This is the final peer-reviewed accepted manuscript of:

G. Davoli, W. Cerroni, D. Borsatti, M. Valieri, D. Tarchi and C. Raffaelli, "A Fog
Computing Orchestrator Architecture With Service Model Awareness," in IEEE
Transactions on Network and Service Management, vol. 19, no. 3, pp. 2131-2147,
Sept. 2022

The final published version is available online at:
https://doi.org/10.1109/TNSM.2021.3133354

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

This item was downloaded from IRIS Universita di Bologna (https.//cris.unibo.it/)

When citing, please refer to the published version.

https://cris.unibo.it/

A Fog Computing Orchestrator Architecture
with Service Model Awareness

Gianluca Davoli, Member, IEEE, Walter Cerroni, Senior Member, IEEE, Davide Borsatti, Student Member, IEEE,
Mario Valieri, Daniele Tarchi, Senior Member, IEEE, and Carla Raffaelli, Senior Member, IEEE

Abstract—Fog Computing can facilitate the adoption of the
Everything-as-a-Service paradigm in infrastructure segments
that are located closer to the end user, or to the data source,
compared to typical Cloud solutions. This enables combining the
advantages of flexible service deployment models with the need to
cope with the strict requirements — especially in terms of latency
- of emerging applications in softwarized networks. Along comes
the need to consider aspects of service orchestration specific to
the Fog environment and its intrinsically dynamic nature. In this
paper we propose an architecture for flexible Fog Computing
service orchestration, with a particular focus on the awareness
of service deployment models. We discuss the design choices
and describe the components and operations of the proposed
orchestration system. We then present a complete working imple-
mentation of such architecture, including insights on its ability to
handle critical orchestration functions such as service discovery
and resource monitoring. We also report on the experimental
validation of the system and the performance evaluation on real-
world equipment, proving the feasibility and the effectiveness of
the approach on a dynamic Fog infrastructure. We complement
the work by presenting the results of a combinatorial analysis,
validated by simulation, of the service model-aware resource
selection process. As a result of our investigation, we show that
Fog services can be effectively deployed in a matter of a few
seconds, or even in less than one second when suitable Fog nodes
are available, taking advantage of the awareness of the available
service models.

Index Terms—Fog Computing, service orchestration, service
deployment, XaaS, experimental testbed

I. INTRODUCTION

HE new generation of communication infrastructures

brings about radical changes, with progressively increas-
ing network softwarization enabling unprecedented levels of
pervasiveness, flexibility, adaptability and automation. This
trend is characterized by increasingly critical needs in terms
of networking and computing performance, depending on
application context [1]. New generation network services must
in many cases ensure very tight latency values experienced by
end-user or machine-to-machine applications, thus making la-
tency one of the most important parameters in the performance
evaluation process of the service provider. Concurrently, the
pervasiveness of Internet of Things (IoT) devices requires
highly scalable approaches to massive data processing and
storage [2].

G. Davoli, W. Cerroni, D. Borsatti, D. Tarchi and C. Raffaelli are with
the Department of Electrical, Electronic and Information Engineering “G.
Marconi”, University of Bologna, Viale del Risorgimento, 2, 40136, Bologna,
Italy. E-mail: {first_name}.{last_name}@unibo.it

M. Valieri contributed to this work as a graduate student in Telecommuni-
cations Engineering at the University of Bologna, Italy. Currently, he is with
Eggtronic, Italy. E-mail: mario.valieri@studio.unibo.it

In the last decade, the features offered by the Cloud
Computing paradigm obtained great popularity among telco
operators, and the Cloud approach has been delegated the ma-
jority of networking and computing functionalities, including
how end-user applications and vertical services are deployed.
However, some of those cloud-based applications and services
may not need to perform burdensome calculations, but are
rather interested in achieving the lowest possible latency, even
at the expense of computing power. This is especially true
for Cloud applications based on microservice design, that
are widespread in softwarized networks due to their highly
scalable nature and very efficient lifecycle manageability [3].
This kind of applications could benefit from the presence of
suitable devices located closer to the end user or to the source
of IoT data with respect to centralized Cloud infrastructures,
or even located at the edge of the network. Such devices can be
used for remote processing, computation offloading operations,
resource relocation, and service deployment, with significantly
reduced latency and improved scalability.

In this scenario, Fog Computing proposes an intermediate
layer between end users and Cloud infrastructures [4], where
clusters of Fog nodes provide services that are similar to
those offered by its larger counterpart (i.e., Cloud Computing)
but focusing on the needs of microservice-based and modular
applications [5], [6]. In addition to tackling latency, the Fog
Computing paradigm operates on ecosystems that are inher-
ently dynamic, as nodes offering computation power may join
or remove themselves from a Fog cluster, making the overall
amount of available resources in the cluster varying over time
[7]-[9]. Moreover, the capabilities and the amount of resources
offered by a single Fog node may not be known a priori, i.e.,
before the node itself joins the Fog cluster.

Although such distributed and dynamic characteristics make
Fog infrastructures different from traditional Cloud Computing
ones, the services offered can still be considered similar
[4]. Hence, it is quite natural to borrow the Everything-
as-a-Service (XaaS) Cloud service model classification [10]
and apply it to Fog Computing infrastructures as well, thus
extending it towards a more flexible and dynamic scenario.
While the reuse of XaaS models from the Cloud Computing
scenario allows to profit from their specific characteristics,
an additional effort is required to redefine the usage of
those models in a dynamic environment where resource-
constrained nodes are employed to provide one out of a set
of supported services, based on their availability at the time
when a user requests it. In other words, this introduces the
need to design a suitable Fog Computing architecture that

is aware of different service models and related resource
monitoring and allocation issues. At the very heart of the
Fog architecture, a compatible service orchestration system
needs to be designed and developed to take advantage
of the different service models supported by the Fog
infrastructure.

In particular, the orchestrator should be aware whether a
given service can be offered natively by a Fog node, or can be
deployed by properly customizing or programming a specific
platform or a more general execution environment available
on a Fog node. The challenges that such an orchestrator must
address include the discovery of how many and which kinds
of Fog nodes are available, the knowledge of the service
models the Fog nodes support, and the constant monitoring
of the current status of the Fog node resources. Additionally,
recognizing that a service may be composed of multiple micro-
services, the orchestrator should also retain the knowledge
of which micro-services are needed and how to properly
activate them in order to offer a composite service, which
includes facing precedence and interdependence issues among
service components. Similar considerations apply to the case
of distributed services, such as those that need to process
parallel data streams [11], therefore requiring the activation
of multiple coordinated service instances.

Considering all of the above aspects, the orchestration
system will then be capable of handling service requests
coming from end-users or machine-to-machine applications
(i.e., the service consumers), and choosing which node, if any,
can be employed to provide the requested service.! Finally,
this Fog orchestrator will proceed to configure the node for
the task, and inform the consumer about the availability of
the requested service.

Based on the considerations expressed above, an original
Fog Computing system architecture aware of different XaaS
service models is here proposed, and designed to adminis-
ter service activation in a generic, distributed, and dynamic
Fog infrastructure. As a key functionality of the proposed
architecture, we designed and developed a modular Fog ser-
vice orchestration system that is able to act as a resource
management and service provisioning layer placed between
service consumers and the Fog infrastructure. Although we
already demonstrated the main concept of a service model-
aware Fog orchestrator in a preliminary paper [12], the sys-
tem architecture and the components presented here were
completely redesigned to enable a more efficient modular
implementation. In addition, the new architecture and the
related implementation — available for download at [13] — were
experimentally validated on a suitable testbed, comprising
both virtual and physical devices, whereas the flexibility of
the service model-aware Fog node selection approach was
quantitatively evaluated through combinatorial analysis.

'In this paper we use the term service request to refer to a management
plane interaction between consumers and orchestrator, i.e. the request made
by a consumer to the orchestrator to discover the availability or to activate
a given service. Differently, we use the term service consumption to refer to
a data plane interaction between consumers and Fog nodes, i.e. the request
made by a consumer to a Fog node, where the requested service is running,
to obtain the requested service.

Some of the architectural choices made in our work were
naturally inspired by the Multi-access Edge Computing (MEC)
framework proposed by the European Telecommunications
Standards Institute (ETSI) [14]. However, we would like to
clarify that the scope of the Fog architecture proposed in this
paper is intended to be wider than the one considered by
MEC, under a number of aspects. For instance, MEC relies
on a Cloud-like infrastructure located at the network edge,
where resources are represented by nodes usually residing in
a datacenter-like facility. In addition to that, in our view Fog
clusters may also comprise relatively smaller and sparse nodes
connected to the network infrastructure, located at the access
or between the edge and the cloud. Fog nodes can even be part
of the network infrastructure itself, such as wireless access
points, customer appliances, or other embedded computing
devices, whose resources can be harnessed for Fog service
activation. Moreover, MEC applications are typically designed
to be deployed as virtualized entities, whereas the proposed
Fog system may also make use of services that are natively
offered by devices that do not support virtualization. Although
there is an ongoing discussion within the MEC standardization
group to consider also constrained devices and non-virtualized
platforms to run MEC applications, specific standards and
a working implementation of a MEC platform supporting
such a wider scope are not currently available, to the best
of our knowledge. This difference in scope, however, can
be leveraged in terms of complementarity between the two
architectures, combining MEC principles with those followed
by the system presented in this paper. Interoperability can
be achieved by adhering to a concerted set of interfaces,
obtaining a framework for the activation of services over a
wide environment, as shown in [15].

In the following sections, we first discuss some relevant
related work, then clarify what supporting multiple Fog service
models means in the context of this work. We then describe
the proposed architecture, detailing its components and their
functionalities, as well as the intended procedures through
which it can orchestrate service provisioning in the described
service model-aware scenario. We consequently introduce an
original implementation of the devised Fog Computing system.
A combinatorial analysis of the service model-aware Fog
resource selection process is formulated, followed by a set
of performance evaluation tests, most of which carried out on
real-world equipment. Main achievements, ongoing research,
and future directions are presented as concluding remarks.

II. RELATED WORK

Since the introduction of the Fog Computing paradigm,
there has been a growing interest in the research community
to identify related suitable system architectures. In [16], IEEE
started a standardization effort for defining a reference archi-
tecture able to distribute the computing, storage, network, and
control functions in a Cloud-to-Things continuum. However,
to the best of our knowledge, no practical implementations
have been proposed based on the IEEE recommendations.
Additionally, the conceptual model of Fog Computing and
how it relates to Cloud Computing was recently reported by

the National Institute of Standards and Technology (NIST)
[4]. In particular, the NIST recommendation defines three
types of Fog node architectural service models, namely
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS), which replicate the
classification previously adopted for Cloud Computing service
models [10].

Development efforts have been carried out by private
companies as well, proposing a variety of Fog Computing
architectures, often applying context-specific or proprietary
approaches, tailored for the sale model and market segment
they intend to target [17].

A large portion of past and ongoing work focuses on
the needs of IoT devices and services they can offer [18],
often specifically to the industrial environment [19], [20]. An
assortment of research efforts, including [21], [22], target a
wide range of issues of service provisioning in Fog scenar-
ios, including but not limited to heterogeneity of resources,
scheduling, and resilience. For instance, [23] tackles the
challenge of Fog service scheduling with a highly scalable
orchestration system, where host nodes determine relevant
parameters and distances to each other, and rely on Cloud
processing for the final decision on allocation. In addition
to those, another research trend is devoted to integration of
new ecosystems at the edge of the network on which to
deploy services [24], [25], fostering an end-to-end approach to
service provisioning in a holistic perspective [26]. However,
the initiatives mentioned above do not consider the possibility
and the consequent advantages of applying an XaaS-like model
to service deployment, mostly due to trading flexibility for
performance.

An additional important research topic revolves around
service placement and its challenges. These issues applied to
a Fog scenario are the focus of [27], where an algorithm to
optimise the placement of applications modules is presented.
In [28], challenges stemming from the usage of heterogeneous
constrained devices are addressed, with a focus on efficient
service placement over available Fog nodes. We assert that
service placement and service orchestration are two different
tasks with different scopes. The former is concerned with the
optimization of the choice of where to run a certain service,
but it does not consider aspects such as resource discovery
or monitoring, as the latter does. Therefore our work is to be
considered as an orchestration effort, as it covers more aspects
than just service placement, including aspects related to service
lifecycle management.

In the direction of “as-a-service” provisioning, in [29] the
concept of “Fog-as-a-Service” is explored, by proposing a Fog
service model for massive IoT data in smart cities and offering
the whole Fog service orchestration system “as-a-service”.
This interpretation differs from the XaaS-aware approach
proposed here, which contemplates achieving dynamically
adaptive service orchestration by applying different models to
the provisioning of individual services, rather than offering the
whole orchestration system as a Cloud-like service. This re-
sults in a more flexible and general-purpose solution intended
for orchestrating any kind of Fog Computing node.

Referring to the XaaS classification, works such as [30] start

investigating the benefits of flexible deployment of services
over Fog infrastructures, specifically adopting containerized
solutions, yielding promising results. The usage of containers
in Fog environments and related orchestration needs are fur-
ther investigated in [31], where an optimization strategy for
scheduling of containers is proposed, but without considering
XaaS-awareness. Practical aspects of containerized solutions
are addressed in [32], where a strategy for proactive caching
of container images is presented and validated with numerical
simulations.

In [33] the authors propose how to provide a Fog computing
environment using consumer networking devices. Computing
power comes from the networking devices themselves, or
the system may harness it from other devices connected to
networking equipment. This work, while applying the XaaS
model to service deployment in the contemplated scenario,
includes fixed hardware only. Differently, the system here
proposed enables harnessing computing power from devices
that may dynamically and unexpectedly connect to the infras-
tructure.

Moving towards XaaS-awareness, in [34] the authors pro-
pose an optimization framework for on-demand service de-
ployment in a XaaS Fog Computing environment, where a
resource-constrained latency minimization approach is consid-
ered. The system has been studied through numerical model-
ing, although no practical implementation has been considered.
Furthermore, [35] proposes an application deployment strategy
with a service-agnostic approach. A peer-to-peer Fog-based
computation offloading service is proposed in [36], where
multiple Android-based nodes exchange parameters and source
code, thus allowing to implement the computation offloading
service using either the SaaS or the PaaS model.

To the best of our knowledge, no previous work tackles
the challenge of XaaS-aware service orchestration on Fog
Computing scenarios in the way we propose to do it. Building
on the lessons learned from the research efforts mentioned
above, and evolving our first demonstration of a service model-
aware Fog orchestrator [12], we designed, developed, and
implemented the system presented in the following sections.

III. FOG COMPUTING SERVICE MODELS

As argued in the previous sections, a Fog Computing
environment can be regarded as complementary to a traditional
Cloud Computing one, facilitating the definition of a new
distributed scenario. This is often referred to as Edge-to-Cloud
continuum [37] or Cloud-to-Thing continuum [38], where the
processing capabilities are distributed along the path from
the service consumer to the Cloud [39]. With this in mind,
a Fog Computing architecture should be able to map the
same traditional Cloud Computing XaaS service models, i.e.,
SaaS, PaaS, and IaaS categories, into an on-demand, resource-
constrained distributed environment.

In a Cloud Computing environment, the SaaS model allows
to access a software application instance running on a remote
server through a predefined interface. The same approach can
be extended to a Fog Computing architecture, where a Fog
node is hosting a specific application that can be accessed

by any consumer through a specific interface. Similarly to
the Cloud architecture, the consumer may only request the
already-deployed applications, benefiting from the lowest pos-
sible service activation time [34]. The data exchanged between
consumers and nodes is limited to the input parameters and
output results.

The PaaS model, instead, allows the consumer to access
a remote platform or operating system instance, allowing the
development of custom applications, by using programming
languages, libraries, and tools provided by the platform itself.
When extended to the Fog environment, the PaaS model allows
the node to provide a generic application that can be deployed
or developed through a specific set of libraries, platforms, or
programming languages. Within this scenario, a consumer can
interact with the Fog orchestration components for deploying
the source code of an application and have it compiled and
executed on the PaaS node. In this case, the amount of
exchanged data also includes the code for the application to
be executed, and a higher service activation time is expected,
with reference to the SaaS case.

Lastly, the IaaS model provides the consumer with access to
virtualized computing, storage, and networking resources for
installing and running a completely custom system. When ex-
tended to the Fog environment, this model allows implement-
ing a service where a Fog node is able to provide a generic
application on a generic platform through a programmable
infrastructure (e.g., the virtualization environment). In this
case, the service to be activated must be provided in a way
that is compatible with the virtualization environment offered
by the Fog node, e.g., a container management/orchestration
platform such as Docker or Kubernetes, a virtual machine hy-
pervisor such as KVM or VMware, other forms of lightweight
virtualization such as Unikernels, etc. In this way, a virtualized
instance can be correctly deployed and run on the hosting
node, implementing the required service. In this scenario,
the service activation process may include additional steps
of interaction between consumer and node, as well as the
download of the virtual components needed to deploy the
service. Hence, a repository should be foreseen for storing
available images to be used by a Fog node upon request.

It is worth noting that the extension of the different Cloud
service models to a Fog environment retains similar charac-
teristics, because when moving from the SaaS through the
PaaS to the IaaS model, we move from the lowest to the
highest degree of generality and flexibility, while simultane-
ously moving from the fastest to the slowest service activation
time. In order to take advantage of the different levels
of flexibility and consider the different activation times
offered by different service models, we argue that a Fog
Computing orchestration system should be aware of how a
given service can be deployed, not only in terms of which
Fog node resources must be used, but also according to
which model it can be deployed.

IV. FOG COMPUTING SYSTEM ARCHITECTURE

Developing a Fog Computing system for XaaS-aware ser-
vice provisioning requires the design of a suitable reference

[Consumer]
Fog orchestrator level Fnl
[FO Gateway]
‘ Fil
Fi2 - Fi3
r{ FO Mediator }T
Fid4
[FO Aggregator]—[FO Infrastruct. Manager]

Fsl Fs2

] Fhl [

Fig. 1. Reference architecture of the proposed service model-aware Fog
Computing system, including the Fog orchestration (FO) level and the Fog
host (FH) level. The functional components of the architecture are shown,
including the reference points used for relevant interactions.

Fog host level

[FH Service Monitor FH Infrastructure]

architecture, which is able to represent various aspects of
service orchestration, including consumer interaction, deci-
sion making, monitoring, control, and management processes,
properly extended to support the inherent flexibility that dif-
ferent service models can offer.

The envisioned architecture is depicted in Fig. 1, and can be
logically divided into two levels. The Fog orchestration level
contains the logically-centralized intelligence of the system,
including decision-making components and data-collection
modules. Elements of this level are logically unique in a
deployment of the Fog orchestration system, although their
instances might be replicated for scalability. On the other hand,
the Fog host level contains the elements that are needed on
any Fog host node to support the interaction with the Fog
orchestration system. Therefore, these elements are meant to
be instantiated on every Fog host node, with each instance
being logically independent of other instances running on other
nodes. The hierarchical structure of the architecture offers a
logical separation that helps in making the system flexible and
capable of supporting a variety of infrastructures and nodes to
be employed for service provisioning.

As previously mentioned, the reader can find some com-
monalities between the proposed Fog system architecture and
the MEC architecture standardized by ETSI [14]. However, the
strong point of the proposed architecture resides in the native
high flexibility in terms of Fog host nodes that can be included
in the system and employed for service activation. In a MEC
scenario, services are typically activated as virtual components
over an edge-cloud infrastructure, whereas here, thanks to the
service model awareness, services can be deployed in different
ways depending on the specific nature of the Fog host node,
e.g., instantiated as virtual components or allocated on physical
nodes that offer that service natively. In fact, the Fs2 reference
point, utilized to manage the activation of services on a Fog
host node, is not specific to a given technology, but it can be
used to interact both with physical and virtual equipment. This
approach allows to include resources dynamically, a feature
that can offer great help in emergency scenarios, where not
only latency but also availability and reliability are crucial.

The remainder of this section briefly introduces the role of
each functional component, whereas the specific interaction
mechanisms between components and the purpose of the

reference points are discussed in the next section. For brevity,
the name of components belonging to the Fog orchestration
level is prefixed by the acronym “FO”, while components
residing in the Fog host level have their name prefixed by

A. Fog orchestration level

Service requests are received by the FO Gateway, which
offers the point of contact for service consumers to interact
with the orchestration platform, defining a suitable level of
service abstraction. It also provides authentication and syntax
validation of service requests.

The most crucial component of the architecture is the
FO Mediator, which represents the core functionality of the
orchestration system. It is in charge of maintaining an overall
view of the Fog ecosystem, processing service requests, and
making decisions on service activation and service model to
be used, based on current service availability and resource
status information gathered from the underlying infrastructure
through interaction with the monitoring modules and agents
of the system.

Such information on the infrastructure status is collected by
the FO Aggregator, whose objective is to combine monitoring
data about the infrastructure and expose it for consumption
by the FO Mediator, which makes use of this data for service
model selection and service activation. The FO Aggregator is
also directly in charge of gathering information on available
services, by interacting with the relevant component on Fog
host nodes.

Finally, the FO Infrastructure Manager oversees the activa-
tion of services on Fog host nodes, according to the decisions
made by the FO Mediator. The FO Infrastructure Manager
is responsible for dealing with technology-specific details
depending on the particular computing platform used by Fog
host nodes. It is also in charge of collecting information on
Fog host node resource utilization and passing them to the FO
Aggregator for preservation. Therefore, the FO Infrastructure
Manager should be equipped with multiple “adapters” to inter-
act with heterogeneous Fog Computing node implementation
technologies, or multiple FO Infrastructure Managers should
be deployed. It is worth noticing that this modular approach,
with the definition of abstracted interfaces between functional
elements, allows the system to be extended also to hybrid
infrastructures, where multiple “computing sites” could be
available (e.g., federated Fog sites connected to a central
Cloud) and a FO Infrastructure Manager could be deployed
for each of them. This would not impact the orchestration
operations, which would then take the specific characteristic
of each site (e.g., latency) into account for the decisions on
service activation.

B. Fog host level

The FH Service Monitor is a component located on each
Fog host node, and it is in charge of monitoring the availability
of services on the node, registering the services that are
available when the node connects to the Fog cluster, and
keeping track of their activation. It supplies the FO Aggregator

with this information, which inherently includes the indication
on the service model(s) this node supports.

The FH Infrastructure represents the collection of all hard-
ware and software elements that build up the Fog Computing
nodes where services can be activated and executed. In gen-
eral, the FH Infrastructure can span across several locations,
from the cloud to the edge, to the access, up to the end-
user premises. It includes the specific management/control
platforms and interfaces that can be used by the FO Infras-
tructure Manager to communicate with it and activate services.
It also gathers information on hardware resource utilization
within the Fog node (e.g., CPU utilization, residual disk
space, etc.) for collection by the FO Infrastructure Manager.
The features offered by the FH Infrastructure determine the
way the orchestration system can handle scaling and service
availability. If the FH Infrastructure has native support for
such features (e.g., in case of a Kubernetes cluster), then the
FO Infrastructure Manager can simply instruct it by means
of high-level policies specified according to the given FH
Infrastructure management interface. Conversely, the FO Me-
diator can take advantage of the view it has over the available
resources to include the activation of redundant services in the
set of orchestration decisions it is responsible for, as well as
reacting to an excessive usage of such resources, and oversee
scaling operations accordingly.

V. FOG SERVICE ORCHESTRATION OPERATIONS

The functional components introduced in Section IV inter-
act according to predefined patterns and procedures. Before
describing how they operate when a new service request
is received, we need to define and clarify some relevant
properties and functions.

A. Properties and functions

1) Service categories: According to the three Fog service
models described in Section III, we distinguish three types of
software entities that may run on Fog host nodes:

e Applications (APPs): they represent service instances
natively offered by SaaS nodes. An APP may take values
as input and return results based on those values (e.g., in
case an APP performs a computationally-intensive series
of operations on input data), or it may listen for incoming
requests and serve them (e.g., in case of a Web-based
application).

o Software Development Platforms (SDPs): they represent
service development environments natively offered by
PaaS nodes (e.g., Remote Java or Python interpreters).
A SDP takes as input blocks of source code written in
a predetermined language and/or using specific develop-
ment libraries, executes them and returns any output to
the consumer.

e Fog Virtualization Engines (FVEs): they represent
general-purpose virtualization environments available on
TaaS nodes (e.g., Docker, Kubernetes, KVM, VMware).
A FVE enables a Fog host node to instantiate virtual-
ized appliances based on existing or customized images,
giving the consumer maximum flexibility to deploy any

required computing environment and use it to perform
any task.

To better clarify the distinction, we can consider the ex-
ample of a virtual network function (VNF) performing video
transcoding. Such VNF could be offered as an APP (i.e., a
monolithic entity that is able to operate on video streams using
a predefined codec), as well as a SDP (i.e., an implementation
that allows the service consumer to upload the desired codec
library, among a set of supported ones, before operating on
the video stream), and a FVE (i.e., an environment supporting
the deployment of the entire transcoding engine and related
codecs to be used). It is worth remarking that the proposed
system is not limited to the activation of VNFs, but it also
supports native applications, or services disaggregated into
multiple microservices.

In the following, the term service represents either an
APP, a SDP or a FVE, regardless of the technology that the
infrastructure employs to provide that service to the consumer.
For instance, if a consumer asks for a computation offloading
service, that service will be provided either as an APP natively
running on a SaaS node if available, or as a virtualized instance
of that APP deployed using a FVE on an IaaS node. In other
cases, the consumer may deliberately ask for a SDP or a
FVE as the intended service, but this is supported mainly for
generality reasons, as we do not envision this to be the norm.
In any case, based on the current service availability within
the FH Infrastructure, the Fog orchestration system is able
to decide on the most suitable service model to execute the
requested task.

2) Service activation: In generic terms, a service is ac-
tivated (opposite: deactivated) when a consumer sends a
request for that service and the request can be satisfied. If
the requested service is natively available on a node (e.g., if
the consumer requests an APP/SDP/FVE that is running on
a SaaS/PaaS/laaS node), then it can be allocated (opposite:
deallocated) to the requesting consumer. Conversely, if the
service is not natively available and should be provided by
means of an additional instantiation step (e.g., by launching a
container in order to provide an APP/SDP on an IaaS node),
then the service needs to be deployed (opposite: destroyed).

3) Service discovery: Each Fog host node offers a certain
set of services and is capable of providing a certain set of
service models. Each service is associated to an identifier that
must be unique within the overall set of services offered in
the Fog ecosystem, but the same service may be offered by
multiple host nodes. Each Fog host node announces the set
of services it offers to the relevant orchestration-level entity,
which is thus inherently made aware of the service models
provided by that Fog host node. Orchestrator and hosts must
share the same common knowledge over the set of existing
and available services. This may be accomplished either via
custom solutions, or by relying on existing protocols for
service discovery.

4) Service images: For the purpose of this work, the term
service image refers to a virtual component that, when de-
ployed, is able to instantiate a certain service. The orchestrator
maintains a list of service image repositories, which can be
pre-configured before startup and then updated at runtime. For

instance, service images include — but are not limited to —
container images, which represent a typical example of an ex-
ecutable package of software that includes everything needed
to run a service. The Fog service orchestration system may
also support service image on-boarding functions, a choice
that could have several advantages in terms of efficiency and
security. Although the approach we propose here intends to
be general, we cannot expect that all possible services are
available in all possible formats. However, if a service is not
available natively, the orchestrator looks for, e.g., the image
of a containerized version of the same service, if it exists in
a public or private repository. This is not too unrealistic if
we consider, for instance, the popularity of the Docker Hub
repository and the containerized version of many applications
available there, often shared by third-party developers.

B. Processing of service requests

Service consumers (e.g., Operations Support System, third-
party verticals, external applications) formulate requests that
trigger the discovery or activation of services in the Fog
system. These requests include only essential information on
the desired service, with the only mandatory value being the
unambiguous service identifier, taken from a set of known
service names, and possibly also comprising a list of con-
straints and requirements, taken from a predefined set. When
activating a service on a Fog host node, the orchestrator takes
a number of aspects into account, including but not limited to
the deployment model of the service and the constraints and
requirements specified in the request.

Figures 2 to 4 depict the sequence of interactions among
functional elements of the system triggered in reaction to
different requests coming from the consumer. Specifically,
Fig. 2 focuses on the case where the consumer requests the list
of currently available services, while Figs. 3 and 4 represent
the way the system handles the request for the activation of a
new service, in case the service is available and can therefore
be allocated, or in case the service is not available but can be
deployed, respectively.

For any request type, the consumer (C) interacts with
the service orchestrator reaching the FO Gateway (FO-GW)
through the Fnl reference point, which represents the north-
bound interface of our Fog orchestration system. The FO
Gateway authenticates the consumer and validates the correct
syntax of the request. The request is then passed, through
the Fil reference point, to the FO Mediator (FO-M), which
interacts with the FO Aggregator (FO-A), via the Fi2 reference
point, to gather information on the available services offered
by the set of Fog host nodes. The FO-A, in turn, interacts
with the FH Service Monitor (FH-SM) of all available Fog
host nodes, querying for the current availability of services. If
the consumer has only requested the list of currently available
services, as shown in Fig. 2, the procedure ends here, with
the cumulative response being routed back to the consumer
through the FO Gateway.

However, if the request involves the activation of a service,
the FO-M relies on the information on currently available
services and resource utilization to determine whether and

C —> FO-GW (GET /services)
FO-GW -> FO-M (GET)
FO-M -> FO-A (GET)
FO-A -> FH-SM (GET)
FO-A <- FH-SM
FO-M <- FO-A
FO-GW <- FO-M
C <= FO-GW

Fig. 2. Sequence diagram of the interactions in case the consumer requests
the list of available Fog services. The methods displayed with slanted text
refer to the REST operation through which the interaction was implemented
(see Section VI-C).

how to activate the requested service. The FO-M tries to
activate the service in the most efficient way possible, i.e.,
by picking the most convenient service model and host node.
For a host node to be eligible to run the service, its resource
utilization must not exceed a certain threshold. Both the
specific resource utilization parameter to be considered for this
selection and the threshold to be applied on it are a matter
for the initial configuration of the orchestrator (e.g., a node
may be considered eligible only if its CPU utilization does
not exceed 90%). If multiple nodes are eligible, any optimal
choice algorithm can be applied in order to make sure that the
best node is selected, based on specific criteria [34].

Depending on the service category being requested and
the software entities available on eligible Fog host nodes,
the service activation involves different interactions. If the
consumer requests a given APP, the FO-M scans the list,
retrieved from the FO-A, of available host nodes natively
providing that APP, trying to give priority to the SaaS model
and minimize the activation time. It then discards nodes whose
utilization exceeds the threshold. If at least one eligible SaaS
node is available, then the FO-M chooses the best node to
allocate the service on, and proceeds by instructing the FO-
IM about the allocation via the reference point Fi3, as depicted
in the sequence diagram in Fig. 3. The FO-IM interacts with
the FH Infrastructure (FH-I) of the chosen Fog host node to
configure the access to the service by enabling the consumer
who requested it. The FH-I also communicates the new status
of the resources to the FH-SM located within the same node
through the reference point Fhl. If the allocation succeeds,
details on how to reach the node and the allocated service
running on it are sent back to the consumer in the final
interaction through Fnl. In case the service requested by the
consumer is a SDP or a FVE, the procedure is similar to
the one described above, with the difference that the FO-M
searches for eligible Fog nodes only among PaaS and IaaS
nodes, respectively.

On the other hand, if a service cannot be natively allocated,
because an eligible SaaS or PaaS node is not available to run
the requested APP or SDP, respectively, the FO-M tries to
deploy it on a IaaS node. In order to do so, the FO-M looks up
the requested service in the list of available service images (as
defined in Section V-A4). If a suitable service image is found,
the FO-M follows the procedure to search for an available IaaS
host node offering the required base service, i.e., the FVE on
top of which the service requested by the consumer must be

C —-> FO-GW (POST /services/<service_id>) (1)

FO-GW -> FO-M (POST) (2)
FO-M -> FO-A (GET reqg. service) (3)
FO-A -> FH-SM (GET)
FO-A <- FH-SM
FO-M <- FO-A
FO-M -> FO-IM (PUT) (4)
FO-IM -> FH-I (PUT alloc.)
FO-IM <- FH-I
FH-I -> FH-SM
FH-I <- FH-SM
FO-M <- FO-IM
FO-GW <- FO-M
C <- FO-GW

Fig. 3. Sequence diagram of the interactions in case the consumer requests
a service that can be activated via simple allocation. The methods displayed
with slanted text refer to the REST operation through which the interaction
was implemented, while numbers in bold text are used as references in the
performance evaluation (see Section VIII-B).

C —-> FO-GW (POST /services/<service_id>) (1)
FO-GW -> FO-M (POST) (2)
FO-M -> FO-A (GET reqg. service) (3)
FO-A -> FH-SM (GET)
FO-A <- FH-SM
FO-M <- FO-A
FO-M -> FO-A (GET base service) (4)
FO-M <- FO-A
FO-M -> FO-IM (POST) (5)
FO-IM —-> FH-I (POST deploy)
FO-IM <- FH-I
FH-I -> FH-SM
FH-I <- FH-SM
FO-M <- FO-IM
FO-GW <- FO-M
C <- FO-GW

Fig. 4. Sequence diagram of the interactions in case the consumer requests
a service that must be activated through deployment on laaS nodes. The
methods displayed with slanted text refer to the REST operation through
which the interaction was implemented, while numbers in bold text are used
as references in the performance evaluation.

deployed, as illustrated in Fig. 4. If an eligible node is found,
the service is deployed on it by triggering the deployment
through the FO-IM via the Fi3 reference point. The FO-IM
in turn interacts with the FH-I via the Fs2 reference point,
deploying the service on the Fog host node. Information on
the eventually deployed service is then included by the FO-M
in the response to the consumer at the end of the sequence
diagram.

In case a requested APP or SDP cannot be natively allocated
on a SaaS or PaaS node, nor deployed on an IaaS node, or in
case a requested FVE is not available on any IaaS node, then
the service activation procedure fails and the system replies to
the consumer with a message indicating failure in activating
the service.

VI. FOG ORCHESTRATION SYSTEM IMPLEMENTATION

Based on the reference architecture presented in Section IV,
we implemented a system we refer to as FORCH (a system
for Fog ORCHestration) [13], which covers all aspects of
service model-aware orchestration discussed in Section V.
FORCH coordinates the activities in the Fog Computing

Fog Orchestrator node

""" y B “T--a
FO-GW FO-A FO-IM Repo
| - - »]
User Interface] _.-- ¥l SLP Directory Ag.] e Zabbix Collector]

Zabbix Agent |

FH-I laaS

Consumer

> -« <o > -« -
Service Service Service Resource
Consumption Activation Discovery Monitoring
(HTTP REST) (SLP) (HTTP REST)

Fig. 5. The FORCH system architecture from a consumer’s viewpoint,

showing consumer interactions with the FO Gateway for service activation
and with Fog host nodes for service consumption. The figure includes details
of specific component implementation for service discovery and resource
monitoring.

system, handling the interaction with service consumers and
managing the activation of requested services on the under-
lying infrastructure. Figure 5 sketches the components of the
FORCH implementation and represents a different rendition
of the architecture shown in Fig. 1, useful to clarify the
practical usage of the system. The figure depicts different
kinds of Fog host nodes and includes details of specific
component implementation for service discovery and resource
monitoring. Consumer interactions with the FO Gateway for
service activation and with the Fog host nodes for service
consumption are also displayed.

The following subsections describe the main implementa-
tions choices we had to make to realize the proposed archi-
tecture. From a conceptual point of view, FORCH operates
in a service-centric way, where the fundamental entity is the
service [40], rather than the host node(s). The internal logic
of the orchestration system associates host nodes to services,
rather than the other way around, placing (the abstraction of)
services at the top hierarchical level in the developed software
structure. We argue that this is a sensible choice, because
consumers request services, being unaware of specific host
nodes, and this structure makes look-up and update operations
faster and more straightforward to implement. This system
design approach proved very functional for subsequent choices
in code development.

A. Service discovery

After an attentive analysis of existing protocols, we imple-
mented the mechanism of discovery of services offered by
Fog host nodes by developing a general-purpose, customizable
subsystem based on the Service Location Protocol (SLP),
defined by the Internet Engineering Task Force (IETF) in [41].
This protocol makes use of abstractions that revolve around
the concept of service as intended in the FORCH context,
e.g., every service is identified by a unique string and may
bear metadata that can provide additional configuration details.
This solution fits well with the intended purpose of the Fog
service discovery subsystem, and it allows for both active
and passive search of service nodes, also including optional
security features. Moreover, SLP is already widely adopted in
a variety of commercial devices, guaranteeing its stability.

Our implementation of the service discovery subsystem
includes a set of modules implementing the functionalities of
the different SLP agents [41]. As shown in Fig. 5, an instance
of the SLP Service Agent module needs to run on every
node offering services, and it is operated by the FH-SM to
communicate service-related information to the FO-A, where
a SLP Directory Agent module collects it. In this scenario,
employing a SLP Directory Agent rather than a SLP User
Agent for data collection facilitates the execution of the SLP
protocol with a growing number of Fog host nodes, improving
scalability potential. Further details on the FORCH service
discovery implementation based on SLP are available in [42].

B. Resource monitoring

In the role of monitoring system, we decided to employ
Zabbix [43], a software suite providing monitoring of re-
sources and functionality of a generic distributed system,
and coming in the form of a set of agent modules and a
collector module, running as background daemons. As shown
in Fig. 5, the collector is employed by the FO-IM module to
gather information on resource utilization of Fog host nodes,
each including an instance of the agent, acting as resource
monitoring apparatus of the FH Infrastructure.

C. Service requests

In the proposed implementation, reference points between
consumer and orchestration level functions, and between the
latter and Fog host nodes (i.e., Fn and Fs reference points
in Fig. 1) are implemented as REST interfaces. Consumers
only have access to a single endpoint, /services. Through
this endpoint, they can obtain the list of available services, as
well as request the activation of a service on a node of the
Fog system. Data is exchanged by making use of the JSON
format. The system supports multi-tenancy in a similar way
to that of other orchestration platforms, where each consumer
is authenticated and associated to one or more projects, and
each project can have its own default configurations.

Before requesting a service activation, the consumer might
retrieve the catalog of available services with a call to the
method GET /services, causing the interaction among
FORCH components as represented in Fig. 2. The response

Request method: GET
Request URL: http://fo-gw:6000/services
Response code: 200
Response JSON: {
"message": "Found 2 service(s).",
"services": ["APP991", "FVEOO1l"]

Fig. 6. Example of request for available Fog services and related response
including the current service catalog, performed through a REST interface
implementing the reference point Fnl.

contains a list of currently available services, including all
different service categories. A simple example of both request
and response are shown in Fig. 6, where the current availability
of two services is reported. In our implementation, the service
category is implicitly determined by the format of the service
identifier, e.g., APP991 and FVEOQO1.

The consumer can then request the activation of
a specific service, by means of the method POST
/services/<service_id>, where service_id is the
unique identifier associated to the desired service, as spec-
ified in the service catalog. As explained in Section V-B,
the request triggers a sequence of interactions among the
functional elements of the Fog orchestration system, which
may vary depending on the availability of the service, and
on whether it can be allocated or should be deployed (see
Section V-A2 for the distinction). From the service consumer
point of view, the interaction with the northbound interface of
the Fog orchestrator level is exactly the same in both cases,
regardless of the applied service model. In case of service
deployment on a IaaS node, the service image can be pulled
from a local or a publicly-available repository, as shown in
Fig. 5.

According to a common interpretation of the REST philos-
ophy [44], the POST method may be used to create a new
resource in the system, whereas the PUT method may be used
to update an existing one. In the proposed implementation, the
consumer may request the activation of a service via the POST
method, asking the FORCH system to activate a service with-
out knowing whether the service is available for allocation, it
needs to be deployed, or it is not available at all. The FO-M
module will then perform a PUT request to the FO-IM in case
the service is natively offered by an active and available Fog
host node, or a POST if the service must be deployed and an
eligible TaaS node is available. This distinction is transparent
to the consumer, except for the difference in the status code in
the response: 200 OK if the service has been allocated, 201
Created if the service has been deployed. Two examples of
service request by a consumer and related response in case
of successful allocation on an SaaS node or deployment on
an IaaS node are reported in Figs. 7 and 8, respectively. In
case the service activation fails, the status code would be 503
Service Unavailable. The consumer can also invoke
the DELETE method to deactivate services associated to them.
For the sake of clarity, Figs. 6 to 8 only report details on the
service activation process, omitting authentication information
that is considered out of the scope of this discussion.

Request method: POST
Request URL: http://fo-gw:6000/services/APP991
Request JSON: ({
"project": "default"
}
Response code: 200
Response JSON: ({
"message": "Service APP991 active on node 10322",
"node_1ip": "192.168.64.118",
"node_port": 8080
}

Fig. 7. Example of request for Fog service activation and related response
notifying the successful allocation of the requested service on a SaaS node.
The response includes the requested service endpoint.

Request method: POST
Request URL: http://fo-gw:6000/services/APP002
Request JSON: {
"project": "default"
}
Response code: 201
Response JSON: {
"message": "Service APP002 active on node 10329",
"node_ip": "192.168.64.128",
"node_port": 32772
}

Fig. 8. Example of request for Fog service activation and related response
notifying the successful deployment of the requested service on an IaaS node.
The response includes the requested service endpoint.

In our implementation, both responses of successful alloca-
tion and deployment include directly the endpoint (IP address
and port) to be used for service consumption. In order to make
the approach more general and robust, a symbolic name or
Uniform Resource Identifier (URI) pointing at the activated
service should be used, instead of a technology-specific end-
point. Additionally, the transport-layer connection between the
consumer requesting the service and the orchestrator (e.g., the
TCP connection in case of HTTP implementation of REST
interactions) might not be able to persist for the whole time
required for service activation, especially in case of service
deployment on an IaaS node. For this reason, the system
should respond with a 202 Accepted code to any request,
also providing a URI that the service consumer can use to poll
the current status of service activation. All these improvements
to the orchestrator REST interface are left for a future version
of the implementation.

VII. COMBINATORIAL ANALYSIS OF FOG HOST NODE
SELECTION

After discussing the proposed Fog orchestration system
architecture and mechanisms, we would like to provide a first
quantitative insight on the advantages that such an orchestrator
could obtain from being aware of the service model used to run
the requested tasks. Therefore, in this section we give a simple
quantitative assessment of the flexibility features offered by
the service model-aware Fog orchestration system. The simple
model we consider here is based on a combinatorial analysis
of the Fog host node selection mechanism and the consequent
service activation performance.

In order to make the analysis more tractable, but without
loss of generality, let us make a simplifying assumption and
consider only requests for APP services and two types of Fog
host nodes: SaaS and IaaS. As already mentioned, a SaaS node
is capable of allocating only a specific APP, whereas an IaaS
node can be fully customized and can deploy any APP with a
proper configuration of the underlying FVE. For the sake of
this analysis, the case of PaaS nodes can be assumed similar
to the SaaS nodes, if we consider that the request for a given
SDP can be satisfied either by allocating a native PaaS node
or by deploying the requested SDP on an IaaS node.

Let us assume there are N Fog service consumers, each
requesting one out of M available APPs, a,as,...,ap. A
given APP a; can be randomly requested by none, one, or
more than one consumer. The request set from all consumers
can be represented as an array r = [r1,79,...,7y], where the
i-th request refers to the APP requested by consumer i, i.e.,
r; € {a1,a9,...,ap}, ¥i = 1,2,...,N. Due to the time
needed to instantiate a virtualized appliance on an IaaS node,
it is reasonable to assume that the SaaS service activation
time Ts ;, i.e. the time required to allocate a given APP q;
on a SaaS node, is significantly smaller than the laaS service
activation time 17 ;, i.e. the time required to deploy an instance
of the same APP a; on an IaaS node. Therefore, T's ; < 17 ;.

To be able to satisfy any possible request set r &
{a1,as,...,ap }", a suitable number K of Fog host nodes
must be available. Then we have to choose how many nodes
are of SaaS type (Kg) and how many are of laaS type (K7,
such that K = Kg + Kj), taking into account the different
service activation times needed on the two types of nodes. To
make this choice, assuming that each fog host node can serve
one request at a time” and that all requests in a given set r
are simultaneous, we can consider three different objectives:

1) Minimize the service activation time. In this case, all
Fog host nodes should be of SaaS type, i.e. K; = 0.
Since each node can allocate only a specific APP, to
avoid rejecting any request due to lack of available
nodes, we should have enough SaaS nodes to satisfy the
worst case when all consumers request the same APP,
for any APP, i.e. Kg = MN. The service activation
time would be Ts; for each consumer requesting the
j-th APP.

2) Minimize the number of Fog host nodes. In this case,
all nodes should be of TaaS type, i.e. Kg = 0. Since each
node can deploy any APP, to avoid rejecting any request
we should have as many IaaS nodes as the number of
consumers, i.e. K; = N. The service activation time
would be T ; for each consumer requesting the j-th
APP.

3) Finding a trade-off between the service activation
time and the number of Fog nodes. In this case, we
should find a balance between the number of SaaS and
IaaS nodes, and a trade-off between the previous two
objectives. To avoid rejecting any request we should

2This is another simplifying assumption. However, the analysis can be
generalized to the case where a Fog host node can simultaneously serve
multiple requests by defining K in terms of the amount of resources needed
to run a given set of services.

have enough IaaS nodes to compensate for unavailable
SaaS nodes for each APP. A possible choice would be
to have as many SaaS nodes as the available APPs — one
SaaS node per APP — plus as many IaaS nodes as needed
in order to avoid rejecting a request in the worst case
when all consumers request the same APP, i.e. Kg = M
and K; = N —1. The average service activation time per
consumer requesting the j-th APP would take a value
between Ts ; and T7 ;.

The three choices of Kg and K given above are to be
considered as the ideal minimum numbers of Fog host nodes
needed to reach the respective objective without rejecting any
request. Of course, when Kg and K are fixed or cannot be
chosen at will, it can happen that fewer nodes are available to
run the requested APPs. In that case, for a given number of Fog
service consumers /N and available APPs A/, and assuming
that all requests in a given set r are simultaneous, we can use
well-known combinatorics formulas to compute the average
request rejection (or blocking) probability for any request set
r. First, we must compute the total number of possible request
sets v € {ay,az,...,an Y. Assuming that all consumers are
identical, each request set is an unordered selection of N APPs
identifiers. Considering that there are M APPs available and
that the same APP can be requested by multiple consumers,
the total number of possible request sets can be computed
as the number of combinations with repetitions of N objects
extracted from M classes [45]:

(D

N+M-1
Ctot<N7M):< N)

where () = ﬁlb), represents the binomial coefficient.
Then we are interested in counting the number of possible
request sets r such that the N consumers request h distinct
APPs out of M, with 1 < h < min(N, M). The lower bound
on h represents the case when all consumers request the same
APP, whereas the upper bound is given either by the number
of APPs when N > M, or by the number of consumers when
N < M. The possible request sets for h distinct APPs are
given by the number of combinations with repetitions of N
objects extracted from M classes, such that at least one object
is extracted from each of h distinct classes and none from the
remaining M — h classes. Let us choose the first i distinct
objects out of M classes, recalling that there are (124) possible
ways of doing so [45]. Since the remaining /N —h objects must
be chosen from the same h classes, we must count the number
of combinations with repetitions of N — h objects extracted

from h classes, i.e.:
N -1
N —h

Therefore, the number of possible request sets such that the
consumers request i distinct APPs is

Ch(N,M) = <]\h4) (j\i_;) h=1,2,...,min(N, M)
(2

Then, assuming that any request set is generated with the
same probability p = 1/Cl, the probability that a given

request set r is such that the N consumers request exactly
h distinct APPs out of M is

_ Ch(N7 M)
Pa(N. M) = o N)

We define the request blocking probability
Pp(Kg,Kr,N,M) as the probability that a generic
request in a generic set r cannot be satisfied because the
requested APP is not available, neither as being allocated
on a SaaS node nor as being deployed on an IaaS node.
Obviously, Pp depends on the choice of Kg and K7, as well
as on N and M. Let us consider the case that one SaaS node
for each APP is available, i.e. K¢ = M and all SaaS nodes
are distinct.

When K; = 0, the request blocking probability is given
by the probability that at least two consumers request the
same APP, multiplied by the probability of being one of the
consumers requesting an APP already allocated to the first
consumer requesting the same APP. The event where at least
two consumers request the same APP is always true when
there are more consumers than APPs, so in that case we must
consider all the probabilities of / distinct requests in (3) with
h < M. Otherwise, when N < M we must consider the
probabilities in (3) of h distinct requests such that h < N,
since for h = N there would not be any repeated request. In
all cases, the probability of having h distinct requests must
be multiplied by the probability of being one of the N — h
consumers repeating a request for an APP already allocated by
a SaaS node. Therefore, the expression of the request blocking
probability for Kg = M and K1 = 0 is given by:

h=1,2,...,mn(N,M) 3)

min(N—1,M)

>

h=1

Py(N, M) u

PB(Mv()?NvM): N

When K7 = 1, the single IaaS node available can be used
to satisfy a second request for any APP already chosen by
another consumer. Therefore, in this case the request blocking
probability can be computed starting from the probability that
at least three consumers request the same APP. This is always
true when N > M + 1, whereas when N < M + 1 it happens
with all possible combinations of & distinct requests such that
h < N — 1. In all cases, the probability of having h distinct
requests must be multiplied by the probability of being one of
the N —h —1 consumers not satisfied by either a SaaS nor the
IaaS node. Therefore, the expression of the request blocking
probability for Kg = M and K1 =1 is given by:

min(N—-2,M) N—h-1
Py(M,1,N, M) = h}_jl Pu(N, M) ——

The same reasoning can be extended to derive the general
expression for the request blocking probability when K¢ = M
and K; laaS nodes are available. Such a blocking event
never happens when there is a sufficient number of IaaS
nodes to satisfy any multiple requests for any APP, i.e. when
K7 > N — 1. Otherwise, the request blocking probability can
be computed considering the probability that at least K; + 2
consumers request the same APP. This is always true when
N > M + Kj, whereas when N < M + K it happens

with all possible combinations of h distinct requests such that
h < N — K. In all cases, the probability of having A distinct
requests must be multiplied by the probability of being one of
the N —h — K consumers not satisfied by either a SaaS nor
a TaaS node, leading to:

PB(MaKI;NaM) -
min(N—K;—1,M)

N-h-K
> mwan YRR
= i 4)
o if K <N-—-1
0 if Ki>N-1

The result in (4) allows a rough dimensioning of the
number of IaaS nodes that must be present in the Fog host
infrastructure in order to keep the service request blocking
probability under a given value. Of course the model should
be generalized to the case of any number Kg of SaaS nodes.
However, in that case the analysis becomes more complex
because the request blocking probability depends not only on
the value of Kg, but also on which APPs are supported by the
SaaS nodes. Furthermore, the combinatorial analysis presented
here does not take into account the temporal dynamics of
service activation and consumption, as it assumes that all
requests are simultaneous and must be served immediately,
otherwise they are rejected. A more elaborated queuing model
is needed to take into account also the time dimension, but
it requires a careful estimation of the request arrival and
service consumption stochastic processes, which are highly
dependent on the specific types of service offered by the Fog
host infrastructure. All these extensions are being considered
for future developments of this work.

VIII. VALIDATION AND PERFORMANCE EVALUATION

The FORCH implementation described in Section VI was
deployed on a testbed designed to be logically coherent
with the architecture depicted in Section IV. All software
components of the Fog orchestration level were implemented
in Python [13], and a collection of Fog host nodes were
deployed on different hardware platforms. In particular, the
testbed setup included:

« a server running a Virtual Machine (VM) equipped with

4 cores and 4 GB of RAM, where all the components of
the Fog orchestration level shown in Fig. 5 were hosted;

e an Intel NUC MiniPC equipped with a 4-core 8th-gen
Intel i7 processor and 16 GB of RAM, used as a Fog
host node;

o a RaspberryPi Single Board Computer, model 3B+,
equipped with a 4-core ARMvV71 processor and 1 GB of
RAM, used as a second Fog host node;

e a server running up to ten VMs, each equipped with 1
core and 2 GB of RAM, used as additional Fog host
nodes.

As for the Fog host node type, the NUC MiniPC was
always employed as an IaaS node, running a Docker container
management system as FVE and using container images
stored in the public Docker repository as service images.

The RaspberryPi was configured as a PaaS node, running a
general-purpose Linux-based operating system such that any
relevant programming environment for software development
could be installed and offered as SDP. The VMs were also
running a general-purpose Linux operating system and were
used alternatively as PaaS or SaaS nodes, depending on the
situation, by properly installing a programming environment
as SDP or a specific APP, respectively.

In order to evaluate the system performance, we generated
sequences of service requests, focusing in particular on one
APP (namely Stress, a tool that allows to generate computing
resource load on a node) and one SDP (namely Python, an
interpreter of the well-known programming language). The
requests were combined in a random order, with repetitions.
The specific choice of which APP/SDP to use for this purpose
does not affect the service activation procedure, which is
independent of the particular functionality offered by the
service being activated. However, the size of the Docker image
needed to deploy the service on an IaaS node could likely have
an impact on the activation time, in case such image needs to
be downloaded to the node from a repository. The download
sizes of the two considered images were 46 MB for the Stress
APP and 41 MB for the Python SDP?.

In Section VIII-A we assess the time required for the
activation of the service according to the different service
models supported by FORCH. Then, in Section VIII-B we de-
compose the overall activation time into its main components,
assessing the individual weights of the interactions among
different modules that the activation process prescribes. In
Section VIII-C we observe how the system handles service
requests when available resources vary over time. Finally,
Section VIII-D shows how the probability of the orchestration
system to block the service activation request vary with the
number of available Fog host nodes.

A. Service activation time

The FORCH system is able to activate the same service
with different models, depending on the current availability of
resources of Fog host nodes in the undelying infrastructure.
Ideally, an APP or a SDP can be activated in multiple ways: by
simply allocating a pre-existing instance of the APP/SDP on a
SaaS/PaaS node, or by deploying (a virtualized/containerized
version of) the APP/SDP on an IaaS node. From the functional
point of view, these alternatives yield the same result, and
consumers will not perceive any difference in the way they can
access the requested service. The only perceivable discrepancy
is in the activation time. For instance, to allocate an APP on
a SaaS node that is running that APP already, the system
simply enables the consumer to access that APP, without
any other particularly complex management action needed.
Therefore, we expect this procedure to be the fastest one in
terms of service activation. On the other hand, in order to
activate the APP on an IaaS node, the system needs to manage
the deployment of a virtualized or containerized instance of

3Both the mentioned images are publicly available on the Docker repos-
itory as giditre/gaucho-stress:latest and python:slim, re-
spectively.

the APP, depending on the specific FVE supported by the
node. The time required to complete this procedure is, in
principle, always larger than the activation time required in the
previous case, with the possible additional burden of having to
download a virtual machine or container image on the target
IaaS node, if a copy of such image is not cached in the node
already. This can happen in case the APP was never deployed
before on that given IaaS node, or if the required image was
updated or removed from the node after the last time the APP
was deployed on it. Summarizing, we focus on three possible
cases:

1) APP allocated on SaaS node;

2) APP deployed on IaaS node using cached image;

3) APP deployed on IaaS node after downloading the
required image from the remote repository.

TABLE I
ACTIVATION TIME OF THE SAME APP ON DIFFERENT NODES

Case | Fog host node | No. of trials | Avg. activ. time (st. dev.) [s]
1 SaaS 1000 0.291 (0.177)
2 laaS with 100 1.59 (0.105)
cached image
3 lTaaS without 10 15.3 (0.532)

cached image

The measurements are shown in Table I, where the number
of trials used to obtain the average activation time and the
standard deviation are specified. The results are in line with
the expectations. The quickest activation is observed when
the APP is already available on a SaaS node. Allocating the
APP on an IaaS node which already has the required image
represents a compromise between flexibility and activation
time. The slowest case is that of running the APP on an
IaaS node which does not have a local copy of the required
image and thus needs to download it from the repository. In
that case, of course, the activation time strongly depends on
where the image repository is located, the size of the image
itself and the available bitrate between the Fog host node
and the repository. In our testbed we used the public Docker
repository, reachable from the IaaS Fog node connected to our
Department’s production network.

As a final note, we should also highlight that the whole
testbed was hosted in our lab facilities, and therefore all
communications between the Fog orchestration level com-
ponents and the Fog host nodes took place in a local area
network environment. While this setup could be representative
of situations where the Fog orchestrator is located very close
to the Fog host nodes, there could be other cases where the
network delay between Fog orchestrator and Fog host nodes
is not negligible. Of course, such an additional latency could
have an impact on the overall activation time, which would
depend on the specific deployment scenario. However, our
evaluations can still be considered relevant to understand how
fast the FORCH components can perform their tasks and
interact with each other, as discussed in the next subsection.

B. Service activation time breakdown

Each service activation is the result of the cooperation
among the modules of the FORCH system, in a sequence
of interactions that depends on the requested service and on
the current resource availability. In this subsection we show
the contribution of each interaction to the overall service
activation time. For clock synchronization reasons, we can
reliably measure these values only on a single machine at
a time. Therefore, we conducted all these measurements on
the same machine running the FORCH orchestration level
modules.

Figures 9 and 10 show the most relevant operations that
occur during the allocation of an APP on a SaaS node or
its deployment on an IaaS node, respectively. The vertical
length of each bar represents the duration of each interaction
— or “call”, as interactions among modules are realized by
HTTP REST calls — involving the corresponding module as a
recipient, according to the sequence diagrams in Figs. 3 and 4.
The time values were measured in a single request experiment
run for cases 1 and 3 in Table I, respectively. In the SaaS case,
the time required to allocate the service on the host node (4) is
comparable to the time required for the FO-A module to gather
the list of currently-available services (3), as represented by
the two rightmost bars in Fig. 9. In the IaaS case, however, the
largest amount of time is required for the actual deployment
(i.e., call (5) received by the FO-IM module shown in Fig. 10),
which includes the execution of a new container on the chosen
Fog host node. In this case, the image employed to run the
container had to be pulled from the repository, therefore the
amount of time required to conclude the deployment increases
significantly.

It is also worth noting that in Fig. 10 the durations of the two
calls received by the FO-A module — (3) to retrieve the list of
all available services, (4) to retrieve the list of available FVEs
— are significantly different because the short time between the
two calls allows the FORCH service discovery mechanism to
benefit from short-term caching of the information retrieved
in call (3), resulting in a very quick response for call (4).
In both Figs. 9 and 10 the vertical bar corresponding to call
(1) represents the time elapsed between the consumer request
and the response from the FO Gateway. Similarly, the bar
corresponding to call (2) measures the time spent by the FO
Mediator to complete the interactions with other components
and return a response to the FO Gateway to be relayed to the
consumer.

C. Adaptability to changing resources

FORCH bases its service activation decisions on the avail-
able amount of Fog computing resources at the time of service
request, as reported by the Zabbix monitoring functions. The
changing availability of host nodes in the system makes the
infrastructure itself dynamic, therefore the available resources
may vary over time. It is interesting to evaluate how the system
behaves when receiving a constant flow of service requests
while the underlying resource set changes.

For simplicity in demonstrating this feature, we ran an ex-
periment where we considered only one resource consumption

FO-GW (1) FO-M (2) FO-A (3) FO-IM (4)

Completion time [ms]

300 A

3504 ’ - -

Fig. 9. Main interactions occurring during the allocation of an APP on a
SaaS node. The names on the horizontal axis represent the entity that acts
as a recipient in the specific interaction, and the numbers are to be referred
to the sequence diagram in Fig. 3. The thicker markers on the FO-GW bar
represent the request that the consumer sends to the system and its response,
and they are not to scale with time. The arrows only provide guidance to
assist in tracing this measurement back to the sequence diagram of Fig. 3,
and they are not to scale with time either.

FO-GW (1) FO-M (2) FO-A (3) FO-A (4) FO-IM (5)

o
o
S

Completion time [s]
o o o
m B O
w o wv

=)
)
o
\
I
X1
\

16.45 A

16.50 1

16.55 1

16.601 ===" -

16.65 -

Fig. 10. Main interactions occurring during the deployment of an APP on
an IaaS node with non-cached image. The same considerations as for Fig. 9
apply, this time referred to the sequence diagram in Fig. 4.

indicator, that is the CPU utilization of each Fog host node
currently part of the infrastructure. The specific metric we
utilized to determine the availability of a node is its 1-minute-
average CPU utilization, setting the eligibility threshold to
90%. At the beginning of the experiment only an 8-CPU
laaS node was available. Then, at regular intervals of 8
minutes, a new node with 2 CPUs was activated and joined the
Fog infrastructure, as a result of successful service discovery
procedure. The first new node was a SaaS node offering the
Stress APP, followed by a PaaS new node offering the Python
SDP, then again a SaaS node followed by a PaaS node, and
SO on.

We launched a new service request every two minutes,

16 1 3 Total CPUs
@ |aaS-8CPU
141 SN SaaS-2CPU
EE PaaS-2CPU
12 | B SaaS-2CPU
mm PaaS-2CPU
w
)
a 10 A MMERISNRY
S RN BRNER
2 NARNARAEN NENENY
3 8 ttt\\ \§~ :‘:t
€ SNNNRNYN NN NNRREIN
5 SANARAY N NRNNAR
Z 6 : : N : : \
4
2_
0 T
0 10 20 30 40
Time [min]
Fig. 11. CPU utilization over the whole set of Fog host nodes, during a

stream of service requests. White boxes represent the total number of CPUs
available at a given moment, i.e., the sum of the number of CPUs of every
available Fog host node. The filling of these white boxes represents the CPU
utilization on a specific Fog node.

starting at the beginning of the experiment. Each request
could be either for the Stress APP or the Python SDP. In
both cases, as soon as the service was successfully activated,
the consumer kept 2 CPUs of the assigned node busy for a
fixed amount of time, corresponding to 16 minutes. Both these
values were chosen arbitrarily, compatibly with the duration
of the experiment.

Figure 11 shows the CPU utilization of all available Fog
nodes during the first 42 minutes of the experiment. The empty
bars represent the total current number of CPUs, which starts
at 8 and increases by 2 every 8 minutes due to new nodes
joining the Fog host infrastructure. We considered here a time
window where new Fog host nodes become available, making
the overall pool of resources grow, to show how the system
activates services in the most efficient way possible according
to the current node availability. This concept would be exactly
the same also if considering a shrinking resource pool. In fact,
the empty bars would decrease in size over time, and services
being offered by a disconnecting node would be terminated.
Remedies to this are still being implemented in FORCH.

The filled bars in Fig. 11 show the current number of
busy CPUs in the Fog infrastructure, with different colors and
patterns representing the CPUs utilization of different nodes.
At the beginning, only an IaaS node was available, so the
first 4 service requests were satisfied with the deployment
of the Stress APP as a Docker container. At { = 8 a new
SaaS node joined in, and the next request was satisfied by
allocating the native Stress APP on the SaaS node. Any new
incoming request up to ¢ = 15 was rejected due to lack of
available resources. Then a new PaaS node joined in, and a
new request for the Python SDP was satisfied. Meanwhile,
some of the APPs deployed on the IaaS node terminated, so
the corresponding CPUs became available again and could be
used to satisfy new requests, while two more nodes joined in
att =24 and t = 32.

Number of Services and SaaS nodes
| 5 v 7 % 9

1.0 1 e 1 A 3

Blocking probability
o o o o

o
H

=]
o
[S)
-
N
w
IS
w4
o
~
©
©

10
Number of laaS nodes

Fig. 12. Blocking probability of a service activation request as a function of
the number K7 of available IaaS Fog host nodes, when N = 10 consumers
are making simultaneous requests and for different numbers of services M.
The number of available SaaS Fog host nodes is Kg = M. The markers
indicate the values computed with the combinatorial model, while the lines
represent simulation results.

The experiment demonstrated that FORCH is capable of
selecting the most convenient service model to satisfy a
new request based on the current resource availability, by
prioritizing SaaS/PaaS nodes when possible. This is shown
by the fact that CPUs of SaaS/PaaS nodes are always filled
first when new request arrive (e.g., at t = 25 and t = 27),
and FORCH resorts to using IaaS nodes only when no SaaS
or PaaS node offers the requested APP/SDP (e.g., at t = 30).

D. Request blocking

As explained in Section V-B, each service activation request
faces the possibility of being rejected (i.e., blocked), due to
the lack of available resources in the Fog infrastructure. The
probability of this happening is modelled in Section VIIL. In
order to validate the model, we developed a simulator that
allows to compute the blocking probability as a function of the
number of consumers, services, SaaS and IaaS Fog host nodes,
using a Monte Carlo approach. A simulation-based evaluation
allows to perform a sufficient number of iterations (10° in our
case) for statistical accuracy within a reasonable amount of
time.

Figure 12 shows that, for K¢ = M, the request blocking
probability computed with the combinatorial model matches
the simulated values, confirming that, when there is one SaaS
host node per service, the model is valid. The curves show
how the blocking probability decreases as the number K of
TaaS nodes increases, until it reaches zero for K; = N —
1, for different numbers of services and SaaS nodes M, and
for N = 10 consumers. As expected, the higher the number
of services (and of SaaS nodes offering them) the lower the
blocking probability for a sub-optimal number of IaaS nodes,
as it is more likely that the consumers will pick a service that
has an available SaaS node offering it. This simple analysis
can be used to make a rough estimation of the number of IaaS

Number of Services and SaaS nodes
-=-5

1100 —=7 =9

1000 A

©o
o
o

©
o
o

700 -

600

500 -

Average service activation time [ms]

400 1

300 1

200 T T T T T T T T T

Number of laaS nodes

Fig. 13. Average service activation time as a function of the number K
of available TaaS Fog host nodes, when N = 10 consumers are making
simultaneous requests and for different numbers of services M. The number
of available SaaS Fog host nodes is Kg = M.

Number of SaaS nodes
- 5 — 7 - 9

Blocking probability
e o o o o o o o »
N w = w (=)} ~ o] © o
N L L L L L s ! L

o
.
L

=]

o
o
un
N
w
IS
(6]
o
~

9 10
Number of laaS nodes

Fig. 14. Blocking probability of a service activation request as a function of
the number K7 of available IaaS Fog host nodes, when N = 10 consumers
are making simultaneous requests, with M = 10 services and different
numbers of available SaaS Fog host nodes K g. The dots represent the values
computed with the combinatorial model, which is valid for Kg = M.

nodes that should be put in place to reach a certain level of
performance.

Figure 13 shows the average service activation time obtained
by simulation under the same conditions as in Fig. 12. The
computation is based assuming that each single service allo-
cated on a SaaS node or deployed on an IaaS node takes the
average time measured in Section VIII-A. The results confirm
the intuitive trade-off that for a higher number of IaaS nodes,
thus for a lower request blocking probability, the average
service activation time gets higher due to more deployments
than allocations, stabilizing on a value that decreases as the
number of available SaaS nodes increases.

The simulation results presented in Fig. 14 show how the
blocking probability behaves when the number of services
differs from the number of available SaaS nodes, with the

former being fixed to M = 10. In this case the simulation
results deviate from the model, which is valid only when
Kg = 10.

IX. CONCLUSION

The adoption of different service models can be satis-
factorily extended to the Fog Computing scenario, allowing
for great flexibility in deploying services in an environment
where conditions are inherently different from those found
in a conventional Cloud context. In this paper we proposed
an architecture for service model-aware orchestration in Fog
Computing scenarios, where the available resources may vary
over time, and demonstrated the feasibility of the approach by
presenting an original working implementation of the proposed
architecture, along with relevant experimental validation. We
discussed the most important design choices and included
an accurate description of components and operations of the
proposed orchestration system, including insights on how it
is able to handle critical functions such as service discovery
and resource monitoring. As a result of our investigation, we
showed that Fog services can be effectively deployed in a
matter of a few seconds, or even in less than one second
when suitable Fog nodes are available, taking advantage of
the awareness of the available service models. We also showed
that this outcome can be achieved on top of a dynamic infras-
tructure built with consumer-grade hardware. We included a
combinatorial analysis of the service model-aware resource
selection process, to obtain a first-approximation quantitative
assessment of the advantages of the proposed approach in
terms of service availability.

Future research directions include a more general formaliza-
tion of the analytical model to compute the request blocking
probability, so as to relax some of the simplifying assumptions
and take into account also the time dimension of service
activation and consumption. An advanced study on smart or
optimized approaches to determine the best node to activate
a service on, in case more than one of them is eligible,
represents another potential research topic. From an imple-
mentation viewpoint, future work contemplates the addition
of support for composite services and for other flavors of the
XaaS model (including the highly promising Function-as-a-
Service approach), as well as the refinement of some internal
mechanisms of the current implementation, in the direction of
a more robust and reliable orchestration system.

ACKNOWLEDGMENT

This work was partially funded by the Italian Ministry
of Education, University and Research (MIUR) though a
grant awarded to the Department of Electrical, Electronic
and Information Engineering “Guglielmo Marconi” (DEI) of
the University of Bologna, as part of the Departments of
Excellence initiative aimed at funding the best Departments of
Italian State Universities. The work was also partially funded
by the University of Bologna as part of the Almaldea project
PRONE - Programmable Networks for Emergency Trials.

[1]

2

—

[3

=

[4

=

[5]

[6]

[7

—

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Y. Ku, D. Lin, C. Lee, P. Hsieh, H. Wei, C. Chou, and A. Pang,
“5G radio access network design with the fog paradigm: Confluence of
communications and computing,” IEEE Commun. Mag., vol. 55, no. 4,
pp. 46-52, Apr. 2017.

M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854-864, Dec.
2016.

S. Miano, E. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, “A framework
for eBPF-based network functions in an era of microservices,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 1, pp. 133151, Mar. 2021.
M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and
C. Mahmoudi, “Fog computing conceptual model,” The National
Institute of Standards and Technology, SP 500-325, Mar. 2018.
[Online]. Available: https://doi.org/10.6028/NIST.SP.500-325

C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-
the-art and research challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 416-464, First Quarter 2018.

M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Commun. Surveys Tuts., vol. 20, no. 3, pp. 1826—1857, Third Quarter
2018.

A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Intelligent resource
allocation in dynamic fog computing environments,” in 20/9 IEEE 8th
International Conference on Cloud Networking (CloudNet), Coimbra,
Portugal, Nov. 2019, pp. 1-7.

D.-N. Vu, N.-N. Dao, W. Na, and S. Cho, “Dynamic resource orches-
tration for service capability maximization in fog-enabled connected
vehicle networks,” IEEE Trans. on Cloud Comput., Early access, 2020.
A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “Centralized and
distributed architectures for energy and delay efficient fog network based
edge computing services,” IEEE Trans. Green Commun. and Netw.,
vol. 3, no. 1, Mar. 2019.

P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
The National Institute of Standards and Technology, SP 800-145, Sep.
2011. [Online]. Available: https://doi.org/10.6028/NIST.SP.800-145

V. Cardellini, G. Mencagli, D. Talia, and M. Torquati, “New landscapes
of the data stream processing in the era of Fog computing,” Future
Generation Computer Systems, vol. 99, pp. 646-650, 2019.

G. Davoli, D. Borsatti, D. Tarchi, and W. Cerroni, “FORCH: An
orchestrator for fog computing service deployment,” in 2020 IFIP
Networking Conference (Demo Session), Jun. 2020, pp. 677-678.
Unibo gaucho: Forch. [Online]. Available: https://github.com/giditre/
unibo_gaucho

Multi-access Edge Computing (MEC); Framework and Reference
Architecture, ETSI GS MEC 003, Rev. 2.2.1, Dec. 2020.
[Online]. Available: https://www.etsi.org/deliver/etsi_gs/MEC/001_099/
003/02.02.01_60/gs_mec003v020201p.pdf

D. Borsatti, G. Davoli, W. Cerroni, and C. Raffaelli, “Enabling industrial
IoT as a service with multi-access edge computing,” IEEE Communica-
tions Magazine, vol. 59, no. 8, pp. 21-27, Aug. 2021.

IEEE Standard for Adoption of OpenFog Reference Architecture for Fog
Computing, IEEE Std. 1934-2018, Jun. 2018.

M. Antonini, M. Vecchio, and F. Antonelli, “Fog computing architec-
tures: A reference for practitioners,” IEEE Internet Things Mag., vol. 2,
no. 3, pp. 19-25, Sep. 2019.

M. Aazam, S. Zeadally, and K. A. Harras, “Fog computing architec-
ture, evaluation, and future research directions,” IEEE Commun. Mag.,
vol. 56, no. 5, pp. 46-52, May 2018.

Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
orchestration for internet of things services,” IEEE Internet Comput.,
vol. 21, no. 2, pp. 16-24, Mar. 2017.

P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, and
W. Steiner, “The FORA fog computing platform for industrial IoT,”
Information Systems, vol. 98, p. 101727, May 2021.

Y. Jiang, Z. Huang, and D. H. K. Tsang, “Challenges and solutions in
fog computing orchestration,” IEEE Netw., vol. 32, no. 3, pp. 122-129,
May 2018.

P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia,
“Fog computing: a comprehensive architectural survey,” IEEE Access,
vol. 8, pp. 69 105-69 133, 2020.

T. Goethals, FE. De Turck, and B. Volckaert, “Live demonstration of a
highly scalable fog service orchestrator,” in 202/ IEEE International
Conference on Network Softwarization (NetSoft 2021) (Demo Session).
IEEE, 2021.

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. Vilalta, V. Lépez, A. Giorgetti, S. Peng, V. Orsini, L. Velasco,
R. Serral-Gracia, D. Morris, S. De Fina, F. Cugini, P. Castoldi,
A. Mayoral, R. Casellas, R. Martinez, C. Verikoukis, and R. Munoz,
“TelcoFog: A unified flexible fog and cloud computing architecture for
5G networks,” IEEE Commun. Mag., vol. 55, no. 8, pp. 3643, Aug.
2017.

S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “FogBus: A blockchain-
based lightweight framework for edge and fog computing,” Journal of
Systems and Software, vol. 154, pp. 22-36, Aug. 2019.

P. Habibi, S. Baharlooei, M. Farhoudi, S. Kazemian, and S. Khor-
sandi, “Virtualized SDN-based end-to-end reference architecture for
fog networking,” in 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops (WAINA), Krakow,
Poland, May 2018, pp. 61-66.

F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti,
“Throughput-aware partitioning and placement of applications in fog
computing,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 24362450, 2020.

N. Morkevicius, A. Venckauskas, N. gatkauskas, and J. Toldinas,
“Method for dynamic service orchestration in fog computing,” Elec-
tronics, vol. 10, no. 15, p. 1796, 2021.

M. Tortonesi, M. Govoni, A. Morelli, G. Riberto, C. Stefanelli, and
N. Suri, “Taming the IoT data deluge: An innovative information-centric
service model for fog computing applications,” Future Generation
Computer Systems, vol. 93, pp. 888-902, Apr. 2019.

S. Hoque, M. S. De Brito, A. Willner, O. Keil, and T. Magedanz,
“Towards container orchestration in fog computing infrastructures,” in
2017 IEEE 41st Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 2. IEEE, 2017, pp. 294-299.

S. Tuli, S. Poojara, S. N. Srirama, G. Casale, and N. Jennings,
“Cosco: Container orchestration using co-simulation and gradient based
optimization for fog computing environments,” IEEE Transactions on
Parallel and Distributed Systems, 2021.

F. Faticanti, L. Maggi, F. De Pellegrini, D. Santoro, and D. Siracusa,
“Fog orchestration meets proactive caching,” in 2021 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM). 1EEE,
2021, pp. 878-883.

C. Chang, S. Narayana Srirama, and R. Buyya, “Indie Fog: An efficient
fog-computing infrastructure for the Internet of Things,” Computer,
vol. 50, no. 9, pp. 92-98, Sep. 2017.

A. Bozorgchenani, D. Tarchi, and W. Cerroni, “On-demand service
deployment strategies for Fog-as-a-Service scenarios,” IEEE Commun.
Lett., vol. 25, no. 5, pp. 1500-1504, May 2021.

R. Moallemi, A. Bozorgchenani, and D. Tarchi, “An evolutionary-based
algorithm for smart-living applications placement in fog networks,” in
2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA,
Dec. 2019.

D. Tarchi, S. Grandi, and W. Cerroni, “Android-based implementation
of a fog computing and networking environment,” in 2019 IEEE Wire-
less Communications and Networking Conference (WCNC), Marrakesh,
Marocco, Apr. 2019.

D. Milojicic, “The edge-to-cloud continuum,” Computer, vol. 53, no. 11,
pp. 16-25, Nov. 2020.

X. Wei, C. Tang, J. Fan, and S. Subramaniam, “Joint optimization
of energy consumption and delay in cloud-to-thing continuum,” /EEE
Internet Things J., vol. 6, no. 2, pp. 2325-2337, Apr. 2019.

F. van Lingen, M. Yannuzzi, A. Jain, R. Irons-Mclean, O. Lluch,
D. Carrera, J. L. Perez, A. Gutierrez, D. Montero, J. Marti, R. Maso,
and J. P. Rodriguez, “The unavoidable convergence of NFV, 5G,
and fog: A model-driven approach to bridge cloud and edge,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 28-35, 2017.

J. Kempf, C. E. Perkins, and E. Guttman, “Service Templates
and Service: Schemes,” RFC 2609, Jun. 1999. [Online]. Available:
https://rfc-editor.org/rfc/rfc2609.txt

M. D. Day, C. E. Perkins, J. Veizades, and E. Guttman, “Service
Location Protocol, Version 2,7 RFC 2608, Jun. 1999. [Online].
Available: https://rfc-editor.org/rfc/rfc2608.txt

M. Valieri, “Dynamic resource and service discovery in fog computing,”
Master’s thesis, University of Bologna, Bologna, Italy, 2021. [Online].
Available: http://amslaurea.unibo.it/22265/

Zabbix - Enterprise-class Open-source Distributed Monitoring Solution.
[Online]. Available: https://www.zabbix.com/

R. T. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content,” RFC 7231, Jun. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7231.txt

R. A. Brualdi, Introductory Combinatorics, 5th ed. Pearson, 2010.

Gianluca Davoli (Member, IEEE) received his
M.Sc. and Ph.D degrees in Telecommunications
Engineering from the University of Bologna, Italy,
in 2017 and 2021, respectively. He is currently
a Post-Doc Researcher and Adjunct Professor at
the same institution. His research interests revolve
around communication networks, focusing on the
new approaches to programmability, management,
and monitoring of software-based network infras-
tructures.

Walter Cerroni [M’01, SM’16] is an Associate Pro-
fessor of Communication Networks at the University
of Bologna, Cesena Campus, Italy. He graduated in
Telecommunication Engineering from the University
of Bologna in 1999, and obtained his Ph.D. in
Electronic and Computer Engineering from the same
institution in 2003. In 1999 he was an intern at
the Alcatel Corporate Research Center, Dallas, TX,
USA, partly with a grant as Visitor Researcher from
the University of Texas at Dallas. From 2003 to
2005 he was a Research Associate at the National
Inter-University Consortium for Telecommunications (CNIT), Italy. From
2005 to 2020 he was an Assistant Professor at the University of Bologna.
In 2008 he was Visiting Assistant Professor at the School of Information
Sciences, University of Pittsburgh, USA. Walter Cerroni coauthored more
than 140 articles published in the most renowned international journals,
magazines, and conference proceedings. His recent research interests focus
on multiple aspects of control, management and orchestration of communica-
tion network infrastructures, including software-defined networking, network
function virtualization, multi-access edge computing, fog computing, service
function chaining, intent-based networking systems. He serves/served as
Series Editor for the IEEE Communications Magazine, Associate Editor for
the IEEE Communications Letters, and Technical Program Co-Chair for IEEE-
sponsored international workshops and conferences.

Davide Borsatti received his B.S. and M.S. in
Telecommunications Engineering from University
of Bologna in 2016 and 2018, respectively. He is
currently enrolled in the Electronics, Telecommuni-
cations, and Information Technologies Engineering
PhD program from the University of Bologna. His
research interests include NFV, SDN, Intent Based
Networking, MEC and 5G Network slicing.

Mario Valieri received his Bachelor’s in Electronic
Engineering and Master’s Degree in Telecommuni-
cations Engineering from the University of Bologna,
Italy, in 2018 and 2021 respectively. He is currently
a Firmware Engineer at Eggtronic, Modena, Italy.
His interests focus on embedded devices, digital
hardware design and computer science.

Daniele Tarchi (S’99-M’05-SM’12) was born in
Florence, Italy in 1975. He received his M.Sc. de-
gree in Telecommunications Engineering and Ph.D.
degree in Informatics and Telecommunications En-
gineering from the University of Florence, Florence,

{
! ‘3 Italy, in 2000 and 2004, respectively. From 2004 to
& . / 2010, he was a Research Associate with University
b of Florence, Italy. From 2010 to 2019 he was an
/ Assistant professor at the University of Bologna,
Bologna, Italy. Since 2019 he has been an Associate
Professor at the University of Bologna, Italy. He
is the author of more than 130 published articles in international journals
and conference proceedings. His research interests are mainly on Wireless
Communications and Networks, Satellite Communications and Networks,
Edge Computing, Fog Computing, Smart Cities, and Optimization Techniques.
He has been involved in several national and international research projects,
and collaborates with several foreign research institutes. Prof. Tarchi is
an IEEE Senior Member since 2012. He is Editorial Board member for
IEEE Wireless Communications Letters, IEEE Transactions on Vehicular
Technology and IET Communications. He has been symposium co-chair for

IEEE WCNC 2011, IEEE Globecom 2014, IEEE Globecom 2018 and IEEE
ICC 2020, and a workshop co-chair at IEEE ICC 2015.

Carla Raffaelli is Associate Professor at the Uni-
versity of Bologna. She received her M.Sc. and
Ph.D degrees in electronic and computer engineering
(University of Bologna, Italy), in 1985 and 1990,
respectively. Her research interests include per-
formance analysis of telecommunication networks,
switch architectures, optical networks and 5G net-
works. She actively participated in many National
and International research projects, such as the
EU funded ACTS-KEOPS, the IST-DAVID, the e-
photon/One and BONE networks of excellence. She
is author or co-author of more than 150 conference and journal papers mainly
in the field of optical networking and network performance evaluation. She
regularly acts as a reviewer for top international conferences and journals and
serves as Technical Program Committee member in several IEEE International
Conferences, like ICC, Globecom and HPSR. Since October 2013 she is a
member of the editorial board of the journal Photonic Network Communi-
cations by Springer. She is associate editor of IEEE OJ- COMS since its
foundation. She is IEEE Senior Member since 2016 and OSA member. She
is the Director of the International Telecommunications Engineering Master’s
Degree at the University of Bologna, Italy.

