
7

Unsupervised Anomaly Detectors to Detect Intrusions in the

Current Threat Landscape

TOMMASO ZOPPI, ANDREA CECCARELLI, TOMMASO CAPECCHI, and
ANDREA BONDAVALLI, Dept. of Mathematics and Informatics, University of Florence, Italy

Anomaly detection aims at identifying unexpected fluctuations in the expected behavior of a given system.

It is acknowledged as a reliable answer to the identification of zero-day attacks to such extent, several ML

algorithms that suit for binary classification have been proposed throughout years. However, the experimen-

tal comparison of a wide pool of unsupervised algorithms for anomaly-based intrusion detection against a

comprehensive set of attacks datasets was not investigated yet. To fill such gap, we exercise 17 unsupervised

anomaly detection algorithms on 11 attack datasets. Results allow elaborating on a wide range of arguments,

from the behavior of the individual algorithm to the suitability of the datasets to anomaly detection. We con-

clude that algorithms as Isolation Forests, One-Class Support Vector Machines, and Self-Organizing Maps

are more effective than their counterparts for intrusion detection, while clustering algorithms represent a

good alternative due to their low computational complexity. Further, we detail how attacks with unstable,

distributed, or non-repeatable behavior such as Fuzzing, Worms, and Botnets are more difficult to detect. Ul-

timately, we digress on capabilities of algorithms in detecting anomalies generated by a wide pool of unknown

attacks, showing that achieved metric scores do not vary with respect to identifying single attacks.

CCS Concepts: • Security and privacy → Intrusion/anomaly detection and malware mitigation; •

Computer systems organization → Dependable and fault-tolerant systems and networks; • Net-

works;

Additional Key Words and Phrases: Anomaly detection, intrusion detection, unsupervised algorithms, com-

parison, attacks datasets, machine learning

ACM Reference format:

Tommaso Zoppi, Andrea Ceccarelli, Tommaso Capecchi, and Andrea Bondavalli. 2021. Unsupervised Anom-

aly Detectors to Detect Intrusions in the Current Threat Landscape. ACM/IMS Trans. Data Sci. 2, 2, Article 7

(March 2021), 26 pages.

https://doi.org/10.1145/3441140

1 INTRODUCTION

It is fully acknowledged that systems and networks are subject to cyber-attacks. According to
the U.S.A. Committee on National Security Systems Glossary [57], cybersecurity is defined as

This work has been partially supported by the REGIONE TOSCANA POR FESR 2014-2020 SISTER and by the H2020

programme under the Marie Sklodowska-Curie grant agreement 823788 (ADVANCE) projects.

Authors’ addresses: T. Zoppi, A. Ceccarelli, T. Capecchi, and A. Bondavalli, Dept. of Mathematics and Informatics,

University of Florence, Italy; emails: tommaso.zoppi@unifi.it, andrea.ceccarelli@unifi.it, tommaso.capecchi@stud.unifi.it,

bondavalli@unifi.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2577-3224/2021/03-ART7 $15.00

https://doi.org/10.1145/3441140

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

https://doi.org/10.1145/3441140
mailto:permissions@acm.org
https://doi.org/10.1145/3441140

7:2 T. Zoppi et al.

“prevention of damage to, protection of, and restoration of computers, electronic communications sys-

tems, electronic communications services, wire communication, and electronic communication, includ-

ing information contained therein, to ensure its availability, integrity, authentication, confidentiality,

and nonrepudiation.”
Among protection measures, Intrusion Detection Systems (IDSs [6, 9, 13]) were proposed to

enhance network and system security. IDSs collect and analyze data from networks and systems
indicators to detect malicious or unauthorized activities, based on the hypothesis that an ongoing
attack has distinguishable effects on such indicators.

Most enterprise IDSs adopt signature-based detection algorithms [14, 49], which search for pre-
defined patterns (or signatures) in the monitored data to detect an ongoing attack that matches
one or more signatures. Signature-based approaches usually score high detection capabilities and
low false positive rates against known attacks [50], but they are not effective when the behavior of
attacks gets slightly modified, calling for an update of signatures. In particular, they are not meant

to detect zero-day attacks, which are novel attacks that cannot be matched to any known signa-
ture [51]. Moreover, when a zero-day attack that exploits newly added or undiscovered system
vulnerabilities is identified, its signature needs to be devised and added as a new rule to the IDS.

Anomaly Detectors. To mitigate the problem above, anomaly detectors are intended to find

patterns in data that do not conform to the expected behavior of a system (or a network) [1]: these
patterns are called anomalies. Anomaly-based IDS are built on the assumption that ongoing at-
tacks will generate observable anomalies in the trend of performance indicators, or features, of
the system [52], of network [50], or both [13]. Unsupervised algorithms perfectly fit this activity,
as they can adapt themselves to suit the current context of the system and ultimately detect un-
known attacks [22, 64]. However, their detection efficacy depends on the ability of characterizing
the expected behavior: A poor characterization of such behavior negatively impacts on the iden-
tification of malicious anomalous activities. As a consequence, anomaly-based detectors usually
generate a higher number of false alarms than signature-based methods [7, 54].

Different anomaly detection algorithms usually exhibit [24, 54] different rates of missed (False
Negatives) and wrong detections (False Positives) and, consequently, have different detection capa-
bilities. Although most of such algorithms have a generic, context-independent formulation, they
are often more effective to detect specific attacks on specific systems or applications [5]. Moreover,
the manifestation of the anomaly itself is usually different from attack to attack and from system
to system. Consequently, selecting the correct detection algorithm represents a crucial decision when

defining an anomaly-based IDS. An erroneous choice decreases the attack detection capabilities of
the IDS, reducing its ability to secure the target system and network.

Article Aim. In this article, we present a quantitative comparison of anomaly detection algo-
rithms applied on multiple attacks datasets. We adopt unsupervised anomaly detection algorithms,
since they are known to be the most suitable way to deal with zero-day attacks. More in detail, we
identify a total of 17 unsupervised anomaly detection algorithms that have been previously used
for intrusion detection, at least one for each of the seven families (clustering, statistical, classifica-
tion, neural network, neighbor-based, density-based, and angle-based) that are usually considered
when grouping unsupervised anomaly detection algorithms [1, 3]. Then, we identify 11 attacks
datasets, namely, NSL-KDD [18] (2009), CTU-13 [32] (2011), ISCX [17] (2012), UNSW-NB15 [16]
(2015), UGR16 [31] (2016), NGIDS-DS [21] (2017), Netflow-IDS [21] (2017), AndMal17 [33] (2017),
CIDDS-001 [19] (2017), CICIDS17 [20] (2017), and CICIDS18 [20] (2018), to be used as data baseline
for our experimental campaign. Since the datasets contain attacks labeled according to different
nomenclatures, we also categorize the attacks of the datasets according to categories defined by
the most recent studies on threat landscapes.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:3

Exercising the selected algorithms on the datasets above allows comparing the behavior of the
algorithms—individually and as families—with respect to the datasets and the attacks of our attack
model. Finally, we observe how the intrinsic characteristics of attacks, along with an adequate
distribution of expected and anomalous data points in the datasets, helps improve detection scores,
because they help algorithms to properly define the expected behavior.

This allows observing how unsupervised algorithms as Isolation Forests, One-class Support Vec-
tor Machines, and Self-organizing Maps show less misclassifications than algorithms belonging to
other families. Instead, clustering algorithm represent a valid alternative due to a good tradeoff
between misclassifications and low computational complexity needed for training. Moreover, we
observe that relevant attacks in the current threat landscape, such as Fuzzing, Worms, and Bot-
nets, are trickier to detect than others, causing algorithms to generate a higher number of mis-
classifications with respect to attacks as web attacks and denial of service. Detection capabilities
of algorithms are also tested by submitting wide ranges of common attacks, showing that metric
scores they achieve are comparable with respect to setups where the same attack was activated
multiple times.

Article Structure. This article is structured as follows: Section 2 presents the current cyber
threat landscape, zero-day attacks, and anomaly detection, alongside with a literature review on
the comparison of anomaly detection algorithms for intrusion detection. Section 3 presents our
experimental campaign and their inputs including the selection of the algorithms, the datasets,
the attack model, and the metrics that will be used for the experimental evaluation. Following sec-
tions present and discuss results: Section 4 expands on algorithms, Section 5 focuses on detection
capabilities of algorithms on each dataset, and Section 6 debates on detectability of specific attacks.
Section 7 concludes the article, points out potential limitations of this study, and summarizes the
lessons learned.

2 ATTACKS AND INTRUSION DETECTION

Security specialists are continuously looking for mechanisms and strategies that aim at neutraliz-
ing an attack or mitigating its adverse effects. Regardless of their characteristics, attacks [6, 9, 13]
should be timely identified to activate reaction mechanisms that aim at blocking an ongoing attack
or protecting critical data. To such extent, many Intrusion Detection Systems (IDSs) were proposed
in the literature to prevent attackers from exploiting security breaches or vulnerabilities. IDSs rely
on monitoring activities that gather actionable data from the system under observation. The pool
of system indicators that are observed, e.g., resource usage, active threads, application-specific
indicators, become the features to be fed to a classifier that performs intrusion detection.

In the following, we will expand on the current cyber threat landscape as described in technical
reports by security agencies, and how anomaly detection may help in protecting systems, with a
particular attention to the detection of zero-day attacks. To complete the section, which constitutes
the baseline of the article, we will summarize related works, positioning our article in the literature.

2.1 Cyber Threats Landscape

The report from Check Point Research [10] highlights some of the most common attacks that were
conducted against organizations, infrastructures, and honeypots in the past two years. Authors
show how malwares are the most common cyber-threat, expanding on arising trends that they
expect to affect cybersecurity in the next years, namely, (i) targeted ransomware, a ransomware
that is submitted to organizations through botnets; (ii) cryptominers, which aim at exploiting the
resources of the host computer to perform mining; and (iii) DNS Attacks, which target the process
of resolving domain names into their corresponding IP addresses. The rapidly growing trend of
crypto-related attacks was confirmed by the last ENISA’s Threat Landscape Report [11], which

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:4 T. Zoppi et al.

Fig. 1. Common threats from ENISA’s Threat Landscape [11].

presents the most common malware families including—but not limiting to—as (i) malware spread
via Smartphone (mobile environment) and (ii) threats to cryptocurrencies, i.e., CryptoJacking and
Cryptominers.

Noticeably, the ENISA [11] document provides a rank of the most common threats in the current
landscape, which we report in Figure 1. Such categories are shortly described below.

• Malware (Rank #1 in Figure 1): a software that aims at damaging devices, stealing data, and
generally threatening the system with malicious activities.

• Web-based attacks (Rank #2): this category includes attacks that use web systems or ser-
vices; the main vectors, i.e., the points and methods of entry on which these attacks can be
conducted, are Browser Exploits, Drive-by-Download, or malicious URLs.

• Web Application Attacks (Rank #3): they exploit the software vulnerabilities of web appli-
cations, e.g., SQL-injection (SQLi). Their increasing relevance is due to digital applications
and services that have been—and are currently being—ported on web services.

• Web/Mail Attacks (Phishing #4, and Spam #6): Spam is the abusive use of email and mes-
saging technologies to flood users with unsolicited messages, while phishers try to lure the
recipients of phishing emails and messages to, e.g., open a malicious attachment, click on
an unsafe URL, hand over their credentials via legitimate looking pages, wire money. Over
90% of malware infections in organizations originate from phishing attacks [12].

• Denial of Service (DoS, Rank #5): DoS and DDos (Distributed DoS) attacks represent a cat-
egory of attacks that damage availability of platforms or services. Common threats exploit
vulnerabilities of the UDP, TCP, and ICMP network protocols.

• Botnets (Rank #7): a network of Bots (computers compromised by malware—zombies) co-
ordinated by a malicious Botmaster. Despite this type of attack is often associated with
DoS this type of attack is used in various areas: financial-economic, Internet of Things, and
Cryptocurrency.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:5

• Data Breaches (Rank #8): this category groups all threats to integrity and/or confidentiality
of data. It includes all the scanning, probing, and reconnaissance attacks that passively—and,
often, stealthily—gather information about a given system, organization, or individual, and
specific types of malware who steal data from the victim.

Note that we stopped at the 8th position in the rank, because from that point on the report
[11] starts describing threats that may not have clear impacts on system data, such as insiders

or physical damages. These are primarily meant to be mitigated or avoided through mechanisms
other than intrusion detection, i.e., access control, physical protections to components.

2.2 Zero-day Threats

The wide range of cyberattacks, alongside with their natural ability to evolve, obfuscate, and hide in
between legitimate events, making them difficult to understand and analyze. However, antiviruses
and enterprise IDS embed signature-based approaches to detect known faults [13, 14]. Briefly, a
signature—or fingerprint—of each known attack is derived and added to a local database, which
checks if the state of the system matches with at least one signature of the known threats. How-
ever, a solid IDS cannot rely only on detecting known—and expected—attacks; therefore, security
specialists should consider mechanisms that are able to detect zero-day attacks [51, 54]. These
mechanisms are not meant to replace traditional signature-based approaches that were proven to
be effective in detecting known threats. Instead, they should be used alongside with traditional
mechanisms to provide a complete protection against intrusions.

To deal with unknowns, research moved to techniques suited to detect unseen, novel attacks.
Anomaly detectors [1] are based on the assumption that an attack generates observable devia-
tions from an expected—normal—behavior. Briefly, they aim at finding patterns in data that do
not conform to the expected behavior of a system: such patterns are known as anomalies. Once an
expected behavior is defined, anomaly detectors target deviations from such expectations, protect-
ing against known attacks [2, 7], zero-day attacks [6], and emerging threats [8]. To such extent,
most of the anomaly detection algorithms are unsupervised, suiting the detection, among others,
of zero-day attacks, without requiring labels in training data [3–5].

2.3 Unsupervised Anomaly Detection Algorithms and Families

In the article, we refer to data point as the observation of the state of the system at a given instant,
which is described by an item in datasets. Each data point is composed by f feature values, which
are processed by an anomaly detection algorithm to determine if the data point exhibits anomalies.

More in detail, anomalies are rare data points that were classified [1] as: (i) point anomaly (global
outlier): a data point that is out of scope or not compliant with the trend of a variable, e.g., out-
of-size payload of a network packet; (ii) contextual anomaly (local outlier): a data point that is
unexpected in a specific context, e.g., low number of page faults while loading a program for the
first time, or (iii) collective anomaly: a collection of related data points that is anomalous with
respect to the entire trend or dataset, e.g., subsequent ICMP requests in a short interval of time.

Different anomaly detectors may be instantiated depending on the nature of the target system
and monitored data. If labeled training data is available, supervised anomaly detection or semi-
supervised may be adopted [2]. Labelled data points allow training an algorithm using both ex-
pected and anomalous data points that have already been reported. This way, the algorithm is fed
with anomalies due to known attacks and learns how they differ from expectations, disregarding
the detection of anomalies due to unseen attacks. Instead, when focusing on zero-day attacks, or
when training data is not labeled, the only option is an unsupervised anomaly detection approach
[3–5, 54].

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:6 T. Zoppi et al.

Different unsupervised anomaly detectors have been proposed throughout years. They rely
on ML algorithms that are suited for binary classification, to distinguish between normal and
anomalous data points. Throughout years, unsupervised algorithms have been studied and
compared [64] to derive similarities or differences, devising families of algorithms [1, 3, 5, 54].
Clustering algorithms partition a dataset grouping data points in the same cluster if they share
similar characteristics. Data points that cannot be assigned to any of the existing clusters, or
that do not meet specific inclusion criteria, are anomalous. Instead, neighbor-based algorithms
label a data point as anomalous or expected depending on the distance with respect to its nearest
neighbor(s). Similar algorithms, instead, estimate the density of the surroundings of each data
point. An alternative detection mechanism is provided by angle-based algorithms, which measure
the variance in the angles between the data point to the other known data points; anomalies
typically result in very small variance of angles. Classification algorithms identify the binary
class of a new data point devising adequate boundaries, while statistical algorithms assume that
anomalous data points occur in low probability regions of a given statistical distribution derived
during training. Last, unsupervised neural networks produce a two-dimensional, discretized
representation of the input space, the so-called map. It is worth noticing that there are some
unavoidable semantic overlaps among families; for example, nearest-neighbor methods may be
used to define variations of algorithms as in the angle-based FastABOD [26].

2.4 On the Comparison of Unsupervised Algorithms

In such a context, we think that a deep comparison among anomaly detection algorithms for intru-
sion detection is needed to understand which (family of) algorithm is recommended when dealing
with attacks and systems. Throughout years, multiple comparison studies were proposed [3–5].
The authors of Reference [58] used seven algorithms on a single proprietary dataset containing
HTTP traffic, providing an open-source IDS testing framework. Similarly, in Reference [59] au-
thors evaluate four algorithms on a single dataset, focusing more on feature selection. Instead,
in Reference [7], authors presented a comparative study for intrusion detectors where k-Nearest
Neighbors (kNN), Mahalanobis-based, Local Outlier Factor (LOF), and one-class Support Vector
Machines (SVM) were evaluated using only the DARPA 98 dataset and real network data (for a total
of two datasets). Similarly, in Reference [61] authors compared three unsupervised anomaly detec-
tion algorithms for intrusion detection: Cluster-based Estimation, kNN, and one-class SVM using
network records stored in the KDD Cup 99 dataset and system call traces from the 1999 Lincoln
Labs DARPA evaluation. Four algorithms are evaluated in Reference [60], which presents a review
of novelty detection methods that are classified into semi-supervised and unsupervised categories.
The algorithms are exercised on 10 different datasets regarding medical and general-purpose data.

Summarizing, it is not easy to find studies that apply a wide range of unsupervised algorithms
to datasets containing data related to the most common attacks in the current threat landscape.
In Reference [58] the authors considered a single proprietary dataset, while the work in Refer-
ence [7] uses two datasets and four algorithms, without taking into account all the main families
of algorithms defined in Reference [1] and refined in Reference [3]. Similarly, in Reference [61]
the authors used three algorithms on two datasets, while, Reference [2] uses three unsupervised
algorithms on two datasets. Only Reference [5] executes different algorithms on a (small) group
of datasets and organizes the results according to a unified attack model. All these studies do not
provide a comprehensive view on algorithms to be applied for unsupervised anomaly detection,
and execute experiments without adopting a shared methodology. Therefore, we strongly believe

that a quantitative comparison of unsupervised anomaly detection algorithms applied on multiple

attacks datasets can provide researchers and practitioners a solid baseline on detection capabilities of

multiple algorithms when detecting current threats.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:7

3 QUANTITATIVE ANALYSES AND EXPERIMENTAL CAMPAIGN

To substantiate and elaborate on how and if different unsupervised anomaly detection algorithms
can detect attacks in the current threat landscape, it is fundamental to quantitatively evaluate their
detection capabilities. Therefore, we planned and executed an experimental campaign as follows:

• We collect public datasets that contain data related to the attacks in Section 2.1 [11]. Datasets
should be recent and collected while monitoring real systems.

• Then, we review the literature aiming at finding unsupervised algorithms that are meant to
perform binary classification and are therefore suitable for anomaly detection. Among all
the possible alternatives, we disregard variants of algorithms, aiming instead to span across
all families identified in Section 2.3.

• Then, we apply each algorithm to each dataset, collecting metric scores. These metrics de-
scribe detection capabilities of algorithms on each datasets, accounting also for classification
errors, which are relevant items to discuss results.

Once the experiments have been executed, discussion on experimental data should explore (i)
detection capabilities of algorithms across all datasets/attacks, (ii) attacks or categories of attacks
that are particularly easy/difficult to identify, and (iii) datasets that turn out to be particularly easy
or challenging for anomaly detection.

Different inputs are needed to execute our experimental campaign. First, Section 3.1 describes
publicly available datasets that contain data about normal behavior of a system and attacks rel-
evant to the current threat landscape. Then, unsupervised algorithms are briefly introduced in
Section 3.2, leaving Section 3.3 to describe the metrics that will be used to evaluate detection capa-
bilities of algorithms on datasets. The supporting tool and further details on the implementation
of the experimental campaign are summarized in Section 3.4 and Section 3.5, which complete the
digression on the experimental campaign and makes room for discussions in the rest of the article.

3.1 Publicly Available Datasets

Attack datasets are usually structured as a set of features that describe the system indicators being
monitored by system owners. They contain a given amount of data points, which are observation
of system indicators (i) when specific events happen or (ii) at predefined time intervals. Moreover,
in most of the cases authors provide labels to group data points that were collected when system
was under attack. While these labels are not needed to train unsupervised algorithms, they turn out

useful to estimate detection capabilities of algorithms through confusion matrix-based metrics, which
also allow comparing the effectiveness of different algorithms on the same dataset.

Starting from Reference [15] and by querying online portals,1,2 we select datasets with the fol-
lowing characteristics: (i) published recently, (ii) labelled (at least partially), (iii) that contain at
least one of the attacks in the ENISA top 10, and (iv) already used in the literature for intrusion
detection studies. The resulting datasets are shown in Table 1 and briefly described below.

• (2009) NSL-KDD [18]. This dataset solves problems in the KDD Cup 99 dataset as (i) the pres-
ence of redundant records in train sets and (ii) duplicates in test sets. The dataset contains
the following attacks: DoS, R2L (unauthorized access from a remote machine), U2R (unau-
thorized access to super-user or root functions), and Probing (gather information about a
network).

1AZSecure – Intelligence and Security Informatics Datasets, https://www.azsecure-data.org/other-data.html.
2UNB – Canadian Institute for CyberSecurity, https://www.unb.ca/cic/datasets/index.html.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

https://www.azsecure-data.org/other-data.html
https://www.unb.ca/cic/datasets/index.html

7:8 T. Zoppi et al.

Table 1. Mapping of Attacks to Datasets

Attack
Category Malware Web Attack Web Application

Spam /
Phishing (D)Dos BotNet Data Breaches

ENISA Rank 1 2 3 4, 6 5 7 8

NSL-KDD u2r r2l DoS Probe

CTU-13 BotNet

ISCX12 BruteForce DoS, DDoS Infiltration

UNSW-NB15 Worms Fuzzers Backdoor,
Exploits, Shellcode

DoS Analysis,
Reconnaissance

UGR16 Blacklist,
Spam

DoS BotNet Scan

NGIDS-DS Malware,
Worms

Backdoor,
Exploits, Shellcode

DoS Reconnaissance

Netflow-IDS Mailbomb Neptune,
Portsweep

AndMal17 Ransomware,
Scareware

SMS, Adware

CIDDS-001 BruteForce DoS PortScan, PingScan

CICIDS17 BruteForce DoS
(Slowloris,
Goldeneye)

PortScan

CICIDS18 BruteForce
(FTP, SSH)

DoS, DDoS Bot Infiltration

Overall, 51 combinations of <dataset, attack> are shown.

• (2011) CTU-13 [32]. The CTU-13 is a dataset of botnet traffic that was captured in the CTU
University, Czech Republic, in 2011. The goal of the dataset was to have a large capture of
real botnet traffic mixed with normal traffic and background traffic. The CTU-13 dataset
consists in 13 captures (called scenarios) of different botnet samples.

• (2012) ISCX12 [17]. It is generated in a controlled environment based on a realistic network
and traffic to depict the real effects of attacks over the network and the corresponding
responses of workstations. Four different attack scenarios are simulated: infiltration, HTTP
denial of service, a DDoS by using an IRC botnet, and SSH brute-force login attempts.

• (2015) UNSW-NB15 [16]. Released by the Australian Defense Force Academy in the Uni-
versity of New South Wales, it contains: (i) Exploits of a generic vulnerability, (ii) DoS, a
(Distributed) Denial of Service, (iii) Worms, (iv) Fuzzers, (v–vi) Reconnaissance and Analy-
sis, attacks that aim at gathering information, (vii) Shellcode, a code used as the payload in
exploits, and (viii) Backdoors, to bypass security mechanisms and access sensitive data.

• (2016) UGR16 [31]: UGR is built with real traffic and up-to-date attacks. These data come
from several netflow v9 collectors strategically located in the network of a Spanish ISP. The
dataset considers long-term evolution and traffic periodicity and embeds normal traffic as
well as data related to DoS, BotNet, Scan, Blacklist, and Spam attacks.

• (2017) NGIDS-DS [21]. It contains network traffic in packet-based format as well as host-
based log files. It was generated in an emulated environment, using the IXIA Perfect Storm
tool to generate normal user behavior as well as attacks from seven different attack families
(e.g., DoS or worms).

• (2017) Netflow-IDS [21]: The dataset was created at the next generation cyber range in-
frastructure of the Australian Centre Of Cyber Security (ACCS) for the Australian Defence
Force Academy (ADFA), Canberra. It is part of the ongoing projects in the ADFA related to
the cyber security. It contains normal and abnormal host (LINUX) and network activities

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:9

Fig. 2. Unsupervised algorithms selected for this study, grouped through families.

that are performed during the emulation. It contains DoS attacks as Neptune, Portsweep,
and MailBomb (Spam), which authors deemed relevant for future IDS design.

• (2017) AndMal17 [33]. The dataset was collected by running both malicious and benign
applications on real smartphones to avoid runtime behavior modification of advanced mal-
ware samples that are able to detect the emulator environment. Data relates to over 6,000
benign apps from Google Play market published in 2015, 2016, 2017, and contains the fol-
lowing macro-categories: Ransomware, Scareware, SMS Malware, Adware.

• (2017) CIDDS-001 [19]. The CIDDS-001 dataset was captured within an emulated small busi-
ness environment in 2017, contains four weeks of unidirectional flow-based network traffic,
and contains several attacks captured from the wild.

• (2017) CICIDS17 [20]. CICIDS 2017 was created within an emulated environment over a
period of five days and contains network traffic in packet-based and bidirectional flow-based
format. For each flow, the authors extracted more than 80 features. The data set contains a
wide range of attack types like SSH brute force, Botnet, DoS, DDoS, and web and infiltration
attacks.

• (2018) CICIDS18 [20]. Similarly to CICIDS 2017, CICIDS 2018 was created as an updated
version of the previous dataset, containing Brute-Force, Botnet, DoS, DDoS, Web, i.e., SQLi,
and Infiltration attacks.

Overall, the 11 datasets we selected are mapped with respect to ENISA attacks as shown in Table 1.
The table allows identifying 51 couples of <dataset, attack>, pointing to portions of datasets log-
ging a single type of attack and normal behavior. Datasets such as CICIDS17 or AndMal17 are
created by exercising specific attacks in different timeframes and already report on separate files
containing normal behavior and attack data. Other datasets such as NSLKDD or UGR16 log differ-
ent attacks in the same timeframe, still without overlaps, i.e., at most one attack is conducted at
a given time. In the latter case, we skipped data points reported on attacks other than the target
while building portions of the datasets. It is worth noticing that each of the eight most common
attack categories is mapped onto at least three different datasets; as a result, the datasets above

are representative of the most common attacks of the current threat landscape.

3.2 Unsupervised Algorithms

As shown in Figure 2, we choose a heterogeneous set of 17 different unsupervised algorithms
that are grouped according to the family they belong and are briefly described below. The

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:10 T. Zoppi et al.

heterogeneous choice of algorithms allows embracing a wide range of algorithms that build on
different heuristics, giving this study a solid algorithm baseline to rely upon. Note that Neural
Network, Classification, and Neighbor-based algorithms have a computational complexity that
is at least quadratic, while the angle-based computation employed by ABOD [26] has cubic
complexity. Clustering and Statistical algorithms, instead, may have semi-linear computational
complexity, i.e., [25, 34, 35].

3.2.1 Clustering (K-Means, G-Means). K-means [44] is a popular clustering algorithm that
groups data points into k clusters by their feature values. First, the k cluster centroids are ran-
domly initialized. Then, each data record is assigned to the cluster with the nearest centroid, and
the centroids of the modified clusters are re-calculated. This process stops when the centroids are
not changing anymore. Scores of each data point inside a cluster are calculated as the distance to
its centroid.

Stemming from K-Means, G-Means [34] automatizes the choice of the optimal k through subse-
quent repetitions of trainings, assuming that data points inside clusters are distributed according
to a normal distribution.

3.2.2 Statistical (HBOS, SOS). The Histogram-based Outlier Score (HBOS) algorithm is a statis-
tical approach [25] that generates a histogram for each independent feature of the given dataset.
The values of the features of all the available data points are first used to build histograms; at a
later stage, for each data point, the anomaly score is calculated as the multiplication of the inverse
heights of the columns in which each of its features falls.

Instead, Stochastic Outlier Selection (SOS) [43] employs the concept of affinity to quantify the
relationship from one data point to another data point. Affinity is proportional to the similarity
between two data points: A data point has little affinity with a dissimilar data point. As a result, a
data point is more likely to be anomalous when all the other data points have insufficient affinity
with it.

3.2.3 Classification (One-Class SVM, Isolation Forests). The One-class Support Vector Machine

(one-class SVM) algorithm aims at learning a decision boundary to group the data points [28]. It can
be used for unsupervised anomaly detection, despite at first supervised support vector machines
(SVMs) were used only for (semi-)supervised anomaly detection. The one-class SVM is trained
with the dataset and then each data point is classified considering the normalized distance of the
data point from the determined decision boundary.

Isolation Forest (IF) [42] is built as an ensemble of Isolation Trees. Each isolation tree structures
data points as nodes, assuming that anomalies are rare events with feature values that differ a
lot from expected data points. Therefore, anomalies are more susceptible to isolation than the
expected data points, since they are isolated closer to the root of the tree instead of the leaves. It
follows that a data point can be isolated and then classified according to its distance from the root
of the trees of the forest.

3.2.4 Neural Network (Self-Organizing Maps). Kohonen’s Self-Organizing Maps (SOM) were
proposed [30] as an unsupervised alternative to most of the neural network–based classifiers.
More in detail, it is an artificial neural network that is trained using unsupervised learning to pro-
duce a binary representation of the input space of the training samples, i.e., a map. Self-organizing
maps differ from other artificial neural networks, as they apply competitive learning—through a
neighborhood-like function—as opposed to error-correction learning, i.e., backpropagation with
gradient descent.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:11

3.2.5 Angle-Based (ABOD). Angle-Based Outlier Detection (ABOD) [26] relates data to high-
dimensional spaces, using the variance in the angles between a data point to the other points
as anomaly score. Each data point in the dataset is used as the middle point p2 of a polygonal
chain (p1,p2,p3), while p1 and p3 are any two different data points of the dataset, p1, p2, p3. Then,
all the angles p1p2p3 are measured, and their variance is used to calculate the Angle-Based Out-
lier Factor (ABOF). Ultimately, anomalies typically result in very small variance in the angles from
couples of points.

3.2.6 Neighbor-Based (kNN, ODIN). Kth-Nearest Neighbor (kNN) [40] is a neighbor-based
method that was primarily designed to identify outliers in a supervised fashion. For each data
point, the whole set of data points is examined to extract the k items that have the most similar
feature values: these are the k nearest neighbors (NN). Then, the data point is classified as anoma-
lous if the majority of NN was previously classified as anomalous. Note that the nearest neighbors
are gathered in an unsupervised manner; therefore, unsupervised variants [41] of this method use
the distance to the kth neighbor as anomaly score.

Outlier Detection using Indegree Number (ODIN) [27] stems from kNN, which examines the whole
dataset to determine their feature distances to the given point. This allows isolating NN, creating
the kNN graph. Differently from kNN, ODIN classifies as anomalies the data points that have a
low number of in-adjacent edges in the kNN graph.

3.2.7 Density-Based (Sparse Density Observers). SDO (Sparse Data Observers) was devised [29]
to detect anomalies based on low-density models of data with reduced computational costs. Briefly,
it labels specific items of the training set as observers, which are then used to calculate the anomaly
score as the average distance of a data point to each observer. The initial choice of the observers
is randomized and then refined to identify the most meaningful observers.

3.2.8 Algorithms with Semantic Overlaps (LOF, COF, DBSCAN, LDCOF, ISOS, FastABOD). To
complete the selection process, we choose other six algorithms that have cross-cutting peculiar-
ities among families. Neighbors identification is employed to reduce noise and computational
complexity in the stochastic ISOS [37], the angle-based FastABOD [26], and in the density-based
LOF [39] and COF [36]. Interesting mixtures of clustering and density-based families allow
devising DBSCAN [38] and LDCOF [35], which builds a density-based anomaly detector on top
of an internal clustering procedure.

3.3 Evaluation Metrics

The effectiveness of anomaly detectors is usually assessed using correct detections (true positives
TP, true negatives TN) and wrong detections (false negatives FN, false positives FP), which build
the so-called confusion matrix. As in Reference [22], aggregated metrics such as Precision, Recall
(or Coverage), False Positive Rate, Accuracy, F-Score(β), F-Measure (F1), Area Under ROC Curve
(AUC) [24], and Matthews Coefficient (MCC) [23] are used in different studies, depending on the
domain. FP-inclined metrics such as Precision, FPR, and F-Score (with β < 1) are relevant when the
number of false alarms needs to be as low as possible, e.g., to increase usability, while Recall and
F-Score (with β > 1) are more relevant in those systems where FNs may constitute severe threats,
e.g., safety-critical systems, which also need domain-specific metrics [62].

For the sake of generality and easiness of comparison with other studies, in this study, we mainly
report on widely used metrics that weight FPs and FNs as equally undesired, i.e., F-Measure, Ac-
curacy, MCC. However, with unbalanced datasets, i.e., if a file reports on many attacks data and a
few normal data, some of the metrics above can be misleading [56], since they either (i) do not con-
sider all the four classes of the confusion matrix, i.e., F1, FScore(β), or (ii) consider all the classes

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:12 T. Zoppi et al.

Fig. 3. Building blocks of the experimental setup and methodology used in this article.

without weighting the size of trues and falses, i.e., Accuracy. To such extent, in this article, we
mainly discuss MCC, which does not show the weaknesses above.

3.4 Tool Support

To execute experiments, we account for tools that allow: (i) loading datasets related to attacks,
mainly CSV and ARFF files, (ii) executing unsupervised algorithms, and (iii) extracting the above-
mentioned metrics. Among all the available frameworks such as ELKI,3 WEKA, 4 or libraries such
as Pandas,5 our final choice has been RELOAD [45], an open-source tool6 that wraps the imple-
mentation of several unsupervised algorithms, which are often deemed the most useful [3, 5, 7]
for unsupervised anomaly detection in cyber-security. Moreover, the tool allows running exper-
iments through an intuitive user interface, automates the selection of the most relevant features
out of a dataset, embeds automatic tuning of algorithms’ parameters, includes built-in metrics
for the evaluation, and facilitates examining outputs through CSV files and graphical plots. Met-
rics are calculated by RELOAD in two steps: (i) a data point is processed by an algorithm, which
outputs a numeric score, then (ii) a threshold—or decision function [63]—is applied to convert
numeric scores into Boolean. This threshold is defined during training by the tool through grid
search among variants of interquartile range or confidence interval functions. Note that this tool
alone allows running all the algorithms selected for this study: Relying on a single tool allows
minimizing possible errors in the preparation and formatting of inputs/outputs.

3.5 Experiments Setup and Execution

We describe here the experimental setup for our study, which is also summarized in Figure 3.
Datasets/Tool Download. We downloaded the datasets in Section 4.A from their repositories

shaping them as CSV files. Then, we downloaded the latest release of RELOAD, setting up its
parameters.

Metric Setup. We adopt MCC as target metric: While this metric is used by RELOAD to find
optimal parameter values of algorithms, metrics other than MCC are still reported as output and
will be discussed in the remaining of the article.

Feature Selection. According to literature studies, out of the feature selection strategies made
available by RELOAD, we choose Information Gain [46] as feature selection strategy. Then, the tool

3“Elki data mining,” elki-project.github.io.
4“Weka 3: Data Mining Software in Java”, www.cs.waikato.ac.nz/∼ml/weka/.
5McKinney, Wes. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc., 2012.
6RELOAD Wiki, GitHub, https://github.com/tommyippoz/RELOAD/wiki.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

www.cs.waikato.ac.nz/{char '176}ml/weka/
https://github.com/tommyippoz/RELOAD/wiki

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:13

allows either to select the features that reach or exceed a given information gain score, or select
the n features that get the highest information gain rank. Since the former strategy may result
in a different number of selected features for each dataset, we choose to adopt the latter option
RELOAD provides, to standardize the amount of selected features across all the datasets. Since
several datasets have just a few numeric—non categorical—features, we set n = 3.

K-Fold. We proceed with a 10-fold sampling of the training set as widely suggested in the
literature [47].

Choice of Algorithm Parameters. Besides algorithms as ABOD and G-Means, which do not
rely on parameters, we try combinations of parameters, e.g., k for kNN-based algorithms k ϵ {1,
2, 3, 5, 10, 20, 50, 100}, and select the value that allows obtaining the best MCC value in a small
portion of dataset (not overlapping with the evaluation set) that is used for testing. We consider this
range as acceptable, since the amount of data points employed for training is always in the 5.000—
10.000 range, lower for algorithms as ABOD that have cubic complexity and therefore escalate into
memory errors when using many data points.

Connection to Datasets. RELOAD allows defining loaders, i.e., data files that specify parame-
ters to gather data from different data sources. We create a loader for each combination of <dataset,
attack>; each loader points to two separate training and validation sets. The validation set should
contain at least one data point that corresponds to the given attack, to calculate metrics scores.

Machine to Execute Experiments. Once all the parameters above are set, we run experimental
campaigns including all the datasets and algorithms considered in this study. The experiments have
been executed on a server equipped with Intel Core i7-6700 with four 3.40 GHz cores, 24 GB of
RAM, and 1TB of user storage.

Experiments Execution. Overall, executing the experiments required approximately 25 days
of 24 H execution. We executed all the 17 algorithms on all the datasets specified by the resulting
51 loaders, collecting confusion matrixes and metric scores computed by RELOAD. Overall, we
obtained a total of 867 triples <algorithm, loader, metric_values_on_validation>, which are going
to be presented and discussed in the next sections.

Moreover, to sustain the analysis we will be presenting in Section 6.3, we executed additional
experiments by training algorithms once for each dataset, using a training set that contains a
mixture of normal data points and all the attacks considered in the datasets. While some datasets
such as NK, NG, UG provide single files that already contain this mixture, we were forced to
artificially create it for other datasets, which report logs of different attacks executed in different
days and stored as separate files. This resulted in additional 187 experiments generating triples
structured as above, where each of our 17 algorithms was run on each of the 11 datasets.

All the metric scores and files that we used to collect and summarize values are publicly available
at Reference [55].

4 RESULTS OF UNSUPERVISED ANOMALY DETECTORS AND FAMILIES

After defining the experimental campaign, its inputs, and the way it has been exercised, in this
section, we start reporting experimental results, alongside with discussions. All the experimental

results, parameter setups, and intermediate RELOAD data, including metric scores that cannot be

shared in this document for brevity, are publicly available at Reference [55].

4.1 Detection Capabilities of Algorithms

We first explore the detection capabilities of each algorithm selected in this study. Our experi-
mental campaign provides metric scores for each algorithm on each of the 51 couples <dataset,
attack>: These 51 results can be aggregated to obtain the results in Figure 4. In the figure, we re-
port four different series of bars representing (i) average of MCC scores, with error bars reporting

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:14 T. Zoppi et al.

Fig. 4. Results of MCC, F1, ACC for each algorithm considered in this study, aggregated through datasets and

sorted left to right according to a decreasing MCC. On the secondary axis the plot shows # Best MCC, which

shows the amount of datasets in which a given algorithm shows the best MCC for that specific dataset.

on standard deviation, (ii) average F1, (iii) average ACC, and (iv) # Best MCC, which counts the
amount of datasets in which a given algorithm shows the best MCC.

This view on results allows elaborating on individual capabilities of algorithms, which are
shown from left to right according to their decreasing average MCC scores, depicted as green-
striped bars. Algorithms on the left of the figure can be considered as the best choices according
to the average value of MCC they provide. Noticeably, the average MCC alone does not provide
enough detail to substantiate our analysis, given the variability of scores as highlighted by error
bars reporting on standard deviation. Therefore, Figure 4 reports also on metrics other than MCC,
i.e., F1 and Accuracy, which are broadly used in similar studies. F1 follows a trend that is similar
to MCC: In the general case, high values of MCC are usually paired with high values of F1. In-
stead, Accuracy shows high values also for algorithms such as LOF and FastABOD, which do not
have high MCC and F1 average values. Accuracy values are relatively high due to an amount of
FNs and FPs that is low with respect to the amount of TPs and TNs. However, with unbalanced
datasets high values of accuracy may not be informative as other metrics [56], which aggregate
the confusion matrix differently.

The purple-squared bar series in Figure 4 reports on the amount of datasets where a given algorithm

shows the highest MCC scores out of the pool of available algorithms. Algorithms with very similar
values of MCC, F1, or ACC may have a different ranking according to this metric. An algorithm
may be either “good on average,” or be very good in specific situations and not so competitive in
another context. This is the case of SOM and One-Class SVM. Both show the best average MCC
scores, i.e., 0.54 among all the 51 couples of datasets and attacks but have very different values
of this last metric. In particular, SVM is the best algorithm for 16 out of the total 51 <dataset,

attack> (31.3%), while SOM shows excellent detection capabilities only in five situations. Standard
deviation of MCC scores results in 0.29 of SOM with respect to 0.35 for SVM, as it is confirmed by
shorter error bars for SOM in Figure 4. Consequently, SVM has more variability in its results: This
leads to more situations in which it is the best algorithm but exposes to other situations in which
SVM may raise more FNs and FPs with respect to most of the other algorithms.

Similarly to SVM, SDO shows high variability of MCC scores, reaching a standard deviation
of 0.36, the highest out of all algorithms, even higher than SVM. While its average MCC does not

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:15

Fig. 5. Average MCC and average Rank MCC for each family considered in this study, aggregated through

algorithms and datasets. The * indicates groups of algorithms that belong to multiple families.

stand out, SDO is the optimal algorithm in eight couples of dataset-attack, more than SOM, which has
a higher average MCC (0.54, against the 0.43 of SDO). Huge variability of MCC scores provided

by algorithms point out that they may either be very good or very bad, depending on the

dataset.

4.2 Focusing on Algorithm Families

Starting from the results of individual algorithms, we can observe our experimental results ac-
cording to algorithm families. As described in Section 2.3, each algorithm belongs to at least one
family, while semantic overlaps of an algorithm between two or more families cannot be avoided.
In these cases, algorithms are considered as belonging to all the overlapping families. Figure 5 re-
ports data aggregated with respect to families. When families appear as surrounded by * on the
left of the bar chart, the values expressed by bars are calculated considering all the algorithms that
belong to that family, including those that overlap with other families. Instead, when the name of
the family appears without special characters, data is obtained considering scores of algorithms
that belong only to the specific family. The bar chart in Figure 5 reports the average MCC as well
as the average Rank MCC. This metric is obtained as follows: For each dataset, we rank each of the
17 algorithms by assigning a rank 16 to the algorithm with the best MCC for that dataset, going
down to rank 0, which is assigned to the algorithm that resulted in the worst MCC score for that
dataset. Consequently, the higher the average Rank MCC, the more frequently a given algorithm
is a top choice.

Angle-based and Statistical Families. Families in Figure 4 are ordered from top to bottom
according to an increasing average MCC. Lowest scores are obtained by ABOD, which is the only
angle-based algorithm that does not overlap with other families. Since ABOD was proven to be
effective in different studies, such as Reference [26], we motivate the mediocre scores consider-
ing that we were forced to train ABOD on smaller sets with respect to what happens with other

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:16 T. Zoppi et al.

algorithms due to its cubic time complexity. This lack of data points in the training set may have
impacted detection capabilities of the algorithm, resulting in low MCC scores.

Statistical algorithms come right after ABOD in Figure 5: Despite being meant to be very fast as
they execute training in linear time, sometimes they are not able to adequately fit train data into
any probabilistic distribution, resulting in a higher amount of misclassifications with respect to
other algorithms.

Neighbor and Density-based. It is worth noticing the role of neighbor-based algorithms,
which constitute the majority of algorithms we selected for this study. In addition to kNN and
ODIN, there are four additional algorithms, i.e., LOF, COF, ISOS, FastABOD, that embed a kNN
search to reduce their computational complexity and therefore need to be considered as neighbor-
based strategies. These algorithms do not reach MCC values that are as good as other families
as Classification (SVM, Isolation Forests) or Neural Networks (SOM). This conclusion has a large
impact on our study, since these widespread algorithms show average MCC of 0.38 (0.39 when con-
sidering overlaps) that are far lower with respect to their counterparts as classification (MCC of
0.53) and SOM (0.54). The Rank MCC varies accordingly: 8.1 (8.2) for neighbor family, and 11.2 and
11.1, respectively, for Classification and Neural Networks (SOM). To a lesser extent, these conclu-
sions translate to density-based algorithms, which usually build a density index upon a neighbor
or cluster search. Overall scores of the family are slightly better than neighbor-based algorithms.
However, there is a clear separation between scores of density algorithms based on kNN, i.e., LOF,
COF, and others, i.e., SDO, DBSCAN, LDCOF, which have better scores (see Figure 4).

It follows that density and neighbor-based algorithms, despite their widespread distribu-

tion, should not be chosen blindly as intrusion detectors, as they do not usually represent

the best alternative out of available unsupervised algorithms. This problem was already ac-
knowledged in the literature [1, 53], leading research to lean towards other approaches such as
angle-based or clustering, which indeed have their own weaknesses.

Clustering. Sticking on clustering, Figure 5 shows how these algorithms have overall convinc-

ing detection capabilities, immediately following SVM, Isolation Forests, and SOM algorithms, with

the possibility of executing training in non-quadratic time. Aside of DBSCAN, K-Means, G-Means,
and LDCOF all work in sub-quadratic time and show good average MCC scores. As a cross-check,
clustering algorithms hold positions 4 to 8 in Figure 4, which highlights individual scores of algo-
rithms. This opens an interesting debate: Similarly to neighbor-based, clustering algorithms rely
on distance functions to estimate if a data point has to be assigned to a given cluster. Then, the
question is: Why do clustering and neighbor families result in noticeably different metric scores? To
the best of our knowledge, neighbor-based algorithms such as kNN were born supervised, assign-
ing a label to a new data point depending on the labels of their neighbors, and they were adapted
lately to work in an unsupervised manner. Clustering algorithms, instead, are perfectly suited to
work unsupervised without requiring any adjustment. Therefore, while they share intrinsic char-
acteristics as the distance functions, better scores of clustering with respect to neighbor-based
algorithms are consistent with the unsupervised scenario we are investigating in this article.

Classification and Neural Networks. Wrapping up the section, Classification (especially

One-Class SVM) and SOM (Neural Network) algorithms are the most promising choices,
while Clustering algorithms such as LDCOF or G-Means may represent a good alternative when per-

formance requirements are strict. As a last remark, Figure 5 does not report error bars with standard
deviation. We avoided error bars to increase readability of the picture, considering that standard
deviation for MCC is between 0.31 and 0.33 for all the families, and that standard deviation of MCC
does not provide useful hints for discussion.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:17

Table 2. Dataset Details: Tag, Name, Year, and Number of Attacks, along with Details on Features as the

Total Amount, the Number of Numeric Features, and the Number of Ordinal Numerical Features

Dataset # Features Selected Features Avg

Tag Name # Attacks Total Numeric Ordinal InfoGain

NF Netflow_IDS 3 11 5 5 bytes, packets, Duration 0.236

AM AndMal17 4 85 80 77
act_data_pkt_fwd, Fwd Header Length

1, Fwd Header Length 2
0.005

C7 CICIDS17 5 85 80 77
Packet_Length_Mean,

Init_Win_bytes_backward,
Packet_Length_Variance

0.500

C8 CICIDS18 6 85 80 77
Init_Fwd_Win_Byts, Bwd_Pktss,

Fwd_Seg_Size_Min
0.590

CI CIDDS 4 16 7 5 Bytes, Duration, Packets 0.280

CT CTU13 1 16 8 6 Dur, SrcBytes, dTos 0.006

IX ISCX12 4 16 6 4
totalDestinationPackets,

totalDestinationBytes, totalSourceBytes
0.571

NG NGDIS 7 9 3 2 event, process 0.276

NK NSLKDD 4 42 37 37 same_srv_rate, symbolic, src_bytes 0.607

UG UGR16 5 13 7 4 Byte_Exchanged, Pkt_Exchanged, Serv 0.125

UN UNSW 8 45 39 38 sbytes, sload, smean 0.435

Selected ordinal features are reported along with their average InformationGain in the last columns on the right.

5 DISCUSSION ON DATASETS AND FEATURES

Another dimension of our analysis is related to the datasets used in our study. We selected 11
datasets, each containing data related to both normal traffic and a set of attacks, reported in sepa-
rate log files: this means 51 couples <dataset, attack>. This provides a view on (i) which features
are selected for each dataset and (ii) how algorithms are able to detect anomalies generated by
attacks in a specific dataset.

5.1 Selected Features

Before discussing algorithm results on each dataset, we detail the structure of each dataset and its
features. The structure of the datasets constitutes a baseline for all algorithms, as it defines how
data is structured and the amount of features that can be used by algorithms to detect anomalies. It
is worth mentioning that particularly good or bad detection scores of algorithms on a given dataset

may be partially explained from the amount and the characteristics of dataset features.
Features may either be numerical or textual. Textual features are usually disregarded, as they

(i) need a dedicated preprocessing depending on their intrinsic meaning or (ii) are unusable at
all, e.g., the “payloadAsBase64” feature of ISCX12, which reports the encrypted full payload of the
packet. Nevertheless, numeric features may not be useful as well. In some cases, numerical features
represent categories, e.g., socket port, which are not meaningful for all algorithms. As example, if
algorithms are based on distance functions, they are going to evaluate port 80 as “close” to port 81
and very far to, e.g., port 443: calculating distance between values may be meaningless.

Consequently, in Table 2, we reported, for each dataset, the total amount of features, the
number of numeric features, and the number of ordinal numeric features. A detailed analysis of
each single feature of each dataset, which may help translating some textual or categorical values
into ordinal, is out of the scope of this article; therefore, we consider only ordinal features of each
dataset. AndMal, CICIDS17, and CICIDS18 datasets are collected with the same methodology and
report on the exact same features, which are also the larger amount (85, 77 ordinal) out of the

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:18 T. Zoppi et al.

Table 3. Metric Scores of All Algorithms on Each Dataset

Dataset
TNR P R F1 F2 ACC MCC Best MCC

Avg Avg Avg Avg Std Avg Avg Std Avg Std Avg Std

NF Netflow-IDS 0.892 0.72 0.93 0.74 0.24 0.80 0.90 0.06 0.75 0.26 0.89 0.20
AM AndMal17 0.665 0.23 0.37 0.18 0.05 0.24 0.62 0.06 0.05 0.63 0.10 0.04
C7 CICIDS17 0.647 0.47 0.72 0.47 0.29 0.53 0.68 0.19 0.37 0.23 0.70 0.38
C8 CICIDS18 0.806 0.75 0.76 0.67 0.18 0.71 0.73 0.19 0.59 0.32 0.84 0.23
CI CIDDS 0.601 0.42 0.77 0.43 0.34 0.49 0.63 0.33 0.36 0.48 0.56 0.36
CT CTU13 0.752 0.03 0.33 0.03 0.00 0.05 0.75 0.00 0.04 0.16 0.25 0.00
IX ISCX12 0.778 0.66 0.78 0.63 0.36 0.65 0.80 0.15 0.56 0.17 0.86 0.16
NG NGDIS 0.796 0.40 0.65 0.39 0.13 0.45 0.79 0.07 0.38 0.26 0.86 0.15
NK NSLKDD 0.875 0.52 0.55 0.44 0.17 0.46 0.86 0.10 0.41 0.53 0.66 0.07
UG UGR16 0.699 0.44 0.65 0.37 0.29 0.39 0.67 0.23 0.33 0.29 0.51 0.28
UN UNSW 0.853 0.73 0.56 0.55 0.16 0.54 0.80 0.13 0.47 0.36 0.70 0.12

datasets selected in our study. Indeed, there are datasets that contain just a few ordinal features,
i.e., Netflow-IDS, CTU13, CIDDS, ISCX12, NGDIS, UGR16, meaning that, during feature selection,
we are not going to have many possible choices.

After selecting the best three ordinal features according to the feature selection strategy Infor-
mation Gain, we obtain the features in the “Selected Features” column of Table 2, for each dataset.
While selected features are different for all datasets, some trends can be observed. The duration

of the connection and the amount of bytes exchanged, together with the number of packets, were
selected in the majority of the datasets. Noticeably, selected features for AndMal, CICIDS17, and
CICIDS18 are different, despite these datasets sharing the same pool of available features. This is
related to the way attacks impact feature values in different datasets, which make a single feature
more relevant in a dataset and less relevant in another context. Ultimately, the last column of the
table reports on the average InformationGain score (best is 1, worst is 0) that was obtained by the
selected features. This score gives an indication of the relevance of the features: briefly, if selected

features average an InformationGain score that is close to 0, we expect algorithms to raise more FPs

and FNs with respect to datasets in which these average scores are higher.

5.2 Detection Capabilities for Each Dataset

Table 3 provides average and standard deviation for some of the common metrics based on con-
fusion matrix. Metric values refer to algorithm scores, which are aggregated depending on the
dataset they were processing. This view allows understanding if and how algorithms encountered

more difficulties in detecting attacks in a given dataset. In particular, the last two columns, i.e., Best
MCC, of the table refer to the MCC that was achieved by the best algorithm when detecting a
given attack on a dataset. All datasets but CTU13 report on more than one attack, and therefore
these values are reported as average and standard deviation among all the attacks in this specific
dataset.

Best MCC is on average very low for AndMal17 and—to a lesser extent—CTU13. In the general
case, this is due either to (i) attacks that are very similar to the normal behavior or (ii) features
that are not informative enough to allow algorithms detecting attacks. We are not able to conclude
anything with respect to the former item, since we did not control the way attacks were conducted
against the system. A rough estimation of the latter item above is provided by the last column of
Table 3, which reports on average InformationGain scores of the selected features. It is interesting

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:19

Fig. 6. Average and standard deviation MCC, F1, ACC, Best MCC of algorithms in detecting attacks, grouped

and ranked from left to right according to the ENISA categories reported in Section 2.1.

to see how AndMal17 and CTU13 offer the worst InformationGain scores of all the 11 datasets,
indicating that available features do not contain sufficient information to allow algorithms to detect
attacks effectively.

Instead, it is worth observing how datasets such as Netflow-IDS, ISCX12, and NGDIS contain

attacks that are easier to identify. The average value of Best MCC is the highest among all the
datasets, meaning that it was possible to find a set of algorithms that detected effectively all
the attacks in the dataset. Netflow-IDS reports also a high average MCC, meaning that almost
all the algorithms did not raise many FPs and FNs when detecting anomalies due to attacks in
that dataset. This trend does not scale for ISCX12 and NGDIS, which report average MCC of 0.56
and 0.38. In this case, the choice of the algorithm is critical, since there are big differences in
detection capabilities of the algorithms, i.e., average MCC is lower than average value of Best
MCC.

6 IN-DEPTH VIEW ON ATTACKS

After examining algorithms and datasets, we discuss below the detection of individual attacks and
of attack categories as defined by threat landscape reports presented in Section 2.1. Furthermore,
we examine how the detection capabilities of algorithms vary if they have to detect anomalies
from all the attacks considered in a given dataset. This last aspect is explored in Section 6.3.

6.1 Categories of Attacks

We start this discussion by considering categories of attacks as defined in the ENISA report [11],
namely, Malware, WebAtt, WebApp, Spam/Phishing, Dos, BotNet, and DataBreach. To such extent,
Figure 6 depicts a bar chart with MCC, F1, ACC, and Best MCC that we obtained by aggregating
algorithms scores in detecting attacks belonging to a given category, across all datasets consid-
ered in our study. We keep considering MCC as reference metric, while reporting F1 and ACC for
comparison with other studies. In this case, fluctuations of MCC are coupled with similar fluctua-
tions of F1: (D)DoS, WebAtt, and, to a lesser extent, WebApp, resemble attacks that are on average
identified with less errors, either FPs or FNs. We expected DoS attacks to be easy to identify by
looking at network traffic, as well as web attacks such as Brute-Force. Instead, attacks such as
Probing/Reconnaissance, which aim at gathering sensitive data through passive scanning, usually
hide in the usual traffic and therefore may be tricky to identify.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:20 T. Zoppi et al.

Fig. 7. Average MCC, F1, ACC, Best MCC of algorithms in detecting specific attacks. The category of each

specific attack is reported as secondary label in the footer of the column chart.

6.2 A Focus on Specific Attacks

We analyze if and how specific attacks contribute to the aggregate scores we reported in the previ-
ous section. Therefore, Figure 7 reports a bar chart that is structured as Figure 6, focusing on specific

attacks belonging to each category. From left to right of Figure 7, we can observe two subcategories
of Malware: (i) Worms and (ii) Other Malware. The difference in the average capability of algo-
rithms in detecting these two subcategories is remarkable: Worms are far more difficult to detect

with respect to generic malware. This is enforced by the green pattern-filled bars representing the
average MCC obtained by the optimal algorithm on each dataset that reports either on Worms or
Other Malware. While for generic malware in each dataset it is possible to find algorithms that
reach on average an MCC of 0.88, when detecting anomalies due to worms the average MCC is
0.42. A possible takeaway is that the detection of worms needs additional data about the system,
e.g., disk accesses, system calls, which is not usually provided in datasets that report on network
traffic. The behavior of worms and the damage they can generate is not always related to network
activity. As a result, our algorithms are not able to detect them, since the datasets exclusively report
on network features.

Differences can be observed also by looking at two different Web Attacks: Bruteforce and
Fuzzers. While the former is easier to identify, the latter creates more difficulties to algorithms.
Fuzzing relies on providing invalid, unexpected, or random data as network packets to a system:
Its intrinsic randomness is most likely the reason why algorithms are not able to trace a clear
boundary between the expected behavior of the system and anomalies due to fuzzing, resulting
in poor detection scores. A similar process works for WebApp subcategories: Backdoor and Other
WebApp. The way backdoors are simulated in NGIDS and UNSW datasets is similar and embeds
network data exchange, while the remaining attacks, i.e., exploits, shellcode, r2l, have more vari-
ability and consequently result in lower F1, ACC, and MCC scores with respect to the detection of
backdoors.

The last noticeable differences that Figure 7 highlights are related to DoS attacks. In particular,
distributed DoS attacks are trickier to identify with respect to its non-distributed variant. The usage
of different machines or different vectors to conduct the attack is employed exactly to confuse the
entity—either software or a human—which is responsible of detecting these attacks. Similar detec-
tion capabilities are achieved by algorithms in detecting DataBreaches attacks, while we could not
identify subcategories of Spam (datasets CTU13, UGR16, CICIDS18) and BotNet (datasets CTU13,
UGR16, Netflow-Ids) categories, since the way they are, respectively, simulated in datasets is in-
deed very similar.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:21

Table 4. F1, ACC, and MCC Metric Scores for (i) the Average of All Algorithms on All the Attacks in the

Dataset, (ii) the Average of all Algorithms, Trained Once for Dataset, and (iii) the Metric Scores Obtained

by the Best Algorithm in Detecting Unknowns, alongside Parameter Values for Reproducibility

Avg <Dataset,

Dataset Attack> Avg Unknowns Best Algorithm - Unknowns

F1 ACC MCC F1 ACC MCC F1 ACC MCC Best Algorithm (MCC) Parameter Values

Netflow_IDS 0.74 0.90 0.75 0.84 0.96 0.83 0.93 0.98 0.91 SVM Kernel: RBF, nu:0.02

AndMal17 0.18 0.62 0.05 0.17 0.68 0.03 0.25 0.84 0.06 IS_FOREST Trees: 5, samples:20

CICIDS17 0.47 0.68 0.37 0.87 0.92 0.82 0.90 0.95 0.87
FASTABOD,

SOM
K:5

min_a:0.1, base_a:0.6, decay:0.9

CICIDS18 0.67 0.73 0.59 0.78 0.84 0.72 0.90 0.99 0.89 SOS H:50

CIDDS 0.43 0.63 0.36 0.70 0.90 0.69 0.86 0.96 0.80
DBSCAN,

SVM
min_pts:2, eps:100

Kernel: LINEAR, nu:0.02

CTU13 0.03 0.75 0.04 0.03 0.89 0.04 0.22 0.99 0.25 IS_FOREST Trees: 5, samples:50

ISCX12 0.63 0.80 0.56 0.82 0.83 0.71 0.82 0.97 0.84
KMEANS,

SOM
K:2

min_a:0.1, base_a:0.6, decay:0.9

NGDIS 0.39 0.79 0.38 0.35 0.84 0.37 0.87 0.99 0.86 SVM Kernel: RBF, nu:0.01

NSLKDD 0.44 0.86 0.41 0.61 0.71 0.40 0.74 0.79 0.57 SOM min_a:0.1, base_a:0.6, decay:0.9

UGR16 0.37 0.67 0.33 0.01 0.94 0.02 0.12 0.97 0.18 ISOS K:20, phi:0.1

UNSW 0.55 0.80 0.47 0.35 0.93 0.40 0.62 0.95 0.60 GMEANS -

6.3 Detecting All Attacks in a Dataset

In the previous sections, we trained each unsupervised algorithm on each portion of each dataset
separately, calculating metric scores of each algorithm in identifying a given attack without rely-
ing on labels. Instead, we discuss here if and how training algorithms with a mixture of normal
data points and data points related to different attacks of each dataset impacts their detection ca-
pabilities. While datasets are usually shared as an ensemble of different files that report on normal
data and data related to specific attacks, when putting an IDS in a real context, we do want our
algorithms to detect all the possible threats. As a result, we trained the 17 algorithms once for
each of the 11 datasets, and the same model obtained after training is used to perform intrusion
detection in a validation set of approximately 10.000 data points that includes data related to all
the attacks reported in a given dataset.

Results of this last analysis are reported in Table 4 for each dataset. For easiness of comparison,
the table is partitioned into three blocks. The block on the left reports average F1, ACC, MCC, and
Best MCC values as in Table 3. The second block, i.e., unknowns, reports on average F1, ACC, and
MCC achieved by algorithms on the validation set, which includes all attacks in a given dataset,
while the last block on the right provides insights of the optimal algorithm for each dataset, i.e.,
the algorithm that shows the highest MCC in detecting all types of attacks in a dataset.

We first focus on the last column of Table 4, which shows the algorithm(s) that achieved the
highest MCC for each dataset. SVM (3), Isolation Forests (2), and SOM (3) are the algorithms that
appear the most, while three clustering algorithms DBSCAN, K-Means, and G-Means make their
appearance in three different datasets. We already debated on how Neural Network, Classifica-
tion, and Clustering families usually have the lowest error—either FP or FN—rates among all the
families considered in this study. However, the most important takeaway of Table 4 is that the
detection capabilities of algorithms do not degrade with large pools of attacks. Scores of the first
block of Table 4 are comparable with the scores in the other two blocks, and in some cases the
results are even better. Here relies the strength of unsupervised algorithms. Their training never
relies on labels; therefore the expected behavior of a system is reconstructed without a precise

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

7:22 T. Zoppi et al.

definition of attacks that may impact the system. The amount of FPs and FNs they raise is higher
than supervised algorithms; therefore, supervised algorithms should be preferred when an attack is

previously known. However, unsupervised algorithms cover against zero-day attacks with

good scores, i.e., MCC values under best—algorithms in Table 4 are higher than 0.8 in 6 out of the
11 datasets and therefore represent a critical asset to protect a system from unknowns.

7 CONCLUDING REMARKS

To conclude the article, we report in this section threats to the validity of our study, and we provide
a discussion on the arising trend of attacking anomaly-based Intrusion Detectors, which is being
noted and reported in the last months [48] and may become relevant in the future. Then, we
summarize the findings of the article, which finalize our study.

7.1 Limitations to Validity

We report here possible limitations to the validity and the applicability of our study. These are
not to be intended as showstoppers when considering the conclusions of this article. Instead, they
should be interpreted as boundaries or possible future implications that may impact the validity
of this study.

7.1.1 Usage of Public Data. The usage of public data and public tools to run algorithms was a
prerequisite of our analysis to allow reproducibility and to rely on proven-in-use data. However,
the heterogeneity of data sources, their potential lack of documentation, and the means the authors
used to collect data may limit the understandability of data. In addition, such datasets are not under
our control; therefore, possible actions as changing the way data is generated by considering more
features to improve detection scores are out of consideration. As for example, this could have been
useful for NGDIS dataset, which has just two ordinal numeric features.

7.1.2 Algorithms Parameters. Each algorithm relies on its own parameters. Finding the optimal
values of parameters is a substantial process that requires sensitive analyses and is directly linked
with the target system in which the algorithm is going to be exercised. When applying different
algorithms to different datasets it is not always possible to perform dedicated tuning of these
parameters, while in other cases this activity requires perfect understanding of the insights of an
algorithm and/or the target system. Results discussed in this study are obtained by using default
parameter setup of the supporting tool, which embeds some parameter combinations for each
algorithm, and automatically chooses the most suitable for a given dataset. As a consequence,
algorithms may show metric scores that still have room for improvement when using adequate
parameters if the optimal combination is not being considered by the tool.

7.1.3 Variability of the Threat Landscape. The current threat landscape is continuously mutat-
ing to include novel threats or to match updates of existing threats, which may evolve to spread
rapidly or to change the way they impact a system. While attacks commented on in this study are
related to studies in the past decade and are classified according to the most recent threat classi-
fication, it is straightforward that the frequency and some details of attacks are going to change
in the next years. Novel attacks may be discovered, and/or the frequency of common attacks as of
now may decrease, limiting their role in the overall landscape. However, observing how systems
and attacks evolved in past years, it is possible to observe continuity in the relevance of attacks,
e.g., Malware or DoS, which represent key threats to systems since decades. Hence, we do not
expect the relevance of our study to rapidly decrease throughout years.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:23

7.2 An Arising Trend: Attacks to ML-based Intrusion Detectors

The widespread use of ML algorithms to detect intrusions has a growing interest also from the
viewpoint of an attacker. According to Reference [48], “[. . .] 2019 was the year where attacks against

machine learning security systems came into their own.” Machine learning systems have their own
weaknesses, which—with some technical expertise—can be evaded in ways that are analogous to
how attackers evade “conventional” malware detectors. For example, Skylight Cyber published an
attack against Blackberry/Cylance’s PROTECT engine,7 showing how appending a list of strings
to the end of any malware could trick PROTECT’s false positive suppression component into
whitelisting the malware.

While this trend is not consolidated yet, in past months there were evidences of attacks against
machine learning malware detection models that are beginning to move from the theoretical space
into toolkits of attackers, impacting the role of classifiers in detecting intrusions. Therefore, we
expect the results of this study to be affected by future analyses on the robustness of algorithms
with respect to possible weaknesses to be exploited by attackers. Alongside with misclassifica-
tions, we expect future comparisons to consider aspects related to the robustness to these reverse
engineering attacks to ML-based intrusion detectors.

7.3 Lessons Learned

As a last contribution, we summarize the main findings of this article as follows:

• As discussed in Section 4, Classification algorithms such as One-Class SVM [28] and
Isolation Forest [42], as well as Self Organizing Maps (SOM [30]), turned out to be the
algorithms with less misclassifications, either FPs or FNs.

• As a side effect of the analyses above, clustering algorithms can represent a valid al-

ternative to classification and neural networks when performance constraints force
the adoption of algorithms that execute training in semi-linear time, instead of quadratic as
it is required by SVM, Isolation Forests, and SOM.

• As expected, different types of attacks generate different anomalies, which are not detected
by algorithms with the same metric scores. In particular, Spam, malware such as Worms,
and attacks that rely on a coordinated and distributed action, such as Distributed DoS and
BotNets, are more likely to be misclassified by intrusion detectors.

• Among all the different types of attacks, different datasets exhibit different detection

scores when applying unsupervised anomaly detectors. This is mainly due (i) to their
structure, namely, the amount and the characteristics of features that build the dataset, and,
to a lesser extent, (ii) to the way authors simulated them when gathering system data.

• Applying unsupervised algorithms to detect a heterogeneous pool of attacks does

not dramatically reduce their detection capabilities with respect to when they are
requested to identify anomalies due to a specific type of attack. Section 6.3 demonstrates
how, in some cases, detection capabilities are even higher in the former—and more realistic—
case.

In a nutshell, when building an intrusion detector for an existing or a brand new system, our study
suggests betting either on Classification, i.e., One-Class SVM, Isolation Forests, or Self-Organizing
Maps algorithms, to detect zero-day attacks. However, depending on the domain, betting is not an
option. That is why dedicated tuning strategies and sensitive analyses of algorithms’ parameters

7SkyLight Cylance, I Kill You!, https://skylightcyber.com/2019/07/18/cylance-i-kill-you/.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

https://skylightcyber.com/2019/07/18/cylance-i-kill-you/

7:24 T. Zoppi et al.

tailored to the specific system are—and will always be—mandatory to devise intrusion detectors
that effectively deal with both known and zero-day attacks in a specific system.

REFERENCES

[1] V. Chandola, A. Banerjee, V. Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41, 3 (2009), 15.

[2] S. He, J. Zhu, P. He, and M. R. Lyu. 2016. Experience report: System log analysis for anomaly detection. In Proceedings

of the IEEE 27th International Symposium on Software Reliability Engineering (ISSRE’16). 207–218.

[3] M. Goldstein and S. Uchida. 2016. A comparative evaluation of unsupervised anomaly detection algorithms for mul-

tivariate data. PloS One 11, 4 (2016), e0152173.

[4] K. Leung and C. Leckie. 2005. Unsupervised anomaly detection in network intrusion detection using clusters. In

Proceedings of the 28th Australasian Conference on Computer Science, Vol. 38. 333–342. Australian Computer Society,

Inc.

[5] F. Falcão, T. Zoppi, C. B. V. Silva, A. Santos, B. Fonseca, A. Ceccarelli, and A. Bondavalli. 2019. Quantitative compar-

ison of unsupervised anomaly detection algorithms for intrusion detection. In Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing. ACM, 318–327.

[6] J. Mirkovic and P. Reiher. 2004. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Comput.

Commun. Rev. 34, 2 (2004), 39–53.

[7] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. 2003. A comparative study of anomaly detection schemes

in network intrusion detection. In Proceedings of the SIAM International Conference on Data Mining. Society for In-

dustrial and Applied Mathematics, 25–36.

[8] T. Zoppi, A. Ceccarelli, and A. Bondavalli. 2017. Exploring anomaly detection in systems of systems. In Proceedings

of the Symposium on Applied Computing. ACM, 1139–1146.

[9] L. D’hooge, T. Wauters, B. Volckaert, and F. De Turck. 2019. In-depth comparative evaluation of supervised machine

learning approaches for detection of cybersecurity threats. In Proceedings of the 4th International Conference on Inter-

net Things, Big Data Security. 125–136.

[10] Check Point Research. 2019. Cyber Attack Trend: 2019 Mid-Year Report, vol. 1, 2019. https://research.checkpoint.

com/2019/cyber-attack-trends-2019-mid-year-report/.

[11] ENISA. 2018. Threat Landscape Report, vol. 7, 2018. https://www.enisa.europa.eu/publications/enisa-threat-

landscape-report-2018.

[12] Verizon. 2019. Data Breach Investigations Report. Retrieved from https://enterprise.verizon.com/resources/reports/

2019/2019-data-breach-investigations-report-emea.pdf.

[13] Zoppi Tommaso, Andrea Ceccarelli, and Andrea Bondavalli. 2019. MADneSs: A multi-layer anomaly detection frame-

work for complex dynamic systems. IEEE Trans. Depend. Sec. Comput. (2019). DOI:10.1109/TDSC.2019.2908366

[14] C. Kruegel and T. Toth. 2003. Using decision trees to improve signature-based intrusion detection. In Proceedings of

the International Workshop on Recent Advances in Intrusion Detection. Springer, Berlin, 173–191.

[15] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho. 2019. A survey of network-based intrusion detection

data sets. Comput. Sec. 86 (2019), 147–167. https://doi.org/10.1016/j.cose.2019.06.005

[16] Nour Moustafa and Jill Slay. 2015. UNSW-NB15: A comprehensive data set for network intrusion detection systems

(UNSW-NB15 network data set). In Proceedings of the Military Communications and Information Systems Conference

(MilCIS’15). IEEE, 1–6.

[17] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. 2012. Toward developing a systematic approach to

generate benchmark datasets for intrusion detection. Comput. Sec. 31, 3 (2012), 357–374.

[18] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. 2009. A detailed analysis of the KDD CUP 99 data

set. In Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications. IEEE,

1–6.

[19] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho. 2017. Flow-based benchmark data sets for intrusion

detection. In Proceedings of the 16th European Conference on Cyber Warfare and Security. ACPI, 361–369.

[20] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. 2018. Toward generating a new intrusion detection dataset and

intrusion traffic characterization. In Proceedings of the International Conference on Information Systems Security and

Privacy. 108–116.

[21] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie. 2017. Generating realistic intrusion detection system dataset based

on fuzzy qualitative modeling. J. Netw. Comput. Applic. 87 (2017), 185–192.

[22] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenko-va, E. Schubert, I. Assent, and M. E. Houle. 2016. On

the evaluation of outlier detection: Measures, datasets, and an empirical study. In Proceedings of the Lernen, Wissen,

Daten, Analysen. CEUR Workshop proceedings.

[23] Boughorbel Sabri, Fethi Jarray, and Mohammed El-Anbari. 2017. Optimal classifier for imbalanced data using

Matthews correlation coefficient metric. PloS One 12, 6 (2017), e0177678.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

https://research.checkpoint.com/2019/cyber-attack-trends-2019-mid-year-report/
https://research.checkpoint.com/2019/cyber-attack-trends-2019-mid-year-report/
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://enterprise.verizon.com/resources/reports/2019/2019-data-breach-investigations-report-emea.pdf
https://enterprise.verizon.com/resources/reports/2019/2019-data-breach-investigations-report-emea.pdf
https://doi.org/10.1109/TDSC.2019.2908366
https://doi.org/10.1016/j.cose.2019.06.005

Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape 7:25

[24] D. M. Powers. 2020. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and corre-

lation. arXiv preprint arXiv:2010.16061 (2020).

[25] Markus Goldstein and Andreas Dengel. 2012. Histogram-based outlier score (HBOS): A fast unsupervised anomaly

detection algorithm. In Proceedings of the KI-2012: Poster and Demo Track. 59–63.

[26] H.-P. Kriegel and A. Zimek. Angle-based outlier detection in high-dimensional data. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 444–452.

[27] V. Hautamaki, I. Karkkainen, and P. Franti. 2004. Outlier detection using k-nearest neighbour graph. In Proceedings

of the 17th International Conference on Pattern Recognition, Vol. 3. IEEE, 430–433.

[28] M. Amer, M. Goldstein, and S. Abdennadher. 2013. Enhancing one-class support vector machines for unsuper-

vised anomaly detection. In Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description. ACM,

8–15.

[29] Vázquez Félix Iglesias, Tanja Zseby, and Arthur Zimek. 2018. Outlier detection based on low density models. In

Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW’18).

[30] T. Kohonen. 1997. Exploration of very large databases by self-organizing maps. In Proceedings of International Con-

ference on Neural Networks (ICNN’97), Vol. 1. IEEE, PL1–PL6.

[31] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-Teodoro, and R. Theron. 2018. UGR ’16: A new dataset

for the evaluation of cyclostationarity-based network IDSs. Comput. Sec. 73 (2018), 411–424.

[32] S. Garcia, M. Grill, J. Stiborek, and A. Zunino. 2014. An empirical comparison of botnet detection methods. Comput.

Sec. 45 (2014), 100–123.

[33] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani. 2018. Toward developing a systematic approach to gener-

ate benchmark Android malware datasets and classification. In Proceedings of the International Carnahan Conference

on Security Technology (ICCST’18). IEEE, 1–7.

[34] G. Hamerly and C. Elkan. 2004. Learning the k in k-means. In Proceedings of the International Conference on Advances

in Neural Information Processing Systems. 281–288.

[35] Mennatallah Amer and Markus Goldstein. 2012. Nearest-neighbor and clustering based anomaly detection algorithms

for RapidMiner. In Proceedings of the 3rd RapidMiner Community Meeting and Conference (RCOMM’12).

[36] Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W. Cheung. 2002. Enhancing effctiveness of outlier detec-

tions for low density patterns. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 535–548.

[37] E. Schubert and M. Gertz. 2017. Intrinsic t-stochastic neighbor embedding for visualization and outlier detection. In

Proceedings of the International Conference on Similarity Search and Applications. Springer, Cham, 188–203.

[38] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering

clusters in large spatial databases with noise. In Proceedings of the 2nd International conference on Knowledge Discovery

and Data Mining (KDD’96)

[39] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander. 2000. LOF: Identifying density-based local outliers. ACM Sigmod

Rec. 29, 2 (2000), 93–104.

[40] F. Ince. 1987. Maximum likelihood classification, optimal or problematic? A comparison with the nearest neighbour

classification. Remote Sens. 8, 12 (1987), 1829–1838.

[41] M. Radovanović, A. Nanopoulos, and M. Ivanović. 2014. Reverse nearest neighbors in unsupervised distance-based

outlier detection. IEEE Trans. Knowl. Data Eng. 27, 5 (2014), 1369–1382.

[42] F. T. Liu, K. M. Ting, and Z. H. Zhou. 2008. Isolation forest. In Proceedings of the 8th IEEE International Conference on

Data Mining. IEEE, 413–422.

[43] J. H. M. Janssens, F. Huszar, E. O. Postma, and H. J. van den Herik. 2012. Stochastic Outlier Selection. Technical report

TiCC TR 2012-001, Tilburg University, Tilburg Center for Cognition and Communication, Tilburg, The Netherlands.

[44] J. A. Hartigan and M. A. Wong. 1979. Algorithm AS 136: A k-means clustering algorithm. J. Roy. Statist. Soc.. Series C

(Appl. Statist.) 28, 1 (1979), 100–108.

[45] T. Zoppi, A. Ceccarelli, and A. Bondavalli. 2019. Evaluation of anomaly detection algorithms made easy with RELOAD.

In Proceedings of the 30th International Symposium on Software Reliability Engineering (ISSRE’19). IEEE, 446–455.

DOI:10.1109/ISSRE.2019.00051

[46] B. Azhagusundari and Antony Selvadoss Thanamani. 2013. Feature selection based on information gain. Int. J. Innov.

Technol. Explor. Eng. 2, 2 (2013), 18–21.

[47] Andrew Y. Ng. 1997. Preventing “overfitting” of cross-validation data. In ICML, vol. 97. 245–253.

[48] Joe Levy. 2019. Sophos 2020 Threat Report. Retrieved from https://www.sophos.com/en-us/medialibrary/pdfs/

technical-papers/sophoslabs-uncut-2020-threat-report.pdf.

[49] Theuns Verwoerd and Ray Hunt. 2002. Intrusion detection techniques and approaches. Comput. Commun. 25, 15

(2002), 1356–1365.

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

https://10.1109/ISSRE.2019.00051
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf

7:26 T. Zoppi et al.

[50] Ozgur Depren, Murat Topallar, Emin Anarim, and M. Kemal Ciliz. 2005. An intelligent intrusion detection system

(IDS) for anomaly and misuse detection in computer networks. Exp. Syst. Applic. 29, 4 (2005), 713–722.

[51] L. Bilge and T. Dumitraş. 2012. Before we knew it: An empirical study of zero-day attacks in the real world. In

Proceedings of the ACM Conference on Computer and Communications Security. ACM, 833–844.

[52] Domenico Cotroneo, Roberto Natella, and Stefano Rosiello. 2017. A fault correlation approach to detect performance

anomalies in virtual network function chains. In Proceedings of the International Symposium on Software Reliability

Engineering (ISSRE’17). IEEE, 90–100.

[53] N. Pham and R. Pagh. 2012. A near-linear time approximation algorithm for angle-based outlier detection in high-

dimensional data. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 877–885.

[54] Casas Pedro, Johan Mazel, and Philippe Owezarski. 2012. Unsupervised network intrusion detection systems: Detect-

ing the unknown without knowledge. Comput. Commun. 35, 7 (2012), 772–783.

[55] Supplementary Data. https://rclserver.dsi.unifi.it/owncloud/index.php/s/TG925KPmdbLBk7J.

[56] Chicco Davide and Giuseppe Jurman. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1

score and accuracy in binary classification evaluation. BMC Genom. 21, 1 (2020), 6.

[57] Committee on National Security Systems. 2015. Committee on National Security Systems (CNSS) Glossary -

CNSSI No. 4009. https://www.serdp-estcp.org/Tools-and-Training/Installation-Energy-and-Water/Cybersecurity/

Resources-Tools-and-Publications/Resources-and-Tools-Files/CNSSI-4009-Committee-on-National-Security-

Systems-CNSS-Glossary.

[58] Kenneth L. Ingham and Hajime Inoue. 2007. Comparing anomaly detection techniques for http. In Proceedings of the

International Workshop on Recent Advances in Intrusion Detection. Springer, 42–62.

[59] Victor Garcia-Font, Carles Garrigues, and Helena Rifà-Pous. 2016. A comparative study of anomaly detection tech-

niques for smart city wireless sensor networks. Sensors 16, 6 (2016), 868.

[60] Xuemei Ding, Yuhua Li, Ammar Belatreche, and Liam P. Maguire. 2014. An experimental evaluation of novelty de-

tection methods. Neurocomputing 135 (2014), 313–327.

[61] Eleazar Eskin. 2000. Anomaly detection over noisy data using learned probability distributions. In Proceedings of the

International Conference on Machine Learning. Citeseer.

[62] M. Gharib and A. Bondavalli. 2019. On the evaluation measures for machine learning algorithms for safety-critical

systems. In Proceedings of the 15th European Dependable Computing Conference (EDCC’19). IEEE, 141–144.

[63] Ali Shawkat and Kate A. Smith. 2006. On learning algorithm selection for classification. Appl. Soft Comput. 6, 2 (2006),

119–138.

[64] T. Zoppi, A. Ceccarelli, L. Salani, and A. Bondavalli. 2020. On the educated selection of unsupervised algorithms via

attacks and anomaly classes. J. Inf. Secur. Applic. 52 (2020), 102474.

Received March 2020; revised August 2020; accepted December 2020

ACM/IMS Transactions on Data Science, Vol. 2, No. 2, Article 7. Publication date: March 2021.

https://rclserver.dsi.unifi.it/owncloud/index.php/s/TG925KPmdbLBk7J
https://www.serdp-estcp.org/Tools-and-Training/Installation-Energy-and-Water/Cybersecurity/Resources-Tools-and-Publications/Resources-and-Tools-Files/CNSSI-4009-Committee-on-National-Security-Systems-CNSS-Glossary
https://www.serdp-estcp.org/Tools-and-Training/Installation-Energy-and-Water/Cybersecurity/Resources-Tools-and-Publications/Resources-and-Tools-Files/CNSSI-4009-Committee-on-National-Security-Systems-CNSS-Glossary
https://www.serdp-estcp.org/Tools-and-Training/Installation-Energy-and-Water/Cybersecurity/Resources-Tools-and-Publications/Resources-and-Tools-Files/CNSSI-4009-Committee-on-National-Security-Systems-CNSS-Glossary

