =

∑N
a=1

(
−6∇i

ka
+ Si

a

)
.
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Since Γ(N) is an on-shell vertex, when acting on it the operators DN and DN−1 are equivalent;
similarly for SN and SN−1. We will use this fact often when checking the identities.

We now apply this machinery to derive both the 1PI Ward identities for multiple
soft lines, but also to re-derive the statements in terms of correlation functions obtained
in section 3. It will soon become clear that working in terms of vertices is technically much
easier than correlation functions. The two viewpoints are entirely equivalent, of course, and
we will show how to derive the correlation function identities (3.17), (3.26) and (3.40) starting
from the vertex identities.

4.1 A single soft leg

The identities (4.2) and (4.4) are statements about the effect of a single soft leg on the
remaining hard modes in the 1PI vertices. Although these identities are mathematically
true, their relation to observable quantities is somewhat obscure. Indeed, we would like to
translate these identities to statements about correlation functions of ζ. For a single soft leg,
this ‘resummation’ is straightforward [22]. Nevertheless, it is worth briefly reviewing this
procedure for the simplest case of the 3-point function since this will be important in the
multiple-soft generalization.

The relation between the 3-point function and vertex is

〈ζ~qζ~k1ζ~k2〉 = (2π)3δ(3)(~q + ~k1 + ~k2)P (q)P (k1)P (k2)Γ
(3)(~q,~k1,~k2) , (4.6)

where P (k) = 〈ζ~kζ−~k〉
′ is the power spectrum of the curvature perturbation. Using (4.2) and

the relations

Γ(2)(k) = − 1

P (k)
; D1Γ

(2)(k) = − 1

P 2(k)
(3 +D1)P (k) , (4.7)

we can easily deduce Maldacena’s consistency relation:

lim
q→0

〈ζ~qζ~k1ζ~k2〉
′

P (q)
= − (3 +D1)P (k) . (4.8)

Of course this identity relating the 3-point correlation function of ζ in a particular limit of
momentum space to the 2-point function is merely a special case of the more general identity

lim
~q→0

〈ζ~qζ~k1 · · · ζ~kN 〉
′

P (q)
= −

(
3(N − 1) +DN

)
〈ζ~k1 · · · ζ~kN 〉

′ , (4.9)

which relates (N + 1)-point functions to N -point ones.

The conformal vertex identity (4.4) can also be resummed in this way, with the result

lim
~q→0
∇qi

(
〈ζ~qζ~k1 . . . ζ~kN 〉

′

P (q)

)
=

1

2

N∑
a=1

(
−6∇kia + Sia

)
〈ζ~k1 . . . ζ~kN 〉

′ . (4.10)

This is the conformal consistency relation [13], now expressed in terms of the Sa operator.

The procedure of translating the vertex Ward identities into a relation involving correla-
tion functions will of great interest to us once we obtain the vertex Ward identities associated
to higher soft limits.
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4.2 Double dilation

Having briefly reviewed what happens when a single momentum is taken to vanish, we now
move on to the case of multiple soft external lines. At the level of Γ, things are relatively
straightforward: the multi-soft Ward identities simply follow from repeated application of the
identities (4.2) and (4.4). The simplest example arises from taking another soft leg in (4.2).
The starting point is the identity (4.2) with N → N + 1:

lim
~q1→0

Γ(N+2)(~q1, ~q2,~k1, · · · ,~kN ) = (3−DN ) Γ(N+1)(~q2,~k1, · · · ,~kN ) , (4.11)

where we have used the fact that DN+1 = DN when acting on Γ(N+1). Now we send q2 → 0
and apply the dilation vertex identity again to obtain the double dilation 1PI Ward identity

lim
~q1,~q2→0

Γ(N+2)(~q1, ~q2,~k1, · · · ,~kN ) = (3−DN )(3−DN )Γ(N)(~k1, · · · ,~kN ) . (4.12)

This represents a novel relation between the (N+2)-point 1PI vertex and the N -point vertex.

This statement can equivalently be expressed in terms of correlation functions. For
instance, consider the N = 2 identity, relating the 4-point function and the power spectrum.
The former can be written in terms of Γ as

〈ζ~q1ζ~q2ζ~k1ζ~k2〉
′ = P (q1)P (q2)P (k1)P (k2)

{
Γ(4)(~q1, ~q2,~k1,~k2) (4.13)

+ Γ(3)(~q1, ~q2,−~q)P (q)Γ(3)(~k1,~k2, ~q)

+ Γ(3)(~q1,~k1,−~q1 − ~k1)P (|~q1 + ~k1|)Γ(3)(~q2,~k2, ~q1 + ~k1)

+ Γ(3)(~q1,~k2,−~q1 − ~k2)P (|~q1 + ~k2|)Γ(3)(~k1, ~q2, ~q1 + ~k2)
}
,

where ~q ≡ ~q1 + ~q2. We wish to send both ~q1, ~q2 → 0. Although all three momenta in the
vertex Γ(3)(~q1, ~q2,−~q) go to zero in this limit, no hierarchy is assumed among the different
modes, hence this is not a squeezed limit. For the vertex Γ(3)(~k1,~k2, ~q), on the other hand,
the limit does correspond to a squeezed configuration ~q � ~k1,~k2. Using (4.11) and (4.12),
we obtain

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1ζ~k2〉
′

P (q1)P (q2)
= −
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
(3 +D1)P (k) +

(
9 + 6D1 +D2

1

)
P (k) . (4.14)

In terms of the dilation operator δD ≡ −3−D1, this becomes

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1ζ~k2〉
′

P (q1)P (q2)
=
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
δDP (k) + δ2DP (k) . (4.15)

This result generalizes to arbitrary N in an obvious way:

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′

P (q1)P (q2)
=
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
δD〈ζ~k1 · · · ζ~kN 〉

′ + δ2D〈ζ~k1 · · · ζ~kN 〉
′ , (4.16)

with δD ≡ −3(N − 1) − DN . This precisely matches (3.17), which was derived from
background-wave arguments, thus confirming the equivalence between the two approaches.

– 17 –



J
C
A
P
0
1
(
2
0
1
5
)
0
1
2

4.3 Dilation & SCT

Next we consider the O(q) contribution to the double-squeezed limit, which is related to
performing a dilation and a SCT on the remaining hard legs. Näıvely, there are two possible
way to do this: we can either perform the dilation or the SCT first. However, as we will
see these two choices lead to equivalent consistency relations, differing only by a commu-
tator of the transformations. Additionally, they lead to the same result as the background
wave approach.

To see this explicitly, we focus without loss of generality on the identity at O(q1) and
zeroth-order in q2. The ambiguity in taking the double-soft limit now corresponds to whether
q1 or q2 is taken to zero first.

• Send ~q1 → 0, then ~q2 → 0.
With this ordering, the relation is

lim
~q1,~q2→0

∇iq1Γ(N+2)
(
~q1, ~q2,~k1, · · · ,~kN−1,−~q− ~K

)
=

1

2
SiN (3−DN )Γ(N)

(
~k1, · · · ,~kN−1,− ~K

)
,

(4.17)
where ~q ≡ ~q1 + ~q2. Note that we have used the on-shell condition to express ~kN in terms
of the other N − 1 momenta through ~K =

∑N−1
a=1

~ka. Since the right-hand side is on-shell,
it only depends on N − 1 variables. We can use this fact to eliminate the last term in the
sum of DN and SN , with the result8

lim
~q1,~q2→0

∇iq1Γ(N+2) =
1

2

(
3SiN−1 − SiN−1DN−1

)
Γ(N) , (4.18)

• Send ~q2 → 0, then ~q1 → 0.
The identity in this case is

lim
~q1,~q2→0

∇iq1Γ(N+2) = ∇iq1(3−DN )Γ(N+1) = (2−DN )∇iq1Γ(N+1), (4.19)

where the last step follows from the q1-derivative hitting ~q1 · ~∇q1 part of D. Using the
Ward identity (4.4), we obtain

lim
~q1,~q2→0

∇iq1Γ(N+2) =
1

2

(
2SiN−1 −DN−1SiN−1

)
Γ(N) . (4.20)

Using the commutation relation
[
SiN ,DN

]
= SiN from the conformal algebra, we see that

this agrees with (4.18). Therefore, we see that in this formalism there is no preferred
ordering, and we can use the identity in either form.

The vertex identity can be expressed in terms of correlation functions. Focusing once
again on the N = 2 identity relating the 4-point function to the power spectrum. The starting
point is (4.13) relating 4-point correlation function and vertex. Differentiating with respect
to q1, and using the identities (4.2), (4.4), (4.12) and (4.17), we obtain the expression

lim
~q1,~q2→0

∇iq1

(
〈ζ~q1ζ~q2ζ~k1ζ~k2〉

′

P (q1)P (q2)

)
=

1

2
δKiδDP (k) +

1

2

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δKiP (k)

+ ∇iq1

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δDP (k) , (4.21)

8We henceforth suppress the arguments of Γ for clarity, unless necessary.
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where δKi = −6∇ik+Si1, which is just the normal SCT operator acting on the 2-point function.
As before, this identity has an obvious generalization to N -point functions:

lim
~q1,~q2→0

∇iq1

(
〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉

′

P (q1)P (q2)

)
=

1

2
δKiδD〈ζ~k1 · · · ζ~kN 〉

′ +
1

2

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δKi〈ζ~k1 · · · ζ~kN 〉

′

+ ∇iq1

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δD〈ζ~k1 · · · ζ~kN 〉

′ , (4.22)

which precisely matches the q1-derivative of the identity (3.26). The equivalence of the
differential form of identities of this type and the “re-summed” form was shown in [22, 66],
and those arguments can be adapted straightforwardly to the present case.

4.4 Double SCT

Finally we consider the O(q2) contribution to the double-squeezed limit, corresponding to two
SCTs. Since two SCTS commute, we choose to send ~q2 → 0 first without loss of generality.
Applying (4.4), we obtain

lim
~q1,~q2→0

∇iq1∇
j
q2Γ(N+2)

(
~q1, ~q2,~k1, · · · ,~kN−1,−~q1 − ~q2 − ~K

)
= lim

~q1→0

1

2
∇iq1S

j
NΓ(N+1)

(
~q1,~k1, · · · ,~kN−1,−~q1 − ~K

)
. (4.23)

The right-hand side generates two terms: one where ∇iq hits the SCT generator, and one

where it hits Γ(N+1). Explicitly, the result is

lim
~q1,~q2→0

∇iq1∇
j
q2Γ(N+2) = lim

q1→0

1

2

(
δij∇2

q1 − 2∇iq1∇
j
q1

)
Γ(N+1)

(
~q1,~k1, · · · ,−~q1 − ~K

)
+ lim
~q1→0

1

2
SjN∇

i
q1Γ(N+1)

(
~q1,~k1, · · · ,−~q1 − ~K

)
= lim

~q1→0

1

2

(
δij∇2

q1 − 2∇iq1∇
j
q1

)
Γ(N+1)

(
~q1,~k1, · · · ,−~q1 − ~K

)
+

1

4
SjN−1S

i
N−1Γ

(N)
(
~k1, · · · ,~kN

)
, (4.24)

where in the last step we have again used the single-soft SCT identity (4.4).9

This identity contains two terms: the SjN−1SiN−1Γ(N) term represents two SCTs acting

on the N -point vertex, which was expected; the other term, involving ∂2q1Γ(N+1), cannot be
further reduced to an N -point vertex. This is not surprising, as mentioned earlier, because
O(q2) terms are of the same order as the curvature of spatial slices, which is a physical effect
and cannot be removed by a diffeomorphism. This curvature contribution cannot be fixed
in terms of a symmetry transformation on the lower-point vertex. What (4.24) provides is
a highly non-trivial relation between the O(q2) part of the (N + 2)-point function in the
double-soft limit, the O(q2) part of the soft limit of the (N + 1)-point and a symmetry
transformation of the N -point function with all hard momenta.

9The use the SCT Ward identity is clearly justified for terms in S involving derivatives with respect to
ka 6= q. Less obvious is the term in S involving derivatives with respect to q1. However, this term is multiplied
by q1 and hence gives a vanishing contribution in the soft limit.
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Again, we want to translate this 1PI identity into a statement about more familiar
correlation functions of ζ. This is a rather intricate task, but by taking derivatives of (4.13)
with respect to ~q1 and ~q2, employing the identities (4.2), (4.4), (4.12), (4.17) and (4.24), and
doing a sizable amount of algebra, one can obtain the relation

lim
~q1,~q2→0

∇jq1∇
i
q2

(
〈ζ~q1ζ~q2ζ~k1ζ~k2〉

′

P (q1)P (q2)

)
= ∇jq1∇

i
q2

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δDP (k)

+
1

2
∇jq1

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δKiP (k)

+
1

2
∇iq2

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δKjP (k)

+
1

4
δKiδKjP (k)

+ lim
~p→0

1

2
(δij∇2

p − 2∇ip∇jp)
〈ζ~pζ~k1ζ~k2〉

′

P (p)

+

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
lim
~p→0
∇ip∇jp

〈ζ~pζ~k1ζ~k2〉
′

P (p)
. (4.25)

Which relates the ~q1 ·~q2 part of the squeezed limit of the 4-point function to a squeezed limit
of the 3-point function and the power spectrum. This identity generalizes in a straightforward
way to (N + 2)-point functions:

lim
~q1,~q2→0

∇jq1∇
i
q2

(
〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉

′

P (q1)P (q2)

)
= ∇jq1∇

i
q2

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δD〈ζ~k1 · · · ζ~kN 〉

′

+
1

2
∇jq1

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δKi〈ζ~k1 · · · ζ~kN 〉

′

+
1

2
∇iq2

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
δKj 〈ζ~k1 · · · ζ~kN 〉

′

+
1

4
δKiδKj 〈ζ~k1 · · · ζ~kN 〉

′

+ lim
~p→0

1

2
(δij∇2

p − 2∇ip∇jp)
〈ζ~pζ~k1 · · · ζ~kN 〉

′

P (p)

+

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

)
lim
p→0
∇ip∇jp

〈ζ~pζ~k1 · · · ζ~kN 〉
′

P (p)
. (4.26)

Notice that — as was the case for the O(q) identity — the expression is the derivative with
respect to ~q1 and ~q2 of the expression (3.40), confirming the equivalence between the methods
of deriving these identities.

5 Checks of double-soft identities

In this section we perform some checks of our consistency relations using explicit inflationary
correlation functions. Since our identities constrain correlation functions in the double-soft
limit, we must consider at least a 4-point function on the left-hand side. Unfortunately, there
are few 4-point computations in the literature. Our checks are therefore limited to two cases
where such computations are tractable: models with resonant non-Gaussianities and models
with small speed of sound.

– 20 –



J
C
A
P
0
1
(
2
0
1
5
)
0
1
2

5.1 Resonant non-Gaussianity

Resonant non-Gaussianity [67, 68] arises in models with a periodic modulation of the infla-
tionary potential [69–71]. They offer a nice arena to check our consistency relations because
it is possible to compute N -point functions, in principle for arbitrary N [72, 73]. In this case,
it is simplest to check the Ward identities at the level of the 1PI action. Considering only
contact contributions,10 the N -point correlation function is given by [13, 72, 73]

〈ζ~k1ζ~k2 · · · ζ~kN 〉
′
rnG = −2

(
1

2ε

)N/2 H2N−4∏N
i=1 2k3i

Im

∫ 0

−∞

dη

η4
V (N)(φ)

N∏
a=1

(1− ikaη)eikaη , (5.1)

where V (N)(φ) ≡ dNV
dφN

. The power spectrum is given by

P (k) =
H2

4εk3
. (5.2)

Since this N -point function only contains contact interactions, we have the relation

Γ
(N)
rnG(~k1,~k2, . . . ,~kN ) =

〈ζk1ζk2 · · · ζkN 〉′rnG
P (k1) · · ·P (kN )

= − 2

H4
(2ε)N/2 Im

∫ 0

−∞

dη

η4
V (N)(φ)

N∏
a=1

(1− ikaη)eikaη . (5.3)

• Dilation. Using the identity

V (N)(φ) =
d

dφ
V (N−1)(φ) =

(
1

2ε

)
η

d

dη
V (N−1)(φ) , (5.4)

we can integrate by parts to obtain11

lim
~k1→0

Γ
(N)
rnG =

2

H4
(2ε)(N−1)/2 Im

∫ 0

−∞
dηV (N−1)(φ)

d

dη

(
1

η3

N∏
a=2

(1− ikaη)eikaη

)
. (5.5)

The time derivative gives

d

dη

(
1

η3

N∏
a=2

(1− ikaη)eikaη

)
=

1

η4

(
−3 +

N∑
i=2

~ka · ~∇ka

)
N∏
i=2

(1− ikiη)eikiη

= − 1

η4
(3−DN−1)

N∏
i=2

(1− ikiη)eikiη . (5.6)

The terms inside the integral combine to give Γ(N−1), and it immediately follows that

lim
~k1→0

Γ
(N)
rnG(~k1,~k2, · · · ,~kN ) = (3−DN−1)Γ(N−1)

rnG (~k2, · · · ,~kN ) . (5.7)

This establishes the 1PI dilation identity (4.2) in theories with resonant non-Gaussianities.

10It is consistent to consider contact diagrams only, since these give the only contributions proportional to
the first power of the frequency of modulation of the potential. Therefore, they must satisfy the consistency
relations by themselves [13, 72].

11The integration by parts also generates a boundary term. However, once we regulate the integral, we see
that the boundary term is real and therefore can be discarded.
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• SCT. Next we check the single-soft SCT relation (4.4). Taking the derivative of (5.3),
we obtain

lim
~k1→0

∇ik1Γ
(N)
rnG =

2

H4
k̂iN (2ε)N/2 Im

∫
dη

η2
V (N)(φ)eik̂Nη

N−1∏
a=2

(1− ikaη)eikaη , (5.8)

where we have defined k̂iN = −ki2 − . . . − kiN−1. (This is just the on-shell condition with
~k1 → 0.) Once again we use (5.4) and integrate by parts to rewrite this expression as

lim
~k1→0

∇ik1Γ
(N)
rnG = − 2

H4
k̂iN (2ε)(N−1)/2 Im

∫
dηV (N−1)(φ)

d

dη

(
eik̂Nη

η

N−1∏
a=2

(1− ikaη)eikaη

)
,

(5.9)
After a considerable amount of algebra, similar to (5.6), the time-derivative inside the
integral can be repackaged as

k̂iN
d

dη

(
eik̂Nη

η

N−1∏
i=2

(1− ikiη)eikiη

)
=

1

2η4
SiN−2

N∏
a=2

(1− ik̂aη)ikaη , (5.10)

where SN−2 =
∑N−1

a=2 Sia. As before, the integral becomes Γ(N−1), with the result

lim
~k1→0

∇ik1Γ
(N)
rnG(~k1,~k2, · · · ,~kN ) =

1

2
SiN−1Γ

(N−1)
rnG (~k2, · · · ,~kN ) . (5.11)

This establishes the 1PI SCT identity (4.2) in theories with resonant non-Gaussianities.

Since the 1PI identities (5.7) and (5.11) have been verified for arbitrary N , by iteration the
multi-soft relations (4.12), (4.18) and (4.24) hold as well. Additionally, this means that the
identities in terms of correlation functions hold. For example, using the first line of (5.3), it
is straightforward to show that

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1 · · · ζ~kN 〉
′
rnG

P (q1)P (q2)
= δ2D〈ζ~k1 · · · ζ~kN 〉

′
rnG . (5.12)

Notice that in this case, only the term with two dilations contributes at leading order, this
is because in these models, all exchange contributions are sub-leading in powers of the mod-
ulation of the potential.

5.2 Small speed of sound

Another arena where we can check our double-soft identities is in models with cs � 1. To
do this, we use the full 4-point correlation function, calculated in [74, 75] and summarized
in the appendix. Since the result is rather complicated, below we will just quote the double-
squeezed results.

Note that such a check is rather non-trivial, and crucially involves the presence of the
terms involving gradients of the (N + 1)-point function in (4.26). This can be seen from the
scaling of the various correlation functions with respect to cs: the 4-point function scales like
c−7s as cs → 0, while the 3pt. function scales as c−4s and the power spectrum scales as c−1s . The
näıve double-soft limit would relate the 4pt. function to two terms: one involving 3 powers of
the power spectrum, and one involving the 3pt. function times one power spectrum. In both
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cases, it is clear that the powers of cs cannot match. The resolution is of course the presence
of the additional terms proportional to squeezed 3pt. functions, for which the powers of cs
do match the 4pt. function.

In these models, the power spectrum is exactly scale-invariant,

P (k) =

(
H2

4M2
Plcsε

)
1

k3
, (5.13)

and hence is annihilated by both δD and δKi . It follows that the right-hand side of the double
dilation (4.15) and dilation-SCT (4.21) identities vanish identically. The left-hand sides of
these relations also vanish, since as we will see the 4-point function starts at O(q2). The only
non-trivial check is the double-SCT relation (4.26), which for scale-invariant power spectrum
reduces to

lim
~q1,~q2→0

∇jq1∇
i
q2

(
〈ζ~q1ζ~q2ζ~k1ζ~k2〉

′

P (q1)P (q2)

)
= lim

~q→0

{
1

2
δij∇2

q +

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
− 1

)
∇iq∇jq

}
〈ζ~qζ~kζ−~k〉

′

P (q)
.

(5.14)
There are two types of contributions to the 4-point function, those coming from contact

interactions and those coming from scalar exchange:

〈ζ~q1ζ~q2ζ~k1ζ~k2〉
′ = 〈ζ~q1ζ~q2ζ~k1ζ~k2〉

′
cont. + 〈ζ~q1ζ~q2ζ~k1ζ~k2〉

′
exc. (5.15)

In the double-squeezed limit, the contact contribution gives

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1ζ~k2〉
′
cont.=P (q1)P (q2)P (k)

(
1− 1

c2s

)(
3

4

~q1 · ~q2
k2

+
5

2

(~k · ~q1)(~k · ~q2)
k4

)
. (5.16)

The exchange diagram, meanwhile, is expected to factorize:

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1ζ~k2〉
′
exc. = lim

~q→0
〈ζ~q1ζ~q2ζ−~q〉

′ 〈ζ~qζ~k1ζ~k2〉
′

P (q)
(5.17)

Assuming scale invariance, the last factor vanishes up to O(q2) by the usual consistency
relations. At order q2, however, we have the “curvature” consistency relation [29]

lim
~q→0

〈ζ~qζ~k1ζ~k2〉
′ = P (q)P (k)

(
1− 1

c2s

)(
2
q2

k2
− 5

4

(~k · ~q)2

k4

)
. (5.18)

Substituting into (5.17), the exchange contribution becomes

lim
~q1,~q2→0

〈ζ~q1ζ~q2ζ~k1ζ~k2〉
′
exc. = P (k)

(
1− 1

c2s

)(
2
q2

k2
− 5

4

(~k · ~q)2

k4

)
〈ζ~q1ζ~q2ζ−~q〉

′ . (5.19)

This expectation is borne out by explicitly calculating the double-squeezed limit of the 4-
point function. Both contact (5.16) and exchange (5.19) contributions start at order q2, as
claimed. Taking derivatives with respect to q1 and q2, we obtain12

lim
~q1,~q2→0

∇jq1∇
i
q2

(
〈ζ~q1ζ~q2ζ~k1ζ~k2〉

′

P (q1)P (q2)

)
= P (k)

(
1− 1

c2s

){(
3

4

δij

k2
+

5

2

kikj

k4

)
(5.20)

+

(
4
δij

k2
− 5

2

kikj

k4

)
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

}
.

12The second term gets a factor of 2 from the fact that q2 ⊃ 2q1 · q2.
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Meanwhile, for the right-hand side of (5.14), the 3-point function is written explicitly
in the appendix (A.11), its squeezed limit is (5.18). Using this, we obtain

lim
~q→0
∇iq∇jq

〈ζ~qζ~kζ−~k〉
′

P (q)
= P (k)

(
1− 1

c2s

)(
4
δij

k2
− 5

2

kikj

k4

)
. (5.21)

This leads to the following expression for the right-hand side of (5.14):

lim
~q→0

{
1

2
δij∇2

q+

(
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)
−1

)
∇iq∇jq

}
〈ζ~qζ~kζ−~k〉

′

P (q)
= P (k)

(
1− 1

c2s

){(
3

4

δij

k2
+

5

2

kikj

k4

)

+

(
4
δij

k2
− 5

2

kikj

k4

)
〈ζ~q1ζ~q2ζ−~q〉′

P (q1)P (q2)

}
,

(5.22)

which precisely agrees with (5.20).

6 N > 2 soft external legs

In this section, we generalize the derivation to multiple external soft legs. This is completely
straightforward at the level of the 1PI action — all we need to do is apply the dilation (4.2)
and SCT (4.4) identities repeatedly. For instance, the multi-dilation identity is

lim
~q1,··· ,~qN→0

Γ(M+N)(~q1, · · · , ~qN ,~k1, · · · ,~kM ) = (3−DM )NΓ(M)(~k1, · · · ,~kM ) , (6.1)

which just tells us that the dilation operator (3−DM ) acts N times on the remaining hard
modes in the vertex. Note that for scale-invariant theories, there is an analogue of Adler’s
zero [76]: by taking any number of soft legs, the right hand side will vanish, being proportional
to a scale variation of some lower order correlation function.

Rephrasing such identities in terms of correlation functions is a slightly tricky task,
hence we will only discuss the above multi-dilation identity. We can gain some insight into
the problem by thinking diagrammatically, in the same was as we did in section 4.2. Various
diagrams contribute to the N -soft limit — see figure 2. The simplest diagram (left panel) is
where all soft modes add up to a small momentum, thereby causing the diagram to factorize.
This leads to a contribution to the soft limit of the form (in the following expressions, ~qa � ~ka,
but all the ~qa are of the same order):

〈ζ~q1 · · · ζ~qN ζ−~q〉
′ 〈ζ~qζ~k1 · · · ζ~kM 〉

′

P (q)
= 〈ζ~q1 · · · ζ~qN ζ−~q〉

′δD〈ζ~k1 · · · ζ~kM 〉
′ . (6.2)

The next simplest situation, shown on the middle panel, is where (N−1) of the soft momenta
add up to a small momentum and factorize the diagram, while the remaining soft leg emerges
from the same vertex as the hard modes. This leads to a contribution of the form:

〈ζ~q1 · · · ζ~qN−1
ζ−~q〉′

〈ζ~qζ~qN ζ~k1 · · · ζ~kM 〉
′

P (q)
= P (qN )〈ζ~q1 · · · ζ~qN−1

ζ−~q〉′δ2D〈ζ~k1 · · · ζ~kM 〉
′ . (6.3)

Similarly, we can have L < N of the modes all adding up to a small momentum while the
remaining modes come from the same vertex as the hard legs, leading to a contribution of
the form (

N∏
i=N−L

P (qi)

)
〈ζ~kN−L

· · · ζ~kLζ−~q〉
′δ

(N−L+1)
D 〈ζ~k1 · · · ζ~kM 〉

′ (6.4)
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Figure 2. Contributions to the N -squeezed limit (6.5). Left : contribution where the all soft modes to
combine to factorize the diagram via a soft internal line. Middle: contribution all but one of the soft
modes combine to factorize the diagram, while the last mode comes from the same vertex as the hard
mode, causing the remaining hard modes to feel two dilations. Right : diagram where all soft modes
come from the same vertex as the hard lines, causing the correlation function to feel N dilations.

Finally, all N soft legs can emerge from the same vertex as the hard modes, as shown on the
right panel. This amounts to N dilations of the hard modes. Putting everything together,
we expect the N -dilation Ward identity to take the form

lim
~q1,···~qN→0

〈ζ~q1 · · · ζ~qN ζ~k1 · · · ζ~kM 〉
′

P (q1) · · ·P (qN )
=
〈ζ~q1 · · · ζ~qN ζ−~q〉′

P (q1) · · ·P (qN )
δD〈ζ~k1 · · · ζ~kM 〉

′

+
〈ζ~q1 · · · ζ~qN−1

ζ−~q〉′

P (q1) · · ·P (qN−1)
δ2D〈ζ~k1 · · · ζ~kM 〉

′ + · · ·

+
〈ζ~q1 · · · ζ~qLζ−~q〉′

P (q1) · · ·P (qL)
δ
(N−L+1)
D 〈ζ~k1 · · · ζ~kM 〉

′ + · · ·

+ δND 〈ζ~k1 · · · ζ~kM 〉
′ , (6.5)

which can be succinctly expressed as

lim
~q1,···~qN→0

〈ζ~q1 · · · ζ~qN ζ~k1 · · · ζ~kM 〉
′

P (q1) · · ·P (qN )
=

N∑
L=1

〈ζ~q1 · · · ζ~qLζ−~q〉′

P (q1) · · ·P (qL)
δ
(N−L+1)
D 〈ζ~k1 · · · ζ~kM 〉

′ . (6.6)

The generalization at higher powers in the soft momenta, corresponding to mixed dila-
tion/SCT identities, is tedious but straightforward.

7 Large scale structure consistency relations

So far we have considered the case of single-field inflation and showed how the standard con-
sistency relations for a single soft momentum generalize to the case of multiple soft momenta.
In this section we want to focus on the recently derived consistency relations for Large Scale
Structure [54–62] and show how our results from previous sections apply in this case.

Just like their inflationary counterpart, the consistency relations for Large Scale Struc-
ture can be seen as a consequence of symmetry — the ability to remove a long mode of the
gravitational potential through a change of coordinates. The physical interpretation is par-
ticularly clear in the regime when all modes are deep inside the Hubble scale (the long modes
only have to be outside the sound horizon, which is practically zero in the late Universe). In
this case the homogeneous gradient of the long mode of the gravitational potential is locally
equivalent to a homogeneous gravitational field. By the Equivalence Principle we can always
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choose a free falling reference frame where the effects of such a homogeneous gravitational
field are removed. As a consequence, two different solutions — with and without the long
mode — can be related to each other. This leads to the consistency relations for Large Scale
Structure.

As explained in [54], the coordinate transformation that in the non-relativistic limit
induces a long wavelength gravitational potential is given by

η → η , xi → xi +D(η)∂iΦL , (7.1)

where D(η) is the growth factor of density fluctuations of the long mode. The consistency
relation in the non-relativistic limit which follows from this symmetry is

〈δ~q(η) δ~k1(η1) · · · δ~kn(ηn)〉′q→0 = −Pδ(q, η)
∑
a

Dδ(ηa)

Dδ(η)

~q · ~ka
q2
〈δ~k1(η1) · · · δ~kn(ηn)〉′ . (7.2)

This result is obtained assuming that the amplitude of the gravitational field ∂iΦL is small.
However, in the absence of primordial non-Gaussianities, it remains valid even for large
gradients as discussed in [54].

We are interested in the case of multiple soft limits. The consistency relation with many
soft momenta can be derived straightforwardly. For example, the result for the double-soft
limit, using the machinery we have developed, has the following form

〈δ~q1(η)δ~q2(η) δ~k1(η1) · · · δ~kn(ηn)〉′q1,2→0 =

〈δ~q1(η)δ~q2(η)δ~q(η)〉′
(
−
∑
a

Dδ(ηa)

Dδ(η)

~q · ~ka
q2

)
〈δ~k1(η1) · · · δ~kn(ηn)〉′

+ Pδ(q1, η)Pδ(q2, η)

(∑
a

Dδ(ηa)

Dδ(η)

~q · ~ka
q2

∑
b

Dδ(ηb)

Dδ(η)

~q · ~kb
q2

)
〈δ~k1(η1) · · · δ~kn(ηn)〉′ . (7.3)

This expression is analogous to the consistency relation for dilations (4.16). Notice that
in this expression we have an additional term compared to [55]. This is because we didn’t
assume Gaussian initial conditions. Unfortunately, the contribution of the first term in the
expression above seems to be always small. For example, even if we have large equilateral
non-Gaussianities (which can be the case in single-field models of inflation with reduced cs),
then the relative size of the two terms is proportional to

term 1

term 2
∼

f eq.NL

D(η)

q

k
, (7.4)

and therefore always parametrically suppressed by q/k. Even with optimistic numbers
f eq.NL ∼ 100 and the squeezing q/k ∼ 0.1, this ratio is at best at the percent level. It is
also important to stress that the both terms on the left hand side always vanishes for the
equal-time correlation functions.

One last thing worth stressing is that in the relativistic consistency relation for LSS
similar issues discussed in this paper could appear. With one soft external leg this relation
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reads

〈ζ~q δ~k1(η1) · · · δ~kn(ηn)〉′q→0 = −P (q)

[
3(n− 1) +

∑
a

~ka · ~∂ka +
∑
a

Dv(ηa)(∂ηa − 3H(ηa))

+
∑
a

(∫ ηa

Dv(η)dη

)
~q · ~ka +

1

2
qiDi +

∑
a

Dv(ηa)(∂ηa − 3H(ηa))~q · ~∂ka

+ 6
∑
a

Ωm(ηa)Dv(ηa)H(ηa)
~q · ~ka
k2a

(
fg(ηa) +

k2a
3H2(ηa)

)−1]
〈δ~k1(η1) · · · δ~kn(ηn)〉′ , (7.5)

where Dv(η) and fg(η) are the velocity growth rate and growth function. Apart form many
terms related to the time evolution, we also have dilation and SCT operators which are
identical to those in inflation. Therefore, many of the conclusion from all previous sections
about multiple soft limits also apply in this case. For example, presumably the construction
of adiabatic modes at higher order in q will again depend on the ordering of coordinate
transformations. These questions require further investigation.

8 Conclusions

In this paper, we have derived novel consistency relations which constrain the form of cosmo-
logical correlation functions in the limit where more than one external momentum is taken
soft. Like their single-soft cousins, these identities provide model-independent constraints
which must be satisfied by any single-field model of inflation (with the same assumptions
as in the single soft case). In this way, they provide robust null tests of the inflationary
paradigm, and any violation of them would be extremely interesting. Additionally, we have
commented on the application of the same ideas to models of large scale structure and con-
sidered consistency relations in this case. Looking forward, there are various further avenues
to explore:

• Here we have worked to lowest order in tensor perturbations. In this sense, our re-
sults only hold in models where tensors are negligible (for example in the decoupling
limit of small cs models). However, it is straightforward to generalize our formulae to
include tensor perturbations. In particular it would be interesting to work out the con-
sequences of having two soft gravitons in an inflationary correlation function. These
questions are most easily approached in the 1PI vertex identity language (though it
would also be instructive to understand things from the background wave perspective);
it is straightforward to incorporate tensor transformations into the formalism of [22]
and derive the 1PI Ward identities involving tensors. It should then be possible to
derive the higher-soft analogue of the consistency relations of [21, 23] order-by-order in
q. This would be the logical marriage of [21] and the present work.

• We presented explicitly the generalization to N soft legs at lowest order in the soft
momentum (corresponding to N dilations). It would be interesting to work out sys-
tematically the higher-order in q corrections to this identity. At O(q), we do not
anticipate any difficultly, aside from things being technically complicated. However at
O(q2), there should again be subtleties associated to curvature effects, which may be
quite interesting.
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• We have focused on multiple-soft limits in inflation, but it would be interesting to derive
the consequences of higher soft limits in alternative theories as well. In particular the
conformal mechanism for generating inflationary perturbations [77–84], for which the
single-soft consistency relations have recently been derived [66].

• In our discussion of multiple soft limits in large scale structure, we have worked in the
Newtonian approximation. It would be interesting to go beyond this approximation
and investigate the double-soft relations in the fully relativistic regime. Similar to the
primordial case, these relations involve the action of dilation and conformal symmetries,
with nontrivial commutators [54]. We therefore expect that many of the same subtleties
should arise.

Note added. While finishing this paper, we became aware of [85], which also considers
double soft relations in inflation. Where our results overlap, we agree. We thank the authors
for sharing an early draft with us.
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A 4-Point Function in models with small sound speed

Here we collect expressions from [19, 74] necessary to perform the check of the double-soft
Ward identity conducted in section 5. We are interested in models with small speed of sound,
these descend from an action of the form:

S =

∫
d4x
√
−g
(
M2

Pl

2
R+ P (X,φ)

)
, (A.1)

where X = −1
2(∂φ)2. Expanding about an arbitrary time-dependent background φ = φ̄(t)+ϕ

and an FLRW background we obtain [19, 86]

S=

∫
d4x a3

[
1

2

(
P,X−P,XX ˙̄φ2

)
ϕ̇2− 1

2a2
P,X(~ϕ)2

+

(
1

2
P,XX

˙̄φ+
1

6
P,XXX

˙̄φ3
)
ϕ̇3− 1

2a2
P,XX

˙̄φ ϕ̇(~∇ϕ)2 (A.2)

+
1

24
P,XXXX

˙̄φ4 ϕ̇4+
1

4
P,XXX

˙̄φ2 ϕ̇2

(
ϕ̇2− 1

a2
(~∇ϕ)2

)
+

1

8
P,XX

(
ϕ̇2− 1

a2
(~∇ϕ)2

)2 ]
.

If we make the following definitions

XP,X = εH2 , λ = X2P,XX +
2

3
X3P,XXX ,

Σ = XP,X + 2X2P,XX =
εH2

c2s
, µ =

1

2
X2P,XX + 2X3P,XXX +

2

3
X4P,XXXX , (A.3)
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and identify

ζ =
H
˙̄φ
ϕ , (A.4)

the action takes the form [74]

S =

∫
d4x a3

[
ε

c2s

(
ζ̇2 − 1

a2
(~∇ζ)2

)
− 2

λ

H3
ζ̇3 +

1

a2
Σ

H3
(1− c2s)ζ̇(~∇ζ)2

+
µ

H4
ζ̇4 − 1

a2H4
(3λ− Σ(1− c2s))ζ̇2(~∇ζ)2 +

1

4a4H4
Σ(1− c2s)(~∇ζ)4

]
. (A.5)

The two-point function is given by

〈ζ~kζ~k′〉 = (2π)3δ(3)(~k + ~k′)
H2

4M2
Plcsε

1

k3
≡ (2π)3δ(3)(~k + ~k′)P (k) . (A.6)

Now, we specialize to the case where λ = µ = 0. This is a consistent choice — from the
viewpoint of checking the consistency relations, we need not be fully general. The interaction
Hamitonian is given by (we now work in conformal time adη = dt)13

H(3)
int. = d3xdη

(
− a

H3
Σ(1− c2s)ζ ′(~∇ζ)2

)
(A.7)

H(4)
int. = d3xdη

Σ(1− c2s)
H4

(
−ζ ′2(~∇ζ)2 − 1

2
c2s(~∇)4

)
. (A.8)

The three point function is given by

〈ζ~k1ζ~k2ζ~k3〉 = −i
∫ t

−∞
dt′〈[ζ~k1ζ~k2ζ~k3(t),H(3)

int.(t
′)]〉 . (A.9)

Evaluating the in-in integral, we obtain [74, 86]

〈ζ~k1ζ~k2ζ~k3〉
′ = P (k2)P (k3)

1

2k31

[(
1

c2s
− 1

)
12k21k

2
2k

2
3

k3t
(A.10)

+

(
1

c2s
− 1

)(
− 8

kt

∑
i>j

k2i k
2
j +

4

k2t

∑
i 6=j

k2i k
3
j +

∑
i

k3i

)]
.

Similarly, the equal-time 4-point function is given by in the in-in formalism

〈ζ~k1ζ~k2ζ~k3ζ~k4〉 = −i
∫ t

−∞
dt′〈[ζ~k1ζ~k2ζ~k3ζ~k4(t),H(4)

int.(t
′)]〉

+

∫ t

−∞
dt′
∫ t

−∞
dt′′〈H(3)

int.(t
′)ζ~k1ζ~k2ζ~k3ζ~k4(t)H(3)

int.(t
′′)〉 (A.11)

− 2Re

(∫ t

−∞
dt′
∫ t′

−∞
dt′′〈ζ~k1ζ~k2ζ~k3ζ~k4(t)H(3)

int.(t
′)H(3)

int.(t
′′)〉

)
.

13Note that transforming from the interaction Lagrangian to the interaction Hamiltonian is non-trivial at
this order.
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Computing this is an extremely intricate task, worked out carefully in [74], whose notation
we adopt for convenience. The final answer is:

〈ζ~k1ζ~k2ζ~k3ζ~k4〉
′ = P (k1)P (k2)P (k3)

23

k34
T (k1, k2, k3, k4) , (A.12)

where the shape function is given by [74]

T (k1, k2, k3, k4) =

(
1

c2s
− 1

)2

Ts3 −
(

1

c2s
− 1

)
Tc2 +

(
1

c2s
− 1

)
Tc3 . (A.13)

The two contributions from the contact interaction are given by [74]

Tc2 =
1

8

(
1

c2s
− 1

)
k21k

2
2(~k3 · ~k4)
K3

(
1 +

3(k3 + k4)

K
+

123k4
2

)
+ 23 perms. (A.14)

Tc3 =
1

32

(
1

c2s
− 1

)
(~k1 · ~k2)(~k3 · ~k4)

K

(
1 +

∑
i<j kikj

K2
+

3k1k2k3k4
K3

4∑
i=1

1

ki
+

12k1k2k3k4
K4

)
+ 23 perms. (A.15)

The contribution from the exchange diagram is more complicated, the final result is [74]14

Ts3 =

(
1

c2s
− 1

)2 [ 1

27
(~k1 · ~k2)(~k3 · ~k4)k12F (k1, k2, k1 + k2 + k12)F (k3, k4,M)

+
1

25
(~k1 · ~k2)(~k12 · ~k4)

k23
k12

F (k1, k2, k1 + k2 + k12)F (k12, k4,M)

− 1

25
(~k12 · ~k2)(~k12 · ~k4)

k21k
2
3

k312
F (k12, k2, k1 + k2 + k12)F (k12, k4,M)

+
1

26
(~k1 · ~k2)(~k3 · ~k4)k12Gbb(k1, k2, k3, k4)

+
1

25
(~k1 · ~k2)(~k12 · ~k4)

k23
k12

Gbb(k1, k2, k12, k4)

− 1

25
(~k12 · ~k2)(~k3 · ~k4)

k21
k12

Gbb(−k12, k2, k3, k4)

− 1

24
(~k12 · ~k2)(~k12 · ~k4)

k21k
2
3

k312
Gbb(−k12, k2, k12, k4)

]
+ 23 perms. , (A.16)

where ~k12 = ~k1 + ~k2; M = k3 + k4 + k12 and K = k1 + k2 + k3 + k4 and the functions are
given by [74]

F (α1, α2, ) =
1

m3

(
2α1α2 + (α1 + α2)m+m2

)
(A.17)

14When performing the sum over permutations of the external momenta, M is left invariant.
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Gbb(α1, α2, α3, α4) =
1

M3K

(
2α3α4 + (α3 + α4)M +M2

)
+

1

M3K2

(
2α3α4(α1+α2)+

(
2α3α4+(α1+α2)(α3+α4)

)
M+

4∑
i=1

αiM
2

)

+
2

M3K3

2

4∏
i=1

αi+
(

2α3α4(α1+α2)+α1α2(α3+α4)
)
M+

∑
i<j

αiαjM
2


+

6

M2K4

4∏
i=1

αi

(
2+M

4∑
i=1

1

αi

)
+
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MK5

4∏
i=1

αi . (A.18)

Putting all of this together, we can compute the double squeezed limit of (A.12):

lim
q1,q2→0

(〈ζ~q1ζ~q2ζ~k1ζ~k2〉′
P (q1)P (q2)

)
= P (k)

(
1− 1

c2s

)(
〈ζ~q1ζ~q2ζ−~q〉
P (q1)P (q2)

)(
2
q2

k2
− 5

4

(~k · ~q)2

k4

)

+ P (k)

(
1− 1

c2s

)(
3

4

(~q1 · ~q2)
k2

+
5

2

(~k · ~q1)(~k · ~q2)
k4

)
, (A.19)

where 〈ζ~q1ζ~q2ζ−q〉 is given by (A.11).
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[54] P. Creminelli, J. Noreña, M. Simonović and F. Vernizzi, Single-Field Consistency Relations of
Large Scale Structure, JCAP 12 (2013) 025 [arXiv:1309.3557] [INSPIRE].

– 33 –

http://arxiv.org/abs/1407.8204
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.8204
http://dx.doi.org/10.1088/1475-7516/2012/09/004
http://arxiv.org/abs/1206.7083
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.7083
http://dx.doi.org/10.1088/1475-7516/2008/05/001
http://dx.doi.org/10.1088/1475-7516/2008/05/001
http://arxiv.org/abs/0710.1302
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.1302
http://dx.doi.org/10.1088/1475-7516/2009/05/018
http://arxiv.org/abs/0901.4044
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4044
http://dx.doi.org/10.1103/PhysRevD.80.043524
http://arxiv.org/abs/0905.4925
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.4925
http://dx.doi.org/10.1103/PhysRevD.83.063526
http://arxiv.org/abs/1010.5766
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5766
http://dx.doi.org/10.1088/1475-7516/2011/03/025
http://arxiv.org/abs/1012.3392
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3392
http://dx.doi.org/10.1088/1475-7516/2012/04/039
http://arxiv.org/abs/1106.5840
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5840
http://dx.doi.org/10.1088/1475-7516/2012/10/037
http://arxiv.org/abs/1108.4203
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4203
http://dx.doi.org/10.1103/PhysRevD.84.063514
http://arxiv.org/abs/1104.0244
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0244
http://dx.doi.org/10.1088/1475-7516/2012/02/005
http://dx.doi.org/10.1088/1475-7516/2012/02/005
http://arxiv.org/abs/1110.4688
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4688
http://dx.doi.org/10.1088/1475-7516/2012/10/055
http://arxiv.org/abs/1205.2758
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2758
http://dx.doi.org/10.1007/JHEP05(2013)085
http://arxiv.org/abs/1212.1172
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1172
http://dx.doi.org/10.1088/1475-7516/2013/08/032/
http://dx.doi.org/10.1088/1475-7516/\endgroup \pdfendlink //\endgroup 
http://dx.doi.org/10.1088/1475-7516/2013/08/032/
http://dx.doi.org/10.1088/1475-7516/\endgroup \pdfendlink //\endgroup 
http://arxiv.org/abs/1303.1430
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1430
http://dx.doi.org/10.1007/JHEP07(2013)076
http://arxiv.org/abs/1303.1440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1440
http://dx.doi.org/10.1088/0264-9381/30/9/095005
http://dx.doi.org/10.1088/0264-9381/30/9/095005
http://arxiv.org/abs/1302.1271
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.1271
http://dx.doi.org/10.1088/1475-7516/2014/02/025
http://arxiv.org/abs/1306.4914
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4914
http://dx.doi.org/10.1103/PhysRevLett.17.616
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,17,616
http://dx.doi.org/10.1007/JHEP09(2010)016
http://arxiv.org/abs/0808.1446
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1446
http://dx.doi.org/10.1007/BF01028947
http://dx.doi.org/10.1088/1475-7516/2013/12/025
http://arxiv.org/abs/1309.3557
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3557


J
C
A
P
0
1
(
2
0
1
5
)
0
1
2
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