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Abstract

The focus of this work is present some novel developments in public pol-
icy evaluation methods. All four works that make up this dissertation are
described under the Rubin causal model (RCM), a framework to estimate
causal quantities, under some realistic assumptions and using some of the
recently developed estimators. I focused my attention on application to
structured data, such as panel data, spatial data and time series. The
dissertation is structured as follows: the first chapter introduces the use of
the Synthetic Control Method for policy evaluation under a partial interfer-
ence framework. The second chapter presents the evaluation of conditional
cash lotteries, implemented in the US, to foster Covid-19 vaccination. The
third chapter presents a novel estimator for causal quantities in presence of
spatially correlated treated units. The last chapter deals with a novel ap-
plication of the principal stratification method to evaluate an active labour
market policy. All of these works are research papers, the first is a joint
work with Marco Mariani, Alessandra Mattei and Patrizia Lattarulo, the
third is a joint work with Alessandra Mattei and Georgia Papadogeorgou,
and the fourth is a joint work with Marco Mariani and Alessandra Mattei.
Lastly, the second work is on my own.
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Introduction

“Imagine navigating a treacherous road with your eyes blindfolded, that’s
what it’s like to implement public policy without data”. This is a state-
ment that was once shared with me by a wise man and it has always stuck
with me. As it turns out, this wise person was spot on. The evaluation
of public policies is becoming an increasingly crucial topic for all scholars
involved in drawing causal claims. The challenges that citizens are facing
in the early 21st-century demand informed actions from public operators.
Whether it’s health policy, energy policy, infrastructure policy, or action
against climate change, these are all topics that should be at the top of
the policymakers’ agenda in the coming years. As a result, policymakers
are becoming increasingly aware of the fact that their decisions can be
evaluated using more rigorous tools than ever before, and that they can
leverage these tools to make more informed decisions and ultimately im-
prove the general well-being. The academic community has been paying
more attention to the importance of policy evaluation in recent years, as
evidenced by the prestigious awards that have been given out. For example,
in 2019, Esther Duflo was awarded the Swedish Bank prize for economic
sciences for her groundbreaking work on the use of field experiments to
study economic development. While in 2021, Joshua Angrist, David Card,
and Guido Imbens were also awarded the same prize for their innovative
methods for analyzing causal relationships. These awards recognize the
crucial role that careful policy evaluation plays in understanding how to
best achieve positive social outcomes and make informed decisions.

Policy evaluation examines the effectiveness of government programs in
achieving their intended objectives. This includes programs such as finan-
cial aid for firms, labour market policies for the unemployed, and legislative
interventions in the market. The literature in this field primarily focuses
on the post-intervention effects of a given treatment on outcome variables
that can be quantitatively measured, often in a longitudinal setting, as is
the case in this dissertation.

The methodological framework that contains this work is the potential
outcomes framework (Rubin, 1974, Rubin, 1978, Rubin, 1980, Imbens and
Rubin, 2015). Using the potential outcomes framework, we focus on the
evaluation of an intervention on N units, observed for T times, exposed
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to some treatment 𝑊𝑖,𝑡 (e.g.: a law that increases tax on cigarettes) with
an outcome variable 𝑌𝑖,𝑡 (the value of cigarettes vending). Let 𝑊𝑖,𝑡 = 1
denote the treatment assignment for treated units and 𝑊𝑖,𝑡 = 0 the treat-
ment assignment for controls. In the potential outcome framework, it is
assumed that there are no anticipatory effects or dynamic effects and that
the Stable Unit Treatment Value Assumption (SUTVA) applies. SUTVA
states that there are no spillover effects or hidden versions of the treatment.
This means that for each period 𝑡 and each unit 𝑖, there are two potential
outcomes - 𝑌𝑖𝑡 (𝑊𝑖,𝑡 = 1) and 𝑌𝑖𝑡 (𝑊𝑖,𝑡 = 0) - which represent the outcome un-
der the treatment and control assignment, respectively. The causal effect of
the treatment on each unit is determined by comparing these potential out-
comes, typically by looking at their difference. The fundamental problem
in causal inference (Rubin, 1974, Holland, 1986) is that it’s not possible to
observe both potential outcomes for any unit in any period. In principle,
before treatments are assigned, it may possible to observe the potential
outcomes for all units under both the control and treatment conditions.
But once treatments are assigned, we can only observe the outcome for
the chosen condition, while the outcome under the other condition is miss-
ing, and we call it a counterfactual outcome. It’s like a game of ”what if”
where we can only see the outcome of one scenario, but can only imagine
the potential outcome of the other.

The potential outcomes framework has been widely used over the last
two decades for policy evaluation, generating significant growth in both
methodological and applied literature. The recent rise in the use of causal
inference methods in policy evaluation can be attributed to the emergence
of the ”credibility revolution” in the field (see Angrist and Pischke (2010)).
The credibility revolution refers to the growing use of rigorous experimen-
tal and quasi-experimental methods to estimate the causal effects of public
policies. This movement began in the late 20th century (see for instance:
Card and Krueger, 1993, Angrist and Krueger, 1999, Angrist et al., 1996)
and has been driven by advances in econometrics, statistics, and experi-
mental design. The availability of such methods enables researchers to infer
causality in policy implementation, regardless of whether the study design
is a randomized control design experiment or observational study.

Many policy evaluation studies base their causal inference on an uncon-
foundness assumption. Under unconfoundness, the difference in outcomes
between units with the same level of covariates can be attributed to the ef-
fect of the treatment (see Rosenbaum et al., 2010, Imbens and Rubin, 2015).
In works exploiting unconfoundness, the missing potential outcomes are im-
puted using the observed values of the control units, which are similar to
the treated ones for covariate values, and pre-treatment outcomes values.
Among these methods, it is worth reminding methods based on outcome
regression, or horizontal regression methods (Athey et al., 2021), meth-
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ods based on the propensity score, used as a weight, in sub-classification
or in matching (see Rosenbaum and Rubin, 1983) and Bayesian methods,
see Imbens and Rubin (2015), Abadie and Cattaneo (2018) or Athey and
Imbens (2017) for recent reviews of such methods.

Such unconfoundness assumption can be less reliable in contexts with
longitudinal observation, such as panel data in which a single or few units
are treated, and the units are observed for several time periods. Several
works have proposed solutions for accounting for possible unobservable con-
founders and the presence of temporal trends. Some of these works are
milestones of the applied research, for example, Difference in Differences
(DiD) methods have met a roaring success among applied economics, con-
sider for instance the works of Card and Krueger (1993), Bertrand et al.
(2004), or for a more recent development Callaway and Sant’Anna (2021).
Based on an assumption of parallel trends across treatment and control
group, in DiD the causal effect is estimated as the difference in the pre-
post comparison between the treated and control groups.

Another stream of research refers to the Synthetic Control Method
(SCM) first introduced by Abadie and Gardeazabal (2003) and Abadie
et al. (2010), addressed as ”the major innovation in policy evaluation of the
last 15 years” by Athey and Imbens (2017). SCM focuses on panel data
setting with a single treated unit and many control units. This method
proposes to estimate the counterfactual values for the treated unit as a
weighted average of the control units. Transparency and intuition behind
this method have been the driving force behind its recent popularity and
success, stressing its great flexibility. Among the applications fields, I men-
tion the evaluation of economic policy Abadie et al. (2010), health policy
Barber and West (2021), analysis of natural disasters Cavallo et al. (2013),
the impact of terrorism (Abadie and Gardeazabal, 2003) or organized crime
(Pinotti, 2015).

Recent developments in SCM have loosened some assumptions behind
it and broadened the application fields. Agarwal et al. (2020), Xu (2017)
and Ben-Michael et al. (2021) have proposed methods for unconstrained
weights estimation, while Ben-Michael et al. (2022) formalized the use of
SCM in staggered adoption context. See Abadie (2021) for a recent tax-
onomy of SCM. Other recent SCM developments have combined multiple
approaches to improve the quality of estimates, as the case of the Synthetic
Difference in Differences from Arkhangelsky et al. (2019) or the Penalized
Synthetic Control Method from Abadie and L’Hour (2021) that balance
across matching estimator and SCM.

Doudchenko and Imbens (2016) and Athey et al. (2021) have proposed
to see the imputation of missing potential outcomes as a matrix completion
(MCM) problem and solve it by using an unconstrained linear combination
of control units, as in the case of the vertical regression. Recent discussions
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and proposals for this class of estimators are presented in Shen et al. (2022)
and Arkhangelsky and Imbens (2022).

Other methods exploit the temporal structure of data, drawing causal
quantities using the time series literature methods, such as Brodersen et al.
(2015), Bojinov and Shephard (2019), Menchetti and Bojinov (2020) and
Bojinov et al. (2021).

Some of the most recent approaches to public policy evaluation connect
decision theory and causal inference in searching the optimal allocation for
a policy in the so-called policy learning, as for instance, Viviano (2019),
Athey and Wager (2021). The aim of such approaches is in maximising
the utility function associated to some treatment in order to exploit the
maximum welfare from a policy.

In this work, I aim to add to the ongoing discussion about methods
for causal policy evaluation by introducing new approaches in challenging
environments. Specifically, I have focused on addressing causal inference
estimations with panel data, spatial data, and time series. My contribu-
tions include both methodological and applied advancements, specifically
addressing complications that can arise when working with observational
studies, which are prevalent in policy evaluation research.

The first contribution of this work is to the Synthetic Control Method
literature. Using SCM, usually scholars assume SUTVA, Rubin (1980),
which rules out the possibility of interference across units Even if this is
a quite common assumption in the literature, it could be quite restrictive
in many applications. For instance, think about intervention in some spe-
cific treatment site that could generate spillovers emanating across space,
affecting untreated units. In such contexts, assuming no interference can
lead to biased results. In contexts with panel data, there are few works
that address explicitly this issue, see for instance the works of Menchetti
and Bojinov (2020), Cao and Dowd (2019) and Di Stefano and Mellace
(2020). Usually, scholars deal with spillover effects exploiting a partial in-
terference assumption (Sobel, 2006, Hudgens and Halloran, 2008) to rule
out spillovers between treated units and control units located far away from
treated, or in different clusters of units. See for instance Forastiere et al.
(2016), Forastiere et al. (2021a) or Papadogeorgou et al. (2019). The first
chapter of this dissertation aims to contribute to this debate by provid-
ing estimates for direct and spillover effects arising from an intervention.
In particular, it will be presented some novel proposals to estimate both
spillover and direct effects of treatment in panel data settings, under a
partial interference assumption. We will estimate these quantities using
the Penalized SCM from Abadie and L’Hour (2021). Our motivating ap-
plication is the causal evaluation of the construction of the first line of
the Florentine tramway network. In particular, we will estimate and dis-
cuss the effects of such infrastructure on commercial vitality, drawing some
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conclusions that could help urban policymakers.
In economic literature, it is commonly observed that some units adopt a

treatment previously adopted by other treated units, a phenomenon known
as policy mimicking. However, the effectiveness of such behaviour is not
guaranteed, and a policy that may be successful for one unit may not be
effective for another. The second chapter of the dissertation presents an
evaluation of a public policy implemented in the US to promote Covid-19
vaccination through a conditional cash lottery. Following Ohio’s lead, 18
other states implemented the policy at different times. The focus of the
analysis is on estimating the causal effect of these lotteries on the share of
the vaccinated population. Using disaggregated data at the county level, I
estimate causal quantities in a staggered adoption setting at different levels
of aggregation (county, state, macro-region) by using the Penalized SCM
from Abadie and L’Hour (2021)). The goal of this research is to add to the
existing literature on health policy by examining how the effects of a treat-
ment vary among counties. Specifically, this study will examine the average
treatment effects among clusters of counties that have been grouped based
on important socio-demographic characteristics. Additionally, researching
the continued impact of a policy after it has ended can provide valuable
information for policymakers, enabling them to compare the long-term re-
sults in different counties and states. Furthermore, examining the overall
impact of a policy across four US regions can help policymakers identify
areas that are meeting their expectations or falling short. The analysis in
the dissertation aims to provide insight into the policy’s effects at different
aggregation levels (county, state, and macro-region levels) and periods of
treatment. Moreover, I have investigated treatment effect heterogeneity
with respect to some key socio-demographic covariates.

Synthetic control methods are often used to evaluate the intervention
in spatial areas such as cities, regions or neighbourhoods, with treatment
assigned to some specific area, but with possible second-round effects on
contiguous units. Synthetic control methods can be used to evaluate the
effect that the treatment had in the specific area, but it is often unclear
how far the treatment’s effect propagates. Common approaches consider
separate estimation of treatment effects, disregarding the spatial structure
of data and can lead to efficiency loss in spatial settings. In the fourth
chapter of this dissertation, I propose to tackle this issue by developing a
Bayesian Spatial Matrix Completion Method, that allows the estimation of
treatment effects at different distances from the treatment site, accounting
for the spatial structure of the data. In particular, I propose to impute the
missing potential outcomes for the treated areas as the linear combination
of control units, with coefficients that vary smoothly over the distances,
following a Gaussian Process specification. Within this framework, I study
the effect of the construction of the first line of the Florentine tramway
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network on the number of stores in the areas surrounding the tramway
stops.

In several works from policy evaluation literature, the unit’s outcomes
are censored by death, meaning that they are not defined nor observed for
the units who die. In such contexts, the usual approach is identifying the
subgroup of units that would be surviving their assignment to the treat-
ment, the so-called ”always survivors” by using a principal stratification
approach, see for example Frangakis and Rubin (2002), Zhang and Rubin
(2003). In the third chapter of this dissertation, I extend the longitudinal
principal stratification framework, first proposed by Bia et al. (2020) and
propose a framework for the analysis of longitudinal outcomes, in which
units can be censored at different times, with the main outcomes defined
up to the moment of censoring. Within a bayesian longitudinal principal
stratification framework, with units classified according to the longitudinal
censoring potential outcomes, I estimate the causal effects for the units
that would be alive at time 𝑡, irrespective of their treatment assignment.
This novel framework has interesting relapses: first of all, it allows the
estimation of principal causal effect even in presence of truncation in mul-
tiple post-treatment periods. Second, it allows studying the time trend of
principal stratum membership and the time trend of the survival average
treatment effect, to establish the presence of time patterns and transition
probabilities between latent strata. Lastly, we can study differences across
the key covariates within the identified longitudinal principal strata. The
motivating application for this method is the evaluation of a longitudinal
observational policy that aimed to ease access to the credit market for
start-ups. The focus of the analysis is on the effect of such policies on the
hiring decisions of the firms, to investigate whether assisted credit market
access can improve entrepreneurship for vulnerable groups of the popula-
tion (young citizens and women) by the subsidization of start-up projects
and stimulate further job creation.

Finally, in the last part of this work, I will draw some conclusions on
these works and propose further research themes related to these topics.



Chapter 1

Direct and spillover effects

with the synthetic control

method

1.1 Introduction

Synthetic Control Group (SCG) methods (Abadie and Gardeazabal, 2003;
Abadie et al., 2010, 2015) are an increasingly popular approach used to
draw causal inference under the potential outcome framework (e.g., Rubin,
1974) in panel comparative case studies. In these studies, the outcome of
interest is observed for a limited number of treated units, often only a single
one, and for a number of control units, with respect to a number of periods
both prior and after the assignment of the treatment. The SCG method
focuses on causal effects for treated units: for each point in time after the
assignment of the treatment, a weighted average of the observed potential
outcomes of control units is used to reconstruct the potential outcomes un-
der control for treated units. These weighted averages are named synthetic
controls. The vector of weights is chosen by minimizing some distance be-
tween pre-treatment outcomes and covariates for the treated units and the
weighted average of pre-treatment outcomes and covariates for the control
units. See Abadie (2021) for a review of the empirical and methodological
aspects of SCG methods.

In the last two decades, SCG methods have gained widespread popu-
larity, and there has been a growing number of studies applying them to
the investigation of the economic effects on particular locations of a wide
range of events or interventions Initially, SCG methods have been used in
panel studies where the outcome of interest is observed for a single treated
unit (e.g., Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015). Re-
cently, they have been generalized to draw causal inference in panel studies
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where focus is on the average causal effects for multiple treated units (Cav-
allo et al., 2013; Acemoglu et al., 2016; Gobillon and Magnac, 2016; Kreif
et al., 2016; Abadie and L’Hour, 2021). Additional important theoretical
and conceptual contributions include the comparison of SCG methods with
alternative approaches for program evaluation, the definition of synthetic
control units and the development of new estimators (Doudchenko and
Imbens, 2016; Xu, 2017; Athey et al., 2021; Bottmer et al., 2021).

In this methodological and applied causal inference literature, SCG
methods have been implemented using the potential outcome approach
under the Stable Unit Treatment Value Assumption (SUTVA), which rules
out the presence of interference and hidden versions of treatments Rubin
(1980). The no-interference component of SUTVA, which states that the
treatment received by one unit does not affect the outcomes of any other
unit, may be arguable in many studies, where the events or interventions
of interest may produce their effect not only on the units that are exposed
to them (direct effects), but also on other unexposed units (spillover ef-
fects). In the presence of interference, both scientists and policy makers
may be interested not only in the direct effect of an intervention on the
unit(s) where it actually takes place, but also in the effects that the same
intervention may have – though in an indirect fashion – on other units not
exposed to the intervention. Therefore, disentangling direct and spillover
effects becomes the key objective of the analysis. However, the presence of
interference entails a violation of the SUTVA, and makes causal inference
particularly challenging.

Over the last years, causal inference in the presence of interference has
been a fertile area of research. Important theoretical works have dealt
with the formal definition of direct and spillover effects and with the de-
velopment of design and inferential strategies to conduct causal inference
under various types of interference mechanisms, in both randomized and
observational studies (e.g., Hong and Raudenbush, 2006; Sobel, 2006; Hud-
gens and Halloran, 2008; Arpino and Mattei, 2016; Forastiere et al., 2021a;
Papadogeorgou et al., 2019; Huber and Steinmayr, 2021). Despite such
increasing interest, to the best of our knowledge, only the recent works by
Cao and Dowd (2019) and Di Stefano and Mellace (2020) deal with the
application of synthetic control methods to comparative case studies where
the no-interference assumption is not plausible. In particular, Cao and
Dowd (2019) introduce – under the assumption that spillover effects are
linear in some unknown parameter – estimators for both direct treatment
effects and spillover effects. They also investigate their asymptotic proper-
ties when the number of pre-treatment periods goes to infinity. Di Stefano
and Mellace (2020) introduce a procedure, called “inclusive SCM”, under
which direct and spillover effects can be estimated using control units po-
tentially affected by spillovers.
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Motivated by the evaluation of causal effects of a new light rail line
recently built in Florence (Italy) on the commercial vitality of the sur-
rounding area, we propose to contribute to the nascent literature on the
use of the SCG approach in a setting with interference. To that end, our
work makes both methodological and substantive contributions.

From a methodological perspective, we formally define direct and spillover
effects in comparative studies where the outcome of interest is observed for
a single treated unit, and a number of control units, for a number of periods
before and after the assignment of the treatment. We introduce two types
of spillover effects. The first type represents the effect of the treatment on
untreated units belonging to treated unit’s neighborhood. The second type
would flow from untreated units towards the treated unit, in the hypotheti-
cal scenario where the untreated units were exposed to the treatment rather
than the actual treated unit, representing what would have happened to the
treated units if it wasn’t treated and instead, the treatment was assigned
to some of the neighboring units. In a sense, we can view this type of
spillover effect as an “unrealized spillover effect.” These causal estimands
are defined under a partial interference assumption (?), which states that
interference takes place between units located near to each other, but not
between units that are sufficiently faraway from one another. Under par-
tial interference, we use the penalized SCG estimator recently developed by
Abadie and L’Hour (2021) to estimate direct effects and spillover effects of
the first type by exploiting information on control units who do not belong
to treated unit’s neighborhood.

A model-based imputation method is used to estimate the unrealized
spillover effects. A bootstrap procedure is used for inference, based on the
idea that the set of control units can be reasonably viewed as a sample of
control units from a super-population.

From a substantive perspective, we assess the direct effect of a new
light rail line built in Florence (Italy) on the retail density of the street
where it was built, its spillover on neighboring streets, and the spillover on
the treated street that would have emanated from hypothetical, alterna-
tive locations of the light rail within the same neighborhood. We measure
the retail density of a street using the number of stores every five hundred
meters. This kind of application is original with respect to the previous
field literature, which has often examined whether the creation of urban
rail infrastructure is accompanied by changes in real estate values or gen-
trification of the area (e.g., Cervero and Landis, 1993; Baum-Snow and
Kahn, 2000; Bowes and Ihlanfeldt, 2001; Kahn, 2007; Pagliara and Papa,
2011; Grube-Cavers and Patterson, 2015; Budiakivska and Casolaro, 2018;
Delmelle and Nilsson, 2020) and, only more seldom, whether it is accompa-
nied by a higher firm density (Mejia-Dorantes et al., 2012; Pogonyi et al.,
2021) or by the settlement of new retailers (Schuetz, 2015; Credit, 2018).
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Nevertheless, it is worth noting that not all these empirical studies are fully
embedded in an explicit causal framework, and that none of them addresses
the issue of spillovers.

The chapter is organized as follows. Section 1.2 describes the applica-
tion that motivates the methodological development we propose and the
available data. Section 1.3 presents the methodology. In Section 1.4, we
discuss how the methodology is applied to study the case of the Florentine
light rail and present the results of the analysis. Section 1.5 concludes the
chapter.

1.2 Motivating application and related data

1.2.1 A new light rail in Florence, Italy

In addition to being a renowned art capital, Florence is also a city with
nearly 400,000 residents and the hub of a wide commuting area. Away from
the artworks and the pedestrian footpaths packed with store windows in
the city center, the thoroughfares of peripheral Florence are often congested
with cars. From the early 1900s, the city of Florence developed an extensive
public tram network on street running tracks. Such network was dismissed
in 1958 in favor of public bus transport. In the following decades, the city
of Florence suffered from soaring private motor vehicle transport, which
led to congested traffic and undermined both the effectiveness and the
attractiveness of public transport. In order to face these issues, the project
of a new light rail network has been discussed for a long time, in a climate
of doubt about the possibility of raising the necessary funds for the work.
Moreover, there has been a strong debate about the appropriateness of this
solution compared to others, also in view of the discomfort and discontent
that long-lasting construction sites would have created in the areas exposed
to the intervention. Nevertheless, a tram network project took shape during
the 1990s.

The planned network mostly runs on reserved tracks, thus guaranteeing
a more reliable public transport service, especially on long-distance jour-
neys. Once completed, it will develop radially from the city center towards
all the main surrounding suburbs.

In the everyday slang of Florentines, the brand new light rail continues
to be referred to by the old-fashioned term “tramway.” The first tramway
line of the network was constructed between 2006 and 2010. It connects
the main railway station, in the city center, with the Southwestern urban
area. The most intensive phase of works, when tracks were laid and stations
were built, started in 2007. The first line was completed in 2010. It has
a total length of 7.6 kilometers, with stops approximately every 400 me-
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ters. After the inauguration of this line, some previous long-distance bus
services were suppressed, whereas other ones were re-designed as short-
distance services to ease the access to the tramway from adjacent areas.
The completion of the planned light rail network requires the construction
of four additional lines. The construction of two of these lines started in
2014 and was completed in 2018, while the remaining two lines are at a
very preliminary stage. The analysis in this work looks at the 2004-2013
period and focuses on the first line of the tramway. In particular, we con-
sider the section of the line that goes along Talenti St. (1.2 kilometers, 3
stops: Talenti, Batoni, and Sansovino), one of the main thoroughfares in
the densely inhabited Soutwestern urban neighborhood of Legnaia-Isolotto
(Legnaia hereinafter). There are other important thoroughfares and streets
in Legnaia, most of which run parallel to Talenti St. but do not host light
rail tracks and stations. They are: Pollaiolo St. (about 300 meters far from
Talenti St.); Pisana St. (450 meters far); Baccio da Montelupo St. (500
meters far), Scandicci St. (650 meters far); and Magnolie St. (650 meters
far). For each of these streets we consider a section of maximum length of
1.2 kilometers, which we select to be geographically the closest to Talenti
St.. All these streets fall within 800 meters range from the light rail and
its transit stations (corresponding to a walking distance of about 10 min-
utes), which is considered a reasonable area of impact by the field literature
(Guerra et al., 2012). It is worth noting that, unlike previous studies, where
streets within a given radius from transit infrastructures are aggregated to
form a cluster level unit, we consider each street as a distinct statistical
unit.

1.2.2 Conjectures on how light rail could affect the

streets’ retail activity

Light rail is generally expected to raise accessibility through the improve-
ment of transit times between different points within a urban area (e.g.,
see Papa and Bertolini, 2015, and the literature review therein). However,
citywide accessibility improvements are likely to occur in the presence of
an extensive light rail network. This is not the case in our study, where
there is only one light rail line, which was mainly conceived to make access
to the city center easier from one particular section of urban periphery. A
single line like the one subject to our study is expected to yield a rather
localized accessibility improvement. At the same time, the light rail may
be expected to trigger a process of revitalization of peripheral areas and of
the retail sector therein. This may occur once the light rail is in operation
thanks to high flows of transit users and renewed site image. However, the
previous empirical literature suggests that the boost of the local retail sec-
tor, if any, can be small or transitory (Mejia-Dorantes et al., 2012; Schuetz,
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2015; Credit, 2018).
Before the light rail inauguration, construction works may temporarily

undermine the area’s attractiveness and livability. Faced with the light rail
construction site in front of their shop windows, incumbent store owners
often complain about the risk of lost opportunities owed to poor site im-
age, traffic diversions, very limited street parking, and so forth. For the
store owners located on other thoroughfares belonging to the same neigh-
borhood of Talenti St., but with no construction site, the story might go
the other way around during the tramway construction, with increased
opportunities owed to temporarily higher flows guaranteed by traffic diver-
sions, unchanged image and street parking possibilities, increased relative
competitiveness, and so forth.

When the new infrastructure goes into operation in a given site, the
prospects of the commercial environment of adjacent sites are hard to en-
visage. On the one hand, they could also benefit from having the light
rail at walking distance, which may increase the footfall for the retailers,
constituting a positive spillover effect. On the other hand, they might re-
turn to business as usual, or even be crowded out and lose footfall due to
the soaring relative attractiveness of the street where stations are located,
which may then constitute a negative spillover effect (Credit, 2018; Pogonyi
et al., 2021).

The effect of the tramway on the commercial environment of a given
shopping site may be heterogeneous depending on the different types of
stores. Since stores may belong to a high number of categories, an attrac-
tive way to group them into few meaningful classes is to distinguish be-
tween purveyors of non-durable goods/frequent-use services (non-durables
hereinafter) and purveyors of durable goods/seldom-use services (durables
hereinafter). This distinction may help characterize in greater detail the
effects of the light rail on a urban neighborhood’s retail sector. Indeed,
it reflects a difference in the frequency of purchase of the two types of
goods and services, which is very high for non-durables and relatively low
for durables. It is also correlated with the customers’ willingness to travel
to purchase each type of goods and services: such willingness is low for
non-durables, which are usually purchased in one’s vicinity, and high for
durables, which may see customers ready to bear some costs to patronize
less accessible stores every once in a while (Brown, 1993; Klaesson and
Öner, 2014; Larsson and Öner, 2014).

1.2.3 Data

The dataset used to examine the impact of the new ligth rail on the local
retail environment includes information on 6 streets in the peripheral urban
neighborhood of Legnaia (Talenti St., Pisana St., Pollaiolo St., Baccio da
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Montelupo St., Scandicci St., and Magnolie St.) and on 38 further thor-
oughfares and streets of Florence, clustered in other 10 peripheral neighbor-
hoods that are far from Legnaia. The definition of urban neighborhoods is
based on the areas identified by the Real Estate Observatory of the Italian
Ministry of Finance. We do not consider any street in the city center, as
its commercial environment is completely different from what can be found
in the surrounding residential neighborhoods.

Background and outcome variables for each street originate from the
Statistical Archive of Active Firms (SAAF, English translation of ASIA,
the Italian acronym for “Archivio Statistico delle Imprese Attive”). The
SAAF is held by the Italian National Istitute of Statistics (ISTAT). This
dataset is available from 1996 onwards. It collects some basic, individual
information on all the active local units of firms, including the exact lo-
cation of the activity and the sector of activity (classified according the
Statistical Classification of Economic Activities in the European Commu-
nity, usually referred to as NACE). We construct background and outcome
variables for each street as follows. First, we select firms that are active
in the retail sector in the city of Florence. Second, we further select only
those stores having their shop windows on the streets involved in the study
or that are located within an extremely short distance from such streets
(50 meters). Third, in line with the reasoning developed in the previous
subsection, we classify each of these stores into a NACE sector of activ-
ity in order to elicit the product/service these stores sell, and group them
into two categories: purveyors of durable goods (or seldom-use services);
and purveyors of non-durable goods (or frequent-use services). For each
street and year, we finally construct background and outcome variables
aggregating information across stores belonging to the same category. In
our application, we focus on the following two outcome variables: number
of purveyors of durable goods every 500 meters; number of purveyors of
non-durable goods every 500 meters. Figure 5.1 in Appendix 1 shows the
observed value of these variables over the time period 1996-2014. The left-
hand vertical line marks the start of light rail construction, the right-hand
vertical line marks the start of its operation. These descriptive graphs sug-
gest that, in Talenti St., the number of purveyors of non-durable goods
(every 500 meters) increases after the tramway goes into operation. On
the other hand, the number of stores selling durables on Talenti St. slightly
increases during the early phase of construction, but starts to diminish af-
terwards. On Pollaiolo St., the number of purveyors of non-durables grows
during construction and wanes during the operational period. After an
initial jump, Pisana St. retains stores selling durables but loses some pur-
veyors of non-durables when the light rail is operational. Also Baccio da
Montelupo St. hosts a higher number of outlets during construction, fol-
lowed by a later loss. On Scandicci St., the number of purveyors is overall
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stable. Finally, Magnolie St. sees a continuous decrease in the number of
stores selling durables, while the decline in the number of purveyors of
non-durables begins as the light rail service starts.

1.3 Methodology

1.3.1 Potential outcomes and observed outcomes

We consider a panel data setting with 1 + 𝑁 units partitioned into 1 + 𝐾
clusters and observed in time periods 𝑡 = 1, . . . , 𝑇 . Let 1 + 𝑁1 and 𝑁𝑘
be the number of units in cluster 1 and in cluster 𝑘, 𝑘 ∈ {2, . . . , 1 + 𝐾},
respectively: 1 + 𝑁 = (1 + 𝑁1) +

∑1+𝐾
𝑘=2 𝑁𝑘 ; and let N𝑘 denote the set of

numbers indexing units that belong to cluster 𝑘, 𝑘 = 1, 2, . . . , 1 + 𝐾. For
𝑘 = 1, . . . , 1 + 𝐾, let w𝑘𝑡 = [𝑤𝑘𝑖,𝑡]

′

𝑖∈N𝑘 be a cluster treatment vector at time

𝑡, 𝑡 = 1, . . . , 𝑇 . Generally, for 𝑡 = 1, . . . , 𝑇 , w𝑘𝑡 ∈ {0, 1}I{𝑘=1}+𝑁𝑘 , where
I{·} is the indicator function. In this work we focus on scenarios where
a single unit is exposed to the intervention of interest from a given time
period, say 𝑇0 + 1 with 1 < 𝑇0 < 𝑇 , onwards, so that, for 𝑡 = 1, . . . , 𝑇0,
[w1𝑡 , . . . ,w(1+𝐾)𝑡] = [01+𝑁1 , . . . , 0𝑁1+𝐾 ], where 0𝑟 denotes the zero vector
in R𝑟 ; and for 𝑡 = 𝑇0 + 1, . . . , 𝑇 , [w1𝑡 , . . . ,w(1+𝐾)𝑡] is constant over time

and it is a point in W = {[w1, . . . ,w(1+𝐾)]′ ∈ {0, 1}1+
∑1+𝐾
𝑘=1 𝑁𝑘 with w𝑘 =

[𝑤𝑖𝑘 ]𝑖∈N𝑘 , 𝑘 = 1, . . . , 1 + 𝐾 :
∑1+𝐾
𝑘=1

∑
𝑖∈N𝑘 𝑤𝑖𝑘 = 1}.

In our motivating study, units are streets of Florence and clusters are
naturally defined by urban neighborhoods. Our dataset includes informa-
tion on 1 + 𝑁 = 1 + 43 = 44 streets clustered into 1 + 𝐾 = 1 + 10 = 11 urban
neighborhoods of Florence, which are observed from 1996 to 2014. Only
one of these streets, namely Talenti St., which is in the Legnaia neighbor-
hood, is exposed to the intervention of interest: the construction of a new
light rail line. Since construction works started in 2006 and ended in 2010,
we have ten pre-treatment, four treatment, and five post-treatment years
with 𝑇0 = 10 and 𝑇 = 19. In addition to Talenti St., the Legnaia neigh-
borhood, which we refer to as cluster 1, comprises five streets; Pollaiolo
St., Pisana St., Scandicci St., Magnolie St., and Baccio da Montelupo St.,
which we index by 𝑖 = 2, 3, 4, 5, 6, with 𝑖 ∈ N1, respectively. The remaining
10 urban neighborhoods, which comprise 38 streets overall, are sufficiently
far from Legnaia. See Figure 5.2 in the Appendix 1 for a stylized map.

Under the assumption that there is no hidden versions of treatment
(Consistency Assumption, Rubin, 1980), let

𝑌𝑖𝑘,𝑡 ( [w𝑘1, . . . ,w𝑘𝑇0 ,w𝑘 (𝑡0+1) , . . .w𝑘𝑇 ]1+𝐾𝑘=1 )

denote the potential outcome for unit 𝑖 in cluster 𝑘 at time 𝑡 under treat-
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ment assignment (1 + 𝑁) × 𝑇 matrix [w𝑘1, . . . ,w𝑘𝑇0 ,w𝑘 (𝑇0+1) , . . .w𝑘𝑇 ]1+𝐾𝑘=1 ,
where w𝑘1 = · · · = w𝑘𝑇0 = 0I{𝑘=1}+𝑁𝑘 and w𝑘 (𝑇0+1) = · · · = w𝑘𝑇 ≡ w𝑘 , with
w𝑘 such that

∑
𝑖∈N𝑘 𝑤𝑖𝑘 ∈ {0, 1}.

We make the assumption of “no-anticipation of the treatment” (e.g.
Abadie et al., 2010)

which amount to stating that the intervention has no effect on the
outcome before the treatment period, 𝑇0 + 1, . . . , 𝑇 :

Assumption 1. (No anticipation of the treatment). For all 𝑘 = 1, . . . , 1 +
𝐾, 𝑖 ∈ N𝑘 , and 𝑡 = 1, . . . , 𝑇0

𝑌𝑖𝑘,𝑡 ( [0I{𝑘=1}+𝑁𝑘 , . . . , 0I{𝑘=1}+𝑁𝑘 ,w𝑘 (𝑇0+1) , . . .w𝑘𝑇 ]1+𝐾𝑘=1 ) =
𝑌𝑖𝑘,𝑡 ( [0I{𝑘=1}+𝑁𝑘 , . . . , 0I{𝑘=1}+𝑁𝑘 , 0I{𝑘=1}+𝑁𝑘 , . . . 0I{𝑘=1}+𝑁𝑘 ]1+𝐾𝑘=1 )

In this study, the no anticipation of the treatment assumption appears
to be plausible. In 2000, the city administration announced the construc-
tion of the first line of the light rail network, but things soon turned out
to be less easy than expected. The first tender for works attracted the
interest of no construction companies. The outcome of the second call for
tenders, in 2001, was the subject of a legal dispute lasting several years,
giving rise to quite a few doubts – in a public opinion that remained di-
vided on the project – as to whether and when a new light rail would ever
exist in the city. A third tender followed and the work was awarded to
an unexpected consortium of those companies that had fought each other
during the previous legal dispute. In light of such a troubled gestation, it
is rather difficult to envision what kind of anticipatory behaviors, if any,
might have been put in place by private economic agents, especially by the
store owners that are the subject of the analysis proposed in the current
work.

Under the assumption of no anticipation of the treatment, in our setting
where the intervention occurs from time 𝑇0 + 1 onwards, we can re-write
potential outcomes for unit 𝑖 in cluster 𝑘 at time 𝑡 as function of the (1 +
𝑁)−dimensional treatment vector at time 𝑡 only,

𝑌𝑖𝑘,𝑡 ( [w𝑘1, . . . ,w𝑘𝑇0 ,w𝑘,𝑇0+1, . . .w𝑘𝑇 ]𝐾𝑘=1) = 𝑌𝑖𝑘,𝑡 ( [w1𝑡 , . . . ,w(1+𝐾)𝑡]).

Moreover, because for 𝑘 = 1, . . . 1 +𝐾, w𝑘𝑡 = 0I{𝑘=1}+𝑁𝑘 for 𝑡 = 1, . . . , 𝑇0 and
w𝑘𝑡 ≡ w𝑘 , with w𝑘 such that

∑
𝑖∈N𝑘 𝑤𝑖𝑘 ∈ {0, 1} for 𝑡 = 𝑇0 + 1, . . . , 𝑇 , we can

omit the subscript 𝑡 from the treatment assignment vector. Therefore, for
each unit 𝑖 in cluster 𝑘, 𝑘 = 1, . . . 1 + 𝐾, the observable potential outcomes
are 𝑌𝑖𝑘,𝑡 ( [01+𝑁1 , . . . , 0𝑁1+𝐾 ]) for 𝑡 = 1, . . . , 𝑇0, and 𝑌𝑖𝑘,𝑡 ( [w1, . . . ,w1+𝐾]) with
w𝑘 such that

∑
𝑖∈N𝑘 𝑤𝑖𝑘 ∈ {0, 1} for 𝑡 = 𝑇0 + 1, . . . , 𝑇 .

Let [W1, . . . ,W1+𝐾] be the treatment vector we observe from time 𝑇0+1
on-wards and let 𝑌𝑖𝑘,𝑡 be the observed outcome for unit 𝑖 in cluster 𝑘 at
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time 𝑡, 𝑡 = 1, . . . , 𝑇0, 𝑇0 + 1, . . . , 𝑇 . Under consistency and no anticipation
of treatment, 𝑌𝑖𝑘,𝑡 = 𝑌𝑖𝑘,𝑡 ( [01+𝑁1 , . . . , 0𝑁1+𝐾 ]) for 𝑡 = 1, . . . , 𝑇0 and 𝑌𝑖𝑘,𝑡 =
𝑌𝑖𝑘,𝑡 ( [W1, . . . ,W1+𝐾]), for 𝑡 = 𝑇0 + 1, . . . , 𝑇 .

When the population can be partitioned into clusters, it is often plau-
sible to invoke the partial interference assumption (Sobel, 2006). Such
assumption states that interference may occur within, but not between,

groups. Let w(−𝑖)
𝑘

denote a treatment assignment vector for the units other
then unit 𝑖 in cluster 𝑘:

w(−𝑖)
𝑘

= [𝑤1𝑘 , . . . , 𝑤 (𝑖−1)𝑘 , 𝑤 (𝑖+1)𝑘 , . . . , 𝑤I{𝑘=1}+𝑁𝑘 ]′

, 𝑘 = 1, . . . , 1 + 𝐾. Then we can formally formulate the partial interference
assumption as follows:

Assumption 2. (Partial Interference). For 𝑡 = 𝑇0 + 1, . . . , 𝑇 , for all

[w1, . . . , 𝑤𝑘𝑖,w
(−𝑖)
𝑘
, . . . ,w1+𝐾] 𝑎𝑛𝑑 [w∗

1, . . . , 𝑤
∗
𝑘𝑖,w

∗(−𝑖)
𝑘

, . . . ,w∗
1+𝐾]

with 𝑤𝑘𝑖 = 𝑤
∗
𝑘𝑖
and w(−𝑖)

𝑘
= w∗(−𝑖)

𝑘
,

𝑌𝑖𝑘,𝑡 ( [w1, . . . , 𝑤𝑘𝑖,w
(−𝑖)
𝑘
, . . . ,w1+𝐾]) = 𝑌𝑖𝑘,𝑡 ( [w∗

1, . . . , 𝑤
∗
𝑘𝑖,w

∗(−𝑖)
𝑘

, . . . ,w∗
1+𝐾])

for all 𝑖 ∈ N𝑘 , 𝑘 = 1, . . . , 1 + 𝐾.

Partial interference implies that potential outcomes for unit 𝑖 in cluster
𝑘, 𝑖 ∈ N𝑘 , only depend on its own treatment status and on the treatment
statuses of the units belonging to the same cluster/neighborhood as unit 𝑖,
but they do not depend on the treatment statuses of the units belonging to
different clusters/neighborhoods. Therefore, partial interference allows us

to write 𝑌𝑖𝑘,𝑡 ( [w1, . . . ,w𝑘 , . . . ,w1+𝐾]) ≡ 𝑌𝑖𝑘,𝑡 ( [w1, . . . , 𝑤𝑘𝑖,w
(−𝑖)
𝑘
, . . . ,w1+𝐾])

as 𝑌𝑖𝑘,𝑡 (w𝑘 ) ≡ 𝑌𝑖𝑘,𝑡 (𝑤𝑘𝑖,w(−𝑖)
𝑘

) for all 𝑖 ∈ N𝑘 , 𝑘 = 1, . . . , 1 + 𝐾, and for
𝑡 = 𝑇0 + 1, . . . , 𝑇 .

In our application study, where streets are partitioned into clusters de-
fined by urban neighborhoods, it is rather plausible to assume that inter-
ference occurs within streets belonging to the same neighborhood, but not
between streets belonging to different, geographically distant, urban neigh-
borhoods. Indeed, we can reasonably expect that customers patronizing
stores in a given peripheral area will hardly switch over to other distant,
peripheral areas because of a single light rail line connecting only one of
these peripheries with the city center, but with none of the other periph-
eries.

Under partial interference, for 𝑡 = 𝑇0 + 1, . . . , 𝑇 , the observed outcome

for unit 𝑖 in cluster 𝑘, 𝑘 = 1, . . . , 1+𝐾, is 𝑌𝑖𝑘,𝑡 = 𝑌𝑖𝑘,𝑡 (W𝑘 ) ≡ 𝑌𝑖𝑘,𝑡 (𝑊𝑘𝑖,W
(−𝑖)
𝑘

).
With no loss of generality, henceforth, we assume that unit 1 in cluster 1
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is the single treated unit from time 𝑇0 + 1 on-wards, so that, W1 = [1, 0𝑁1]′
and W𝑘 = 0𝑁𝑘 , for 𝑘 = 2, . . . , 1+𝐾. For 𝑖 ∈ N1, let e

(𝑖)
𝑁1

be a 𝑁1−dimensional
vector with all of its entries equal to 0 except the entry corresponding to
unit 𝑖, which is equal to 1. Let 𝐴\𝐵 denote the subtraction of sets 𝐴 and 𝐵,
𝐴 minus 𝐵. Therefore, for 𝑡 = 𝑇0 + 1, . . . , 𝑇 , we observe 𝑌11,𝑡 = 𝑌11,𝑡 (1, 0𝑁1),
𝑌1𝑖,𝑡 = 𝑌𝑖𝑡 (0, e(1)𝑁1

) for all 𝑖 ∈ N1 \ {1}, and 𝑌𝑖𝑘,𝑡 = 𝑌𝑖𝑘,𝑡 (0, 0𝑁𝑘−1) for all 𝑖 ∈ N𝑘 ,
𝑘 = 2, . . . , 1 + 𝐾.

Throughout the chapter, we refer to 𝑌11,𝑡 (0, 0𝑁1) and 𝑌1𝑖,𝑡 (0, 0𝑁1), 𝑖 ∈
N1 \ {1}, for 𝑡 = 𝑇0 + 1, . . . , 𝑇 as control potential outcomes for the treated
unit and for units who belong to the treated unit’s cluster, respectively, and
to units who do not belong to the treated unit’s cluster as control units.

The observed outcomes at time 𝑡 = 1, . . . , 𝑇0, 𝑌𝑖𝑘,𝑡 , 𝑖 ∈ N𝑘 , 𝑘 = 1, . . . , 1+
𝐾, are pre-treatment outcomes. In addition to them, we observe a vector
of time- and unit-specific covariates, C𝑖𝑘,𝑡 = [𝐶𝑖𝑘,𝑡,1, . . . , 𝐶𝑖𝑘,𝑡,𝑃], 𝑖 ∈ N𝑘 , 𝑘 =

1, . . . , 1 + 𝐾, 𝑡 = 1, . . . , 𝑇0, that is, variables that we can reasonably assume
to be unaffected by the intervention. Using information on unit-level pre-
treatment outcomes and covariates, for each unit 𝑖 in cluster 𝑘, we construct
neighborhood-level pre-treatment outcomes, 𝑌N𝑖𝑘 ,𝑡 , and neighborhood-level
unit×time specific covariates, CN𝑖𝑘 ,𝑡 = [𝐶N𝑖𝑘 ,𝑡,1, . . . , 𝐶N𝑖𝑘 ,𝑡,𝑃], as average of
the unit-level pre-treatment outcomes for units belonging to unit 𝑖’s clus-
ter/neighborhood:

𝑌N𝑖𝑘 ,𝑡 =
1

I{𝑘 = 1} + 𝑁𝑘 − 1

∑︁
𝑖′∈N𝑘\{𝑖}

𝑌𝑖′𝑘,𝑡 ,

and

𝐶N𝑖𝑘 ,𝑡,𝑝 =
1

I{𝑘 = 1} + 𝑁𝑘 − 1

∑︁
𝑖′∈N𝑘\{𝑖}

𝐶𝑖′𝑘,𝑡,𝑝, 𝑝 = 1, . . . , 𝑃,

𝑘 = 1, . . . , 1 + 𝐾, 𝑡 = 1, . . . , 𝑇0.

1.3.2 Causal estimands

In a setting where only the first unit (Talenti St.) in the first cluster
(Legnaia neighborhood) is exposed to the intervention after time point 𝑇0
(with 1 ≤ 𝑇0 < 𝑇), and under the assumption of partial interference, we are
interested in the following direct and spillover causal effects at time points
𝑡 = 𝑇0 + 1, . . . , 𝑇 .

We define the (individual) direct causal effect of treatment 1 versus
treatment 0 for the treated unit/street as

𝜏11,𝑡 = 𝑌11,𝑡 (1, 0𝑁1) − 𝑌11,𝑡 (0, 0𝑁1) 𝑡 = 𝑇0 + 1, . . . , 𝑇 . (1.1)
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For all 𝑖 ∈ N1 \ {1}, let

𝛿1𝑖,𝑡 = 𝑌1𝑖,𝑡 (0, e(1)𝑁1
) − 𝑌1𝑖,𝑡 (0, 0𝑁1)

be the individual spillover causal effect of treatment 1 versus treatment 0
at time 𝑡 on unit 𝑖 belonging to cluster 1, the treated unit’s cluster. We
define the average spillover causal effect at time 𝑡 as

𝛿
N1
𝑡 =

1

𝑁1

∑︁
𝑖∈N1\{1}

𝛿1𝑖,𝑡 =
1

𝑁1

∑︁
𝑖∈N1\{1}

[
𝑌1𝑖,𝑡 (0, e(1)𝑁1

) − 𝑌𝑖𝑡 (0, 0𝑁1)
]
. (1.2)

Finally, we define the unrealized spillover causal effect at time 𝑡 of unit
𝑖 in cluster 1, 𝑖 ∈ N1, on the treated unit as

𝛾
(𝑖)
11,𝑡 = 𝑌11,𝑡 (0, e

(𝑖)
𝑁1
) − 𝑌11,𝑡 (0, 0𝑁1). (1.3)

The quantity 𝛾 (𝑖)11,𝑡 , measures what the spillover effect on unit 1 in cluster 1
could have been in the hypothetical scenario where another unit, say unit
𝑖, belonging to the same cluster as the treated unit 1 was exposed to the

intervention rather than unit 1. In our application study, 𝛾 (𝑖)11,𝑡 is the effect
of the light rail on Talenti St. if the light rail was not located on Talenti
St. but on another street belonging to Talenti St.’s urban neighborhood

(Legnaia neighborhood). We can interpret 𝛾 (𝑖)11,𝑡 as the spillover that unit
1, namely Talenti St., has not realized precisely because of its exposure
to treatment. It recalls the concept of opportunity cost used in public
economics for the comparative study of alternative investment plans. It
is worth noting that the unrealized spillover effect is defined similarly to
the individual spillover effect for the neighboring units, and in fact, it is
representing a similar quantity (e.g: what would be my potential outcome
if the tramway is located somewhere in my neighborhood but not here?).
However, we prefer to treat differently the definition and the estimation
of the two spillover effects, as for the unrealized spillover effect we don’t
observe any potential outcome in the definition of the effect, and thus the
inferential procedure could be different.

The difference between the direct effect and the unrealized spillover,

𝜏11,𝑡 − 𝛾 (𝑖)11,𝑡 = 𝑌11,𝑡 (1, 0𝑁1) − 𝑌11,𝑡 (0, e
(𝑖)
𝑁1
), 𝑖 ∈ N1 \ {1} (1.4)

may provide useful insights on whether, among a set of alternatives, the
original treatment allocation choice has brought about a gain or a loss for

the treated unit. If 𝜏11,𝑡 > 𝛾
(𝑖)
11,𝑡 , the actual treatment allocation brought

about a gain for unit 1 with respect to unit 𝑖; if 𝜏11,𝑡 < 𝛾
(𝑖)
11,𝑡 , then some

alternative allocation of the intervention within the cluster would have been
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preferable for the treated unit; if 𝜏11,𝑡 = 𝛾
(𝑖)
11,𝑡 , an alternative allocation of the

intervention, where unit 𝑖 rather than unit 1 were exposed to the treatment,
would have been equivalent to the actual one for the treated unit.

Here we focus on average unrealized spillover causal effects:

𝛾11,𝑡 =
1

𝑁1

∑︁
𝑖∈N1\{1}

𝛾
(𝑖)
11,𝑡 =

1

𝑁1

∑︁
𝑖∈N1\{1}

𝑌11,𝑡 (0, e(𝑖)𝑁1
) − 𝑌11,𝑡 (0, 0𝑁1), (1.5)

for 𝑡 = 𝑇0 + 1, . . . , 𝑇 .
Two remarks on the causal effects we are interested in are in order.

First, it is worth noting that we define direct and spillover effects as com-
parisons between potential outcomes under alternative cluster treatment
vectors. The literature on causal inference under partial interference has
generally focused on average direct and spillover effects, defined as com-
parisons between average potential outcomes under alternative treatment
allocation strategies (e.g., Hudgens and Halloran, 2008; Papadogeorgou
et al., 2019). Second, we are not interested in assessing causal effects for
units/streets belonging to clusters/urban neighborhoods different from the
treated unit’s cluster (Legnaia), but the availability of information on them
is essential for inference, as we will show in the next Sections. We can re-
write the (individual) direct causal effect for the treated unit in Equation
(1.1) and the average spillover causal effect in Equation (1.2) at time 𝑡,
𝑡 = 𝑇0 + 1, . . . , 𝑇 , as function of the observed outcomes:

𝜏11,𝑡 = 𝑌11,𝑡 − 𝑌11,𝑡 (0, 0𝑁1) and 𝛿
N1
𝑡 =

1

𝑁1

∑︁
𝑖∈N1\{1}

[
𝑌1𝑖,𝑡 − 𝑌1𝑖,𝑡 (0, 0𝑁1)

]
.

These relationships make it clear that we need to estimate 𝑌11,𝑡 (0, 0𝑁1) and
𝑌1𝑖,𝑡 (0, 0𝑁1) for 𝑖 ∈ N1 \ {1} to get an estimate of 𝜏11,𝑡 and 𝛿

N1
𝑡 . The unreal-

ized spillover by the treated unit in Equation (1.5), 𝛾 (𝑖)11,𝑡 , depends on two

unobserved potential outcomes, 𝑌11,𝑡 (0, e(𝑖)𝑁1
), 𝑖 ∈ N1 \ {1}, and 𝑌1𝑡 (0, 0𝑁1),

and thus we need to estimate both of them to get an estimate of 𝛾 (𝑖)11,𝑡 , and
thus, of 𝛾11,𝑡 .

1.3.3 SCG estimators of direct and average spillover

effects

Under partial interference (Assumption 4), we creatively exploit informa-
tion on units within clusters different from the treated unit’s cluster to
draw inference on direct effects, average spillover effects and unrealized
spillover effects using the SCG approach originally proposed by Abadie
and Gardeazabal (2003); Abadie et al. (2010), and further developed by
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Abadie (2021).
Several exiting SCG approaches exploit the idea of a stable relationship

over time between the outcome of the treated units and the outcome of the
control units in the absence of intervention (stable patterns across units,
e.g., Abadie and Gardeazabal, 2003; Abadie et al., 2010; Doudchenko and
Imbens, 2016; Abadie, 2021). Similarly, our the method exploits stable
patterns across units belonging to different clusters. Specifically, for each
unit 𝑖 in cluster 1, 𝑖 ∈ N1, we assume that the relationship between the
outcome of unit 𝑖, 𝑌1𝑖,𝑡 , and the outcomes of control units, 𝑌𝑘𝑖′,𝑡 , 𝑖

′ ∈ N𝑘 ,
𝑘 ≠ 1, is stable over time. This type of stable pattern implies that:

1. the same structural process drives both the outcomes of units in con-
trol clusters (clusters of units who do not belong to the treated unit’s
cluster) as well as the outcomes of the treated unit and its neighbors
in absence of treatment

2. the outcomes of control units and their neighbors are not subject to
structural shocks during the sample period of the study.

Under these assumptions, building on Abadie et al. (2010), we propose
to impute the missing control potential outcomes for the treated unit and
the units who belong to the treated unit’s cluster as weighted average of
outcomes of control units. Formally, for each unit 𝑖 in cluster 1, 𝑖 ∈ N1,

𝑌1𝑖,𝑡 (0, 0𝑁1) =
1+𝐾∑︁
𝑘=2

∑︁
𝑖′∈N𝑘

𝜔
(𝑖)
𝑘𝑖′𝑌𝑘𝑖′,𝑡 𝑡 = 𝑇0 + 1, . . . , 𝑇,

where 𝜔(𝑖)
𝑘𝑖′ are weights such that, for each 𝑖 ∈ N1,

𝜔
(𝑖)
𝑘𝑖′ ≥ 0 for all 𝑖′ ∈ N𝑘 , 𝑘 = 2, . . . , 1 + 𝐾

and
1+𝐾∑︁
𝑘=2

∑︁
𝑖′∈N𝑘

𝜔
(𝑖)
𝑘𝑖′ = 1.

For each unit 𝑖 in cluster 1, 𝑖 ∈ N1, the set of weights

𝝎(𝑖) =
[
{𝜔(𝑖)

2𝑖′}𝑖′∈N2 , . . . , {𝜔
(𝑖)
(1+𝐾)𝑖′}𝑖′∈N1+𝐾

]′
defines the synthetic control unit of unit 𝑖.

The choice of the weights, 𝝎(𝑖), is clearly an important step in SCMs.
The key idea is to construct synthetic controls that best resemble the char-
acteristics of the units in the treated cluster before the intervention. Un-
fortunately, the problem of finding a synthetic control that best reproduces
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the characteristics of a unit may not have a unique solution. We face this
challenge using the penalized synthetic control estimator recently devel-
oped by Abadie and L’Hour (2021). In our setting, the penalized synthetic
control estimator penalizes pairwise discrepancies between the character-
istics of units in the treated cluster and the characteristics of the units
belonging to untreated clusters that contribute to their synthetic controls.

Let D𝑘𝑖 =
[
𝑌𝑘𝑖,1, . . . , 𝑌𝑘𝑖,𝑇0 , 𝑌N𝑘𝑖 ,1, . . . , 𝑌N𝑘𝑖 ,𝑇0 ,C𝑘𝑖,1, . . . ,C𝑘𝑖,𝑇0 ,CN𝑘𝑖 ,1, . . . ,

𝐶N𝑘𝑖 ,𝑇0
]′

be a vector of pre-treatment individual- and neighborhood- level
outcomes and covariates for a unit 𝑖 in cluster 𝑘, 𝑖 ∈ N𝑘 . For each unit 𝑖
in the treated cluster 1, and given a positive penalization constant _(𝑖), the
penalized synthetic control vector of weights

�̂�(𝑖)
=

[
{𝜔(𝑖)

2𝑖′}𝑖′∈N2 , . . . , {𝜔
(𝑖)
(1+𝐾)𝑖′}𝑖′∈N1+𝐾

]′
is chosen by solving the following optimization problem:

arg min
𝝎 (𝑖)∈𝛀

D1𝑖 −
1+𝐾∑︁
𝑘=2

∑︁
𝑖′∈N𝑘

D𝑘𝑖′𝜔
(𝑖)
𝑘𝑖′

2 + _(𝑖) 1+𝐾∑︁
𝑘=2

∑︁
𝑖′∈N𝑘

∥D1𝑖 −D𝑘𝑖′ ∥2 (1.6)

subject to

𝜔
(𝑖)
𝑘𝑖′ ≥ 0 ∀𝑖′ ∈ N𝑘 ; 𝑘 = 2, . . . , 1 + 𝐾; and

1+𝐾∑︁
𝑘=2

∑︁
𝑖′∈N𝑘

𝜔
(𝑖)
𝑘𝑖′ = 1,

where ∥ · ∥ is the 𝐿2−norm: ∥v∥ =
√
v′v for v ∈ R𝑟 (see Abadie and L’Hour,

2021, for details on the costruction of the weights). It is worth noting that
the use of the 𝐿2-norm implies that the same importance is given to all pre-
treatment individual- and neighborhood- level outcomes and covariates as
predictors of the missing outcome.

Under some regularity conditions, if _(𝑖) is positive, then the optimiza-
tion problem in Equation (2.8) has a unique solution (see Theorem 1 in
Abadie, 2021). The penalization term defines a trade-off between aggre-
gate fit and component-wise fit: the penalized synthetic control estimator
becomes the synthetic control estimator originally introduced by Abadie
and Gardeazabal (2003); Abadie et al. (2010) as _(𝑖) → 0; and the one-
match nearest-neighbor matching with replacement estimator proposed by
Abadie and Imbens (2006) as _(𝑖) → ∞.

Given an estimate of the weights, �̂�(𝑖) for each unit 𝑖 in the treated
cluster 1, we estimate the direct effects for the treated unit, 𝜏11,𝑡 , and the
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average spillover causal effects 𝛿N1
𝑡 𝑡 = 𝑇0 + 1, . . . , 𝑇 , as follows:

�̂�11,𝑡 = 𝑌11,𝑡 −
1+𝐾∑︁
𝑘=2

∑︁
𝑖′∈N𝑘

𝜔
(1)
𝑘𝑖′𝑌𝑘𝑖′,𝑡 (1.7)

and

�̂�
N1
𝑡 =

1

𝑁1

∑︁
𝑖∈N1\{1}

�̂�1𝑖,𝑡 =
1

𝑁1

∑︁
𝑖∈N1\{1}

[
𝑌1𝑖,𝑡 −

1+𝐾∑︁
𝑘=2

∑︁
𝑖′∈N𝑘

𝜔
(𝑖)
𝑘𝑖′𝑌𝑘𝑖′,𝑡

]
. (1.8)

In the literature, various approaches have been proposed to quantify un-
certainty of SCG estimators, both in the presence of a single treated unit
as well as in the presence of multiple treated units. One of the most com-
monly used approach use falsification tests, also named “placebo studies,”
(Abadie et al., 2010, 2015; Ando and Sävje, 2013; Cavallo et al., 2013; Ace-
moglu et al., 2016; Firpo and Possebom, 2018), but alternative approaches
have been recently developed, which include the construction of conditional
prediction intervals (Cattaneo et al., 2021), and conformal inference (Ben-
Michael et al., 2021).

We opt for a bootstrap based inferential method, which does require nei-
ther random assignment of the unit nor random selection of the treatment
period, and does not rely on assumptions on the distribution of placebo
treatment effects, such as, normality. The use of bootstrap within the SCG
methods is not new (e.g., Sills et al., 2015; Xu, 2017). Abadie (2021) dis-
cusses the use of bootstrapping in SCG contexts, highlighting that boot-
strapping is not always appropriate, since in several contexts we cannot
consider the donor pool of control units as a random sample from a super-
population, but we must consider it as the entire universe of observable
units.

In our study, the donor pool we use to impute 𝑌1𝑖,𝑡 (0, 0𝑁1), 𝑖 ∈ 𝑁1,
𝑡 = 𝑇0 + 1, . . . , 𝑇 , consists of streets in urban neighborhoods that do not
exhaust the urban neighborhoods of Florence, and thus, we can view it as
a sample of urban neighborhoods of Florence. Consequently, the streets
belonging to the sampled neighborhoods are a sample of the streets that
make up the city. Specifically, we draw inference on the direct and average
spillover effects, 𝜏11,𝑡 and 𝛿

N1
𝑡 , using a cluster bootstrap procedure (Davi-

son and Hinkley, 1997), where we sample with repetition control urban
neighborhoods: all streets in a sampled neighborhood are included in the
bootstrap sample. Bootstrap confidence intervals for the direct and aver-
age spillover effects, 𝜏11,𝑡 and 𝛿

N1
𝑡 , are constructed using the bias corrected

accelerated bootstrap method (BCa Efron, 1987), which allows for confi-
dence intervals with good coverage properties, even if the distribution of
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the estimator is skewed. See the Appendix 1 for details on the construction
of BCa confidence intervals.

1.3.4 Assessing unrealized spillover effects

Estimating the unrealized spillover effects, 𝛾 (𝑖)11,𝑡 = 𝑌11,𝑡 (0, e
(𝑖)
𝑁1
) −𝑌11,𝑡 (0, 0𝑁1)

𝑖 ∈ N1 \ {1}, is particularly challenging because both potential outcomes,

𝑌11,𝑡 (0, e(𝑖)𝑁1
) and 𝑌11,𝑡 (0, 0𝑁1), are unobserved. Exploiting stable patterns

across units’ clusters, we can use information on control units outside the
treated unit’s cluster and their neighbors to construct an estimator for
𝑌11,𝑡 (0, 0𝑁1) as described in Section 1.3.3. Unfortunately, the data contain

no or little information on the potential outcomes of the form 𝑌11,𝑡 (0, e(𝑖)𝑁1
),

because they are not observed for any unit in this study. Therefore, in

order to construct an estimator for 𝛾 (𝑖)11,𝑡 , we need to use an approach that

extrapolates information on the potential outcomes 𝑌11,𝑡 (0, e(𝑖)𝑁1
) from the

observed data.
We deal with this issue using information on units in the treated unit’s

cluster under a type of unconfoundedness assumption, which requires that
for 𝑡 = 𝑇0 + 1, . . . , 𝑇 and for each 𝑖 ∈ N1, potential outcomes of the form

𝑌1𝑖,𝑡 (0, e( 𝑗)𝑁1
) for 𝑗 ≠ 𝑖 ∈ N1 are independent of 𝑊𝑖 conditional on pre-

treatment outcomes and covariates. Under this assumption, we propose
to use an horizontal regression approach to inference Athey et al. (2021).
Contrary to SCM-like estimators, that regress the time series of the treated
unit during the pre-treatment period, in horizontal regression setting, we
regress the cross-section of potential outcomes for the control units at time
𝑡 ≥ 𝑡0 on the cross-section of the same units in the pre-treatment periods,
in order to impute the missing potential outcomes as a linear combination
of pre-treatment periods. Here, we exploit this approach and regress the
panel of cross-sections of units receiving the spillover in the post-treatment
on its own pre-treatment covariates, in order to estimate the relationship
for this type of unit between post-treatment outcomes and pre-treatment
outcomes and covariates. Subsequently, we predict on new data - coming

from the treated unit - the unobserved potential outcome 𝑌11,𝑡 (0, e(𝑖)𝑁1
). Let

D∗
1𝑖 =

[
𝑌1𝑖,1, . . . , 𝑌1𝑖,𝑇0 ,C1𝑖,1, . . . ,C1𝑖,𝑇0

]′
be a (𝑃 + 1) × 𝑇0−dimensional vec-

tor of pre-treatment individual-level outcomes and covariates for 𝑖 ∈ N1.
Specifically, in our analysis we employ the outcome value in the two last
periods of pre-treatment (2004 and 2005) and the pre-treatment outcome

average. For each unit 𝑖 ∈ N1, let D̄
∗(1)
1𝑖 , . . . , D̄∗(𝐾)

1𝑖 , be 𝐾 linear combina-
tions of the pre-treatment outcomes and covariates. In order to account for
a possible post-treatment trend in the outcome, we add a temporal term
(𝑡 − 𝑇0), representing the distance between the observation period and the
beginning of the treatment.
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The missing outcomes for the treated unit, 𝑌11,𝑡 (0, e(𝑖)𝑁1
), 𝑖 ∈ N𝑖 \ {1},

𝑡 = 𝑇0 + 1, . . . , 𝑇 , are imputed as follows

𝑌11,𝑡 (0, e(𝑖)𝑁1
) = 𝛽0 +

𝐾∑︁
𝑘=1

β̂𝑘D̄
∗(𝑘)
11 + �̂�(𝑡 − 𝑇0),

where the regression coefficients are estimated using information on un-
treated units in the treated unit’s cluster:(

𝛽0, β̂1, . . . , β̂𝐾 , �̂�, �̂�
)
=

arg min
𝛽0,β̂1,...,β̂𝐾 ,𝛿,𝛾

∑︁
𝑖∈N1\{1}

[
𝑌1𝑖,𝑡 −

(
𝛽0 +

𝐾∑︁
𝑘=1

β𝑘D̄
∗(𝑘)
1𝑖 + 𝛾(𝑡 − 𝑇0)

)]2
Then, for 𝑡 = 𝑇0 + 1, . . . , 𝑇 , the average indirect effects are estimated as

�̂�11,𝑡 =
1

𝑁1

∑︁
𝑖∈N1\{1}

�̂�
(𝑖)
11,𝑡 =

1

𝑁1

∑︁
𝑖∈N1\{1}

𝑌11,𝑡 (0, e(𝑖)𝑁1
) − 𝑌11,𝑡 (0, 0|N1 |). (1.9)

Variance of �̂�11,𝑡 is estimated by using the bootstrap variance of𝑌11,𝑡 (0, 0|N1 |)
and the robust estimate of the model-based variance of 𝑌11,𝑡 (0, e(𝑖)𝑁1

), as:

V(�̂�11,𝑡) = V(𝑌11,𝑡 (0, 0|N1 |)) +
1

𝑁2
1

∑︁
𝑖∈N1\{1}

V(𝑌11,𝑡 (0, e(𝑖)𝑁1
)).

1.4 Causal effects of a new light rail line on

streets’ retail density

In this section, we apply the method described in Section 1.3 to estimate
the direct, the average spillover and the average unrealized spillover causal
effects of a new light rail line on the retail sector density in a number of
streets belonging to the same urban neighborhood in peripheral Florence
(Italy). Talenti St., where the light rail is located, is subject to direct
effects and unrealized spillovers. The nearby streets – namely Pollaiolo St.,
Pisana St., Baccio da Montelupo St., Scandicci St., and Magnolie St. –
may only be subject to spillovers originating from Talenti St.

The streets’ retail density is measured using two street-level outcome
variables: number of stores selling durable and non-durable goods every
500 meters. We consider stores selling durable and non-durable goods
separately, because we believe that effects can be heterogeneous for these
two types of stores. Both the outcomes of interest were demeaned for the
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pre-treatment average outcome.

1.4.1 Penalized synthetic control estimators of direct

and spillover effects

We impute the potential outcomes 𝑌1𝑖,𝑡 (0, 0𝑁1) for each 𝑖 ∈ N1 and 𝑡 > 𝑇0
applying the penalized synthetic control method. For each street 𝑖 within
the urban neighborhood of Legnaia, 𝑖 ∈ N1, we construct a synthetic street
as weighted average of other streets belonging to Florentine urban neighbor-
hoods located sufficiently faraway from Legnaia. From the imputed missing
potential outcomes we then estimate the direct, the average spillover and
the unrealized spillover causal effects of interest.

In order to estimate the penalized synthetic control weights following
the procedure described in Section 1.3.3, we primarily have to select an
appropriate value for _.

In this work we use the leave-one-out cross-validation procedure pro-
posed by Abadie and L’Hour (2021). First, for each post-intervention pe-
riod 𝑡 = 𝑇0 + 1, . . . , 𝑇 , and for each 𝑘 = 2, . . . , 𝐾 + 1, we use information on
control units belonging to control clusters different from cluster 𝑘 to derive
penalized synthetic control estimators of the potential outcomes under con-
trol for units in cluster 𝑘 under different values of _. Specifically, for each
𝑖 ∈ N𝑘 , 𝑘 = 2, . . . , 𝐾 + 1, let 𝑌𝑘𝑖,𝑡 (_) denote the penalized synthetic control
estimator of 𝑌𝑖𝑘,𝑡 (0, 0𝑁𝑘−1) with penalty term _. For each 𝑡 = 𝑇0 + 1, . . . , 𝑇 ,
and 𝑖 ∈ N𝑘 , 𝑘 = 2, . . . , 𝐾 + 1, we then calculate

𝑌𝑖𝑘,𝑡 − 𝑌𝑘𝑖,𝑡 (_) = 𝑌𝑖𝑘,𝑡 − 𝑌𝑘𝑖,𝑡 (_) =
∑︁
𝑘 ′≠1,𝑘

∑︁
𝑖′∈N𝑘′

𝑤
(𝑖)
𝑘 ′𝑖′ (_)𝑌𝑘 ′𝑖′,𝑡 .

We choose _ to minimize the root mean squared prediction error (RMSPE)
for the individual outcomes:√√√

1

(𝑇 − 𝑇0)
∑1+𝐾
𝑘=2 𝑁𝑘

1+𝐾∑︁
𝑘=2

∑︁
𝑖∈N𝑘

𝑇∑︁
𝑡=𝑇0+1

[
𝑌𝑖𝑘,𝑡 − 𝑌𝑘𝑖,𝑡 (_)

]2
.

In order to ensure the uniqueness and sparsity of solution of the op-
timization problems in Equation (2.8), we focus on values of _ ∈ (0, 1],
testing a total of 1000 values. Selected values for _ are reported in Table
5.2 of the Appendix 1.

Once we have selected the penalization term, we move to the calculation
of the weights. We estimate weights with the procedure described in 1.3.3,
using the covariates and the pre-treatment outcomes scaled with respect to
the pre-treatment mean. The estimated weights are reported in Table 5.3
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in Appendix 1.
Given a value for _ and the estimated weights, ω (𝑖), 𝑖 ∈ N1, we esti-

mate direct effects, 𝜏11,𝑡 , and average spillover effects, 𝑡 = 𝑇0 + 1, . . . , 𝑇 =

2006, . . . , 2014, using Equations (1.7) and (1.8). The RMSPEs, calculated
over the individual- and cluster-level pre-intervention outcomes for each
street in Legnaia, 𝑖 ∈ N1, and its synthetic control, respectively, are re-
ported in Table 5.4 of the Appendix 1. We derive 90% confidence intervals
for these estimands using the biased corrected accelerated bootstrap pro-
cedure described with 𝐵 = 1000 bootstrap replications. It is worth noting
that in each bootstrap replication the estimates of the causal effects are de-
rived using the penalized synthetic control method with the penalty term
_ derived on the observed data.

1.4.2 Horizontal regression estimators of unrealized

indirect effects

Potential outcomes of the form 𝑌11,𝑡 (0, e(𝑖)
𝑁1
) for Talenti St. are imputed

using the regression approach described in Section 1.3.4 with 𝐾 = 2 and

D̄∗(1)
1𝑖 = 𝑌1𝑖,𝑇0 and D̄∗(𝐾=2)

1𝑖 =
∑𝑇0
𝑠=1𝐶1𝑖,𝑠/𝑇0, where we use as covariate 𝐶1𝑖,𝑡

the number of purveyors selling non-durable (durable) goods for the out-
come variable number of purveyors selling durable (non-durable) goods.

We estimate robust model-based standard errors for 𝑌11,𝑡 (0, e(𝑖)
𝑁1
), by using

the small sample modification introduced by Imbens and Kolesar (2016),
which allow us to account for the small number of cross-section in the
estimation.

1.4.3 Results

Estimated direct and average spillover effects

Figure 1.1 shows the estimated direct effect of the new light rail on Talenti
St. During the construction phase of the tramway, there is an increase
in both the density of stores selling durable and non-durable goods, and
the effects are statistically significant. During the operational phase of the
tramway, however, the gain of durable goods purveyors fades away, while
the effect of the light rail remains positive, and of considerable magnitude,
on the density of non-durable goods purveyors. A possible interpretation
of these results is that the construction of the tramway initially beckons all
types of retailers, who envision that the site will soon offer new commercial
opportunities. However, increased demand should translate into higher
prices for the available commercial space. Therefore, over a longer time
horizon, purveyors of durables, which are goods with a lower frequency of
purchase and higher customers’ willingness to bear accessibility costs, have
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Figure 1.1: Estimated direct effects on Talenti St. (solid) and 90% confi-
dence interval (dashed)
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Figure 1.2: Estimated average spillover effects on neighboring streets (solid)
and 90% confidence interval (dashed)

less incentive to pay the price required to stay next to the running tramway,
because their customer base is not really made up of the occasional crowds
of passers-by at stations. In contrast, purveyors of non-durable goods,
which have high frequency of purchase in one’s vicinity, e.g. cafes, grocery
stores, florists, newsagents, depend more on these crowds of passers-by and,
therefore, they are willing to pay the higher price required to stay on the
site. These results are quite in line with the previous empirical literature,
which highlights signs of commercial revitalization close to transit stations
located in urban areas (Credit, 2018; Schuetz, 2015).

The average spillover effects on the other streets in the urban neigh-
borhood of Legnaia are shown in Figure 1.2. As long as Talenti St. is
undergoing construction works, we estimate slightly negative effects on the
density of durable goods retailers in the neighboring streets. Although
these effects are not statistically significant, they confirm the idea that the
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construction of the tramway might have initially raised expectations about
Talenti St. to the detriment of other commercial locations nearby. Then,
after the light rail goes into service in 2010, the effect on the density of
durable-goods purveyors in these alternative locations turns positive but
small, as it is less than one store each 500 meters, and statistically negli-
gible for most of the years. Probably, for purveyors that depend little on
occasional passers-by, shop windows on these streets are more worth their
price than the coveted shop windows on Talenti St. Instead, with respect
to stores selling non-durables, we have positive and statistically significant
effects on neighboring streets while the light rail is under construction in
Talenti St., but such effect tends to fade and lose statistical significance af-
terwards. A likely interpretation of this result is that, during construction,
these alternative streets are expected to offer the opportunity to “steal”
some of the customers that used to patronize stores selling non-durables
on Talenti St., assuming that these customers would have been willing to
flee the construction site to do their daily shopping within walking reach,
or obliged to do so due to traffic detours. It is only a short-lived advantage,
as Talenti St. later becomes the most lucrative place for non-durable goods
purveyors due to the crowds coming and going all day at light rail stations.

In summary, the most noticeable quantitative effects occur in the street
where light rail stations are located, as also found by the previous litera-
ture, but in the streets close by there is no overt displacement. Rather, our
results suggest that the tramway triggered divergent processes of commer-
cial specialization: it strongly encourage the use of commercial spaces near
stations by purveyors of non-durables, while it slightly increase the focus
of other streets on the retail of durable goods. Highlighting these divergent
specialization processes represents, in our view, an original contribution we
make to the subject literature.

Estimated unrealized spillover effect

Figure 1.3 shows the unrealized spillover effects on Talenti St., that is, the
cost avoided or the benefit forgone by Talenti St. if the tramway had been
constructed in some other street belonging to its same urban neighborhood.
Although the estimates are surrounded by considerable uncertainty, they
suggest that Talenti St. might have have suffered from a minimal nega-
tive effect on the density of durable goods retailers during the tramway
construction phase, counterbalanced later by an equally minimal positive
effect on the same outcome. On the whole, having a tramway somewhere
else in the neighbourhood would not have affected the stock of durable
goods shops in Talenti St. On the other hand, it is slightly more likely that
it would have temporarily affected the stock of non-durable goods purvey-
ors during the construction period, in line with what we estimated to have
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Figure 1.3: Estimated unrealized spillover effect on Talenti St. (solid) and
90% confidence interval (dashed)

happened in the streets that are actually susceptible to spillovers (see 1.2
for comparison). However, the confidence intervals here are quite wide,
making it difficult to draw firm causal conclusions.
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Figure 1.4: Difference between the estimated direct effect and unrealized
spillover effect for Talenti St.(solid) and 90% confidence interval (dashed)

Figure 1.4 reports the difference between the direct effect and the un-
realized spillover effect on Talenti St., which quantifies – given the choice
of locating a light rail in the urban neighborhood of Legnaia – the “net”
advantage/disadvantage connected to a situation of immediate proximity
to tracks and stations, relative to a situation where the light rail is slightly
more distant. From Figure 1.4 we gather that Talenti St. has eventually
gained more purveyors of non-durables from being the site of a running
tramway instead of being a street only near a running tramway.
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1.5 Concluding Remarks

The SCG method has been hailed as “. . . the most important innovation
in the policy evaluation literature in the last 15 years” (Athey and Im-
bens, 2017) and the ideas initially put forward in Abadie and Gardeazabal
(2003); Abadie et al. (2010, 2015) have sparked avenues of methodologi-
cal research. This chapter has met the challenge of extending the SCG
method to settings where the assumption of interference is untenable. This
is a nascent stream of research in the SCG literature, which our study con-
tributes to inaugurate, with relevant implications for applied economic and
social research.

In this chapter, building on recent methodological works on causal in-
ference with interference in the potential outcomes framework, we have first
formally defined unit-level direct effects and average spillover causal effects
under a partial interference assumption. We have also introduced a new
spillover effect, the “unrealized spillover”, which is the spillover that would
have taken place on the actually treated unit if another unit had been
assigned to the intervention. We believe that these three quantities may
be relevant for a comprehensive evaluation of interventions at the meso-
and macro-economic level. Then, we have proposed to use the penalized
SCG estimator (Abadie and L’Hour, 2021)to estimate direct and average
spillover causal effects, capitalizing on the presence of clusters of units
where no unit is exposed to the treatment. We have used an horizontal
regression approach to estimate unrealized indirect effects.

Our study has been motivated by the evaluation of the direct and un-
realized indirect effects of a new light rail line built in Florence, Italy, on
the retail environment of the street where it was built, and the spillover
effects of the light rail on a number of streets close by. Although we focus
on the Florence case study, similar interventions are often planned in other
cities, too. Evaluating their direct, indirect and spillover effects may pro-
vide precious insight to policy makers, helping them to understand what
transformations in the urban landscape are being brought about by cre-
ating new transit infrastructure. Our approach is very original also with
respect to the field literature, where causal studies are still scarce and schol-
ars usually conduct their analyses by aggregating all streets within a given
radius (usually half mile) from the new infrastructure. From such picture,
we learn that the light rail has encouraged the emergence of divergent pat-
terns of commercial specialization between the street hosting the stations
with the crowds of passers-by, and the streets a little further away from
the new light rail.

Our results rely on the the assumption of partial interference, which is
plausible in our application study, as it is in many other causal studies (e.g.,
Papadogeorgou et al., 2019; Huber and Steinmayr, 2021; Forastiere et al.,
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2021b). Nevertheless, we are aware that some studies might require a more
general structure of interference (e.g., Forastiere et al., 2021b,a). Therefore
a valuable topic for future research is the extensions of SCM methods to
causal studies with general forms of interference.



Chapter 2

Impact heterogeneity of

Covid-19 vaccination lotteries

in the US

2.1 Introduction

The Covid-19 pandemic has challenged both scholars and policymakers
from various points of view. In the first emergency, health management
focused on containing the pandemic through non-pharmaceutical interven-
tions (NPI from here on). These interventions were effective and decisive in
preventing the contagions, but unsustainable in the long period. In paral-
lel with health emergency management, research has focused on developing
vaccines and treatments against Covid-19.

In particular, with the safety and efficacy results of the first vaccines, the
organizational plan for the vaccination rollout has begun. It soon became
clear that the outcome of the vaccination campaign depended not only
on the stocks that each country could secure but also on the attitude of
the population towards vaccination and the policies inserted into place to
facilitate the campaign.

In various countries, part of the population was eager to get their vac-
cine shot, to avoid the most dangerous outcomes of Covid-19 and slow down
the spread of the virus. Some other people were concerned about the fast
development of many effective vaccines and refuse optional or compulsory
vaccinations, stating that vaccines are not helpful but dangerous for chil-
dren and adults. Based on fake news or wrong interpretations of scientific
results, these arguments have a particular catch, especially in some echo
chambers with similar political orientations and socio-demographic condi-
tions. This disinformation could harm the effectiveness of the vaccination
rollout.

36
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With the spread of more transmissible and pathogenic variants than
the original strain of Covid-19 (Alpha, Delta, and most recently Omicron),
the time factor has become even more critical in limiting the spread of the
disease and lowering the most severe outcomes. The focus was on avoiding
severe consequences for the susceptible population, the elderly, residents
of nursing homes, and essential workers, such as healthcare personnel. In
addition, with the broader availability of vaccines, compliance with the
vaccination campaign has become a relevant theme of public health policy.

Many governments have promoted several initiatives to entice hesitant
to receive the vaccination, including monetary incentives for vaccination,
and limitations to public life. For instance, in several European states cer-
tification of vaccination was required to travel by plane or train, to go to
a restaurant or gym, or even to work. In 2021, Austria, Greece, and Italy
governments introduced vaccination requirements, limited to the most at-
risk population groups. Other administrations use monetary incentives to
foster vaccination: fixed-sum incentives (e.g.:New York City and Pennsyl-
vania) or monetary lotteries.

This chapter focuses on evaluating policies implemented by nineteen
US states, which have promoted monetary incentives for vaccination, in
the form of lotteries for those vaccinated against Covid-19. The first state
to announce this type of policy was Ohio on May 12, 2021, launching the
“Vax-a-million” initiative to combat low vaccination levels in the state.
Ohio’s policy attracted the attention of policymakers in other states, who
followed in the subsequent weeks the Ohio example, giving away monetary
prizes to vaccinated. On July 21, 2021, in total eighteen states followed
Ohio’s example. All except one announce the policy by July 1, 2021. Even
if, in principle, policymakers design monetary incentives to help the vac-
cination rollout, in this specific case, the results are not precise a priori.
We could expect a positive effect from the monetary incentives, coherent
with the literature (Campos-Mercade et al. (2021)). Nevertheless, scepti-
cism towards the safety of fast-developing vaccines, and efficacy doubts,
can be enhanced by this kind of public intervention, harming the trust in
government (Latkin et al. (2021), Lazarus et al. (2021)). Hesitant citizens
may value avoiding the perceived risk connected to the vaccine more than
the probability of winning a lottery prize, e.g.: Sprengholz et al. (2021).

It is crucial to analyze the outcome of such policies and what drivers
are more tightly related to their impacts. Facing this context, assessing
the causal impact of nudging toward vaccines is not trivial and it might be
heterogeneous with respect to a variety of socio-economic and behavioural
factors (Dubé et al. (2015), Savoia et al. (2021), Quinn et al. (2016), Reiter
et al. (2020)).

Several papers have investigated the role of incentives in Covid-19 vac-
cination. Some of them used data from US states (Walkey et al. (2021),
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Barber and West (2021), AB (2021)), but none of them, to the best of our
knowledge, have investigated the county level, addressing in-states differ-
ences in vaccination rollout. While the effect of Ohio’s program has been
studied, there are little to no comparative analyses between US states.
There is theoretical ground to suspect that different characteristics corre-
spond to different treatment outcomes.

We contribute to the literature by assessing the impact of conditional
cash lotteries in a disaggregated framework in staggered adoption of the
policy. We also study the duration of the effect, to exploit whether the
treatment impact was temporary or persistent. We also investigate the het-
erogeneity of treatment effects across the counties. Our goal is to identify
the socio-demographic characteristics of counties that performed better or
worse. This work contributes to the methodological literature on the syn-
thetic control method by providing estimates of weighted aggregate effects
and proposing an inferential procedure for such effects.

We develop the chapter as follows: the relevant literature and the con-
text we wish to evaluate are presented in sections 2.2. We describe data
collection in section 2.3, and the causal inference approach in section 2.4.
Results are shown and discussed in section 2.5 and section 2.6 concludes.

2.2 Related Literature

Vaccine hesitancy is a known issue in vaccination rollouts, even before the
Covid-19 pandemic, as it was observed in vaccine rollout against measles,
HPV, and seasonal influenza, see for a review Dubé et al. (2013).

Several health policy interventions over the years have been imple-
mented in order to tackle the concerning trend of reduction of vaccina-
tion uptake among children, and in particular, to address directly parental
vaccine hesitancy (Gowda and Dempsey (2013), Williams (2014)).

In most previous studies, scholars have posed attention to those socio-
economic drivers that can explain the variety in vaccination uptakes; see
Jarrett et al. (2015) for a comprehensive review.

In particular, Robertson et al. (2021), Razai et al. (2021), Willis et al.
(2021), Quinn et al. (2016), Reiter et al. (2020), focuses on the relationship
between ethnicity and vaccination uptakes, Badr et al. (2021) and Azizi
et al. (2017) shed light on the relation between poverty and unemploy-
ment and vaccines, interestingly, before and during the Covid-19 pandemic.
Bertoncello et al. (2020) find an inverse correlation between the parental
level of education and vaccine hesitancy and anti-vaccine sentiment, irre-
spective of whether children are involved. Malik et al. (2020), Marks (2020)
and Joshi et al. (2021) investigated the socio-demographic composition of
individuals willing to comply with the US Covid-19 vaccination campaign
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and find out significant differences in ethnicity, gender, and age groups.
Dubé et al. (2014) highlighted another crucial aspect: vaccine hesitancy
is not a fully generalized concept but has several different drivers across
different countries.

The information source plays a role in determining the attitude towards
vaccination: e.g.:Featherstone et al. (2019), Engin and Vezzoni (2020)
and Mønsted and Lehmann (2022) find out that vaccine conspiracy belief
spreads out on social media, especially among those who express conser-
vative political thought. We can find similar results in Covid-19 vaccine
rollout analyses about the US and UK, see for example Loomba et al.
(2021).

The effects of these different drivers were heterogeneous in the US. In
some counties, the Center for Disease Control (CDC) considers the vaccina-
tion rollout concerning, especially in the Sunbelt and in the Great Plains,
with possible negative effects also on the Covid-19 cases count and on the
related deaths.

Interesting literature flourished among those incentives for vaccination
and health policy interventions that should direct the general population
towards health-policy goals, such as reducing smoking, obesity, and alcohol
drinking. Gorin and Schmidt (2015) studies the relationship between the
outcome of the policy and the public discussion generated. Persad and
Emanuel (2021), Korn et al. (2020), Weisel (2021), and Dotlic et al. (2021)
argue about the legitimacy of such kind of monetary interventions in the
case of Covid-19, considering the effects in terms of social responsibility.
Campos-Mercade et al. (2021), Kim (2021), Jecker (2021) and Taber et al.
(2021) discuss results coming from monetary incentives for Covid-19 vac-
cination, both in form of lotteries and fixed-sum transfers. We note that
there is no agreement in the literature either on the legitimacy of mon-
etary incentives for vaccination or on the actual results of such policies,
since such incentives may not affect vaccination choices. Governments of-
ten used monetary incentives before restricting activities in the absence of
a vaccination certificate.

2.3 Data

We collect information on 2925 counties located in 47 US states. We ex-
clude Alaska, Hawaii, and Puerto Rico from the analysis because of their
unique characteristics regarding the continental US. We exclude Texas be-
cause the primary outcome was not collected at the county level. We also
exclude Missouri from the analysis, because of its late lottery announce-
ment, on July 21st,2021. Apart from these five states, we drop counties
lacking observations. In particular, we excluded counties that do not re-
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port vaccinations at the end of the period, on August 24, 2021, and those
with no consistent results for the cumulative number of vaccinations (e.g.,
decreasing cumulative vaccinations in some time periods).

The primary outcome of our analysis is the share of over 18 citizens
vaccinated against Covid-19. The Center for Disease Control (CDC) pro-
vides this information on this variable. We chose this measure because it is
the most responsive to incentives and it is measured when citizens adhere
to the campaign. The percentage of the population fully vaccinated shows
a delay between the adherence to the policy and the measurement of the
outcome because of time elapsing between the first dose (adherence to the
campaign) and the second dose. We focus on the over 18 population be-
cause at the beginning of the treatment, the authorization for vaccination
for the population over 12 was relatively recent (May 10) and hesitation
behaviours were possible, besides the vaccine hesitation measured by the
CDC. The primary outcome is the only observed measure over time, from
January 1st, 2021, to August 24th, 2021. We focus on this time period be-
cause after August 24th the Pfizer-Biontech vaccine received full approval
from the Food & Drug Administration (FDA hereinafter). On the basis of
this approval, the US government announced compulsory vaccination for
military troops. We summarize daily data into weekly data calculating the
7-day moving average of the share of people vaccinated with the first dose.
We prefer to work with this outcome rather than daily data because daily
calendar effects or temporary delays in vaccination reports could harm the
analysis.

Table 2.1 shows some descriptive statistics of the main outcome in three
relevant time periods:

• May 12: Announcement of the first lottery in Ohio.

• Jul. 01: Announcement of the last lottery in Michigan.

• Aug. 24: Compulsory vaccination for military staff, end of the obser-
vation period

Table 6.2 in Appendix 2 shows the share of first-dose receivers for each
state at these three time periods.

Figure 2.1 represents the time series of the share of people vaccinated
with the first dose.

We enrich the dataset with information on various socio-demographic,
political, economic, and environmental characteristics. In particular, our
dataset includes information on the demographic composition, political ori-
entation, and economic indicators (e.g.: percentage of unemployed and
median income by county). The US Census Bureau collects and provides
socio-demographic data for 2020. The CDC provides data on the percent-
age of people insured with Medicare. Economic indicators are derived from
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May 12th July 1st August 24th
Mean 40.220 45.677 52.282

St.Dev. 13.439 15.985 16.680
5% 19.681 21.055 22.101

50% 41.674 45.228 53.627
95% 57.785 67.690 73.630

Table 2.1: Descriptive statistics for the percentage of first-dose receivers,
at county level
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Figure 2.1: % of first-dose receivers on the over 18 population - First vertical
line: announcement of first lottery (Ohio), Second vertical line: announce-
ment of last lottery (Michigan)

the work of Kirkegaard (2016), updated to 2020. The New York Times
provide data regarding voting in the 2020 presidential election.

We also collect from CDC the total number of Covid-19 related deaths.
This dimension could be a relevant effect modifier because the proportion of
vaccinated might be higher in counties where happened relevant outbreaks.
Table 2.2 shows some descriptive statistics for the variables used in the
study.

2.4 Methodology

2.4.1 Notation and Setting

We consider the lottery policy as a causal inference problem in which some
counties receive the active treatment (the lottery) starting from some pe-
riod 𝑡0, and other counties did not receive any monetary stimulus to take
part in the vaccination rollout.
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Variable Mean St.Dev. 5% 50% 95%
Percentage of Hispanic citizens 9.567 13.956 0.960 4.310 40.340

Percentage of Afro-American citizens 8.728 14.006 0.090 2.220 41.448
Percentage of citizens in poverty 14.295 5.617 6.900 13.300 25.060

Percentage of Republican party voters 65.205 15.605 35.288 68.276 85.544
Percentage of high school graduated 34.120 7.201 21.343 34.524 45.397

Percentage of college graduated 22.021 9.426 11.239 19.650 41.261
Unemployment rate 6.704 2.169 3.500 6.500 10.400

Share of treated counties 38.348 48.632 0.000 0.000 100
Covid-19 related deaths/100k citizens 176.597 89.467 55.461 165.292 336.156

Percentage of citizens insured with Medicare 11.890 4.559 5.281 11.392 19.891
Median Age 39.912 4.794 31.700 39.900 47.800

Table 2.2: Descriptive statistics of socio-demographic characteristics of US
counties

We consider a panel data setting, in which the total set Ω of ob-
served units consists in |Ω| = 2925 US counties, observed for 𝑡 ∈ 𝑇 =

{0, . . . , 𝑡0, . . . , 𝑡𝑇 }, |𝑇 | = 34 from the January 1st, 2021 to August, 24th,
2021. Let Ω1 be the entire set of units in which the lotteries were active
at some time 𝑡. Let Ω0 be the set of units that experiences no form of
monetary incentives at any time 𝑡.

In total, |Ω1 | = 1134 counties have experienced a vaccine lottery in
the period considered, and |Ω0 | = 1791 counties have received no kind of
monetary incentives for vaccination. Note that Ω0 ∪ Ω1 = Ω. Let N1 =

{1, 2, . . . , 𝑛1} ⊆ Ω1 denote a generic subset of treated counties, and similarly
let N0 = {𝑛1 + 1, 𝑛1 + 2, . . . , 𝑛1 + 𝑛0} ⊆ Ω0 denote a generic subset of control
counties. Finally, we denote as 𝑌𝑖,𝑡 the primary observed outcome for a
generic unit 𝑖 by time 𝑡, which is the percentage of residents who received
the first dose of vaccine.

Treatment Uptake

Treatment was allocated at the state level, therefore counties belonging to
the same state experienced the same treatment, in terms of duration and
prize amount.

We denote the treatment indicator for unit 𝑖 at time 𝑡 by 𝐷𝑖,𝑡

𝐷𝑖,𝑡 =

{
1 if county 𝑖 is receiving the treatment at time 𝑡

0 otherwise
(2.1)

Note that if 𝐷𝑖,𝑡 = 1, then 𝐷𝑖,𝑡′ = 1, if 𝑡′ > 𝑡, 𝑡 ∈ 𝑇 .
Following this specification, we can construct a treatment matrix 𝐷:
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D =



𝑡 1 2 . . . 𝑛1 𝑛1 + 1 𝑛1 + 2 . . . 𝑛1 + 𝑛0
0 0 0 . . . 0 0 0 . . . 0

1 0 0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑡10 1 0 0 0 0 0 . . . 0

𝑡𝑖0 1 1 0 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑇 1 1 1 1 0 0 . . . 0


In the literature, this treatment framework is called staggered adop-

tion (Athey and Imbens (2021), Ben-Michael et al. (2022), Callaway and
Sant’Anna (2021)). In this scenario, the focus is on evaluating treatment
effects started at different times. In particular, we suppose no unit receives
the treatment before 𝑡10. So, 𝑡10 is the time in which the first unit receives
the treatment. In our case, 𝑡10 is May 12, in which the governor of Ohio an-
nounced the “Vax-a-Million” initiative. Treated counties 𝑖 ∈ 𝑛1 can receive
treatment at any time 𝑡𝑖0 ≥ 𝑡10. In particular, we define 𝑡𝑖0 as the period
in which unit 𝑖 receives the treatment. We found it useful to establish a
notation for a unit that will or will not receive treatment at any time 𝑡:
D𝑖 = 1 if 𝐷𝑖,𝑡 ≠ 0 for some 𝑡, and D𝑖 = 0 if 𝐷𝑖,𝑡 = 0 ∀𝑡.

Nineteen states have announced a vaccine lottery to improve the vac-
cine rollout (Ohio, Oregon, Washington, California, Nevada, New Mexico,
Louisiana, North Carolina, West Virginia, Maine, Kentucky, Michigan,
New York, Illinois, Missouri, Arkansas, Colorado, Delaware, Maryland).
We report the beginning time of the lotteries and their duration in Figures
2.2 and 2.3, see Table 6.1 in the Appendix 2 for further details.
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Figure 2.2: Month in which states announced the lottery program
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Figure 2.3: Pre-treatment, treatment and post-treatment duration for each

state, starting from January 1st. First vertical line: Ohio lottery announce-

ment, Second vertical line: Michigan lottery announcement

Potential Outcomes

We use a potential outcome approach to causal inference (Rubin (1974),
Rubin (1978)). For each unit 𝑖 in each period 𝑡 we define the following
couple of potential outcomes:
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{
𝑌𝑖,𝑡 (1) ≡ 𝑌𝑖,𝑡 (𝐷𝑖,𝑡 = 1) as the potential outcome under treatment

𝑌𝑖,𝑡 (0) ≡ 𝑌𝑖,𝑡 (𝐷𝑖,𝑡 = 0) as the potential outcome under control

(2.2)
This definition implicitly assumes the two following assumptions: the

Stable Unit Treatment Value Assumption (SUTVA, Rubin (1980)) and the
no-anticipating treatment assumption.

Assumption 3. SUTVA, Rubin (1980)

• No hidden version of the treatment

• No interference between units

Both aspects of SUTVA deserve some more commentary. The no-hidden
version of the treatment component of SUTVA may be arguable in situ-
ations in which we consider treated counties belonging to different states.
In such situations, both the award amount and the probability of winning
may differ. We assume these differences are not relevant for determining
whether the treatment causes an effect on our outcome of interest. This
assumption appears to be credible because it is unlikely that the popula-
tion applies a quantitative assessment of the cost-benefit ratio associated
with vaccination in monetary terms. Consequently, all lotteries are similar
for the receiving population. Taber et al. (2021) investigates this aspect,
finding no differences in participation choices across twelve different lottery
structures, supporting our assumption.

The non-interference assumption states that the potential outcome for
any unit does not vary with the treatments assigned to other units. We
believe that the non-interference assumption may be valid in our context.
For a practical example, the lottery treatment of a county in Ohio should
not change the vaccination campaign adherence of an untreated county,
such as a county in Wisconsin.

The non-anticipating treatment assumptions require that if a county
has not adopted yet the policy, the future adoption has no causal effect
on potential outcomes for the current period. In theory, people could have
changed their behaviour after the lottery announcement, delaying the vac-
cine administration to get the lottery ticket. In our study, this behaviour
is not plausible because states allow taking part in the lottery even though
they had already received the first dose. In addition, the short time be-
tween the announcement of the lottery and the start of the program does
not allow for noticeable treatment anticipation phenomena. Finally, this
policy spreads faster among the US, with most treated states announcing
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the program within 45 days after the original Ohio governor’s announce-
ment. Therefore, we can not expect people delayed joining the vaccination
campaign to get a lottery ticket.

Under SUTVA (assumption 3) and no-anticipating treatment, we have
𝑌𝑖,𝑡 (0) for 𝑡 ∈ {0, 𝑡10} and 𝑌𝑖,𝑡 (𝐷𝑖,𝑡) for 𝑡 ∈ {𝑡10, 𝑡𝑇 }.

2.4.2 Causal Estimands

We introduce the following individual causal estimand.

Δ𝑖,𝑡 = 𝑌𝑖,𝑡 (1) − 𝑌𝑖,𝑡 (0) (2.3)

for each county 𝑖 ∈ N1 receiving the treatment by time 𝑡. For treated
units 𝑌𝑖,𝑡 (1) = 𝑌𝑖,𝑡 and thus we compare the observed outcome 𝑌𝑖,𝑡 (1) for the
treated unit, with his counterfactual outcome 𝑌𝑖,𝑡 (0). We think that there
are no logistic delays in providing the vaccine shot once the policy was im-
plemented, due to the wide availability of doses and logistic infrastructure
at the beginning of the policy.

We are also interested in causal effects for specific states S. We define it
as a weighted average of the county effects Δ𝑖,𝑡 , multiplied by an appropriate
weight [𝑖. In our case, we chose [𝑖 as the ratio of the population of the i-th
county to the total population of the state S. Thus we define the treated
set as N1 ≡ S.

Formally:

ΔS,𝑡 =
∑︁
𝑖∈S

[𝑖Δ𝑖,𝑡 [𝑖 ∈ (0, 1) (2.4)

We can define causal effects at the state level (e.g.: pooling counties
from California), but also at the supra-state level, by pooling counties
from different states (e.g., pooling counties from West Coast). Therefore,
the average effect on the supra-state aggregation will result as:

ΔN1,𝑡 =
∑︁
𝑖∈N1

[𝑖Δ𝑖,𝑡 [𝑖 ∈ (0, 1) (2.5)

In this latter case, the treated set N1, corresponds to the union of counties
belonging to the states that we want to pool together.

Estimation of equation 2.5 at the supra-state level, in presence of stag-
gered adoption, could be a little problematic. Under consistency, we can
assume that all the lotteries are considered equal by the population, this
assumption is consistent with the results found by Taber et al. (2021). See
table 6.1 in the appendix for further information about the lotteries. For
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Figure 2.4: Pre-Treatment and treatment period according to calendar
weeks criterion and with respect to the treatment, periods within the ver-
tical lines are the overlapping period for this set of states

example, consider three US states: Ohio, California and North Carolina.
We observe three different periods for the treatment regime and the post-
treatment regime. Table 2.3 reports their duration, in weeks. Naturally,
we estimate individual treatment effects in every calendar time 𝑡, starting
from the first week of 2021. Therefore, week 19 will be the first treatment
period for Ohio, week 21 will be the first for California, and week 23 will
be the first treatment period for North Carolina. To pool together treat-
ment effects, under staggered adoption, we should sum them up regarding
the treatment assignment: to get the pooled effect for the first week after
the treatment assignment we should calculate the estimand in equation
2.5 when 𝑡 = 𝑡𝑖0 ∀𝑖 ∈ N1. Consequently, to get the effect in the second
treatment week we should sum treatment effects when 𝑡 = 𝑡𝑖0 + 1 and so on.
Note that ΔN1,𝑡 is the weighted average of Δ𝑖,𝑡 for each treated unit 𝑖 ∈ N1.
Therefore, it is defined only for time spells 𝑡𝑖0 − 𝑡 ≥ 0 ∀𝑖 ∈ N1. In our
example, we cannot have more than six weeks of treatment, which is the
minimum amount of treatment common to the three states.

Figure 2.4 shows the re-alignment of periods regarding calendar crite-
rion and regarding the treatment assignment.

Pre-treatment Treatment Post-treatment
Ohio 18 6 10

California 20 7 8
North Carolina 22 8 4

Table 2.3: Duration in weeks of pre-treatment, treatment and post-
treatment periods, for three example states, starting from the first week of
2021

Last, we define the average effect for the treated set N1, over the period
(𝑡1, 𝑡2), as
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ΔN1 =
1

𝑡2 − 𝑡1

𝑡2∑︁
𝑡=𝑡1

ΔN1,𝑡 (2.6)

The choice of the period (𝑡1, 𝑡2) allows us to distinguish between the
phase in which the lottery was active and the subsequent phase by averaging
ΔN1,𝑡 , during treatment, or post-treatment, periods. Note that equation 2.6
can be used to estimate both state or supra-state effects over time.

Analysis of the post-treatment helps us understand if the effect of the
lottery is temporary or permanent. Indeed, it is likely that the lottery
helps to convince latecomers to vaccinate. Thus, lotteries could speed up
vaccination but not increase the number of vaccinated patients compared
with controls at a more distant endpoint. Conversely, if we observed a
permanent increase in the number of vaccinated, we could conclude that
lotteries affect those who delayed vaccination and those who had no inten-
tion of vaccinating. Assessing the durability of the treatment effects over
time may provide useful insights for policymakers.

2.4.3 Penalized SCM

This section explains how we impute missing potential outcomes.
With repeated observations over time, and many units both under treat-

ment and under control, various tools are available to assess the effect of
the policy.

We choose to estimate the causal quantity in equation 2.3 with a modi-
fication of the Synthetic Control Method, first introduced by Abadie et al.
(2010), which is getting growing success in the causal inference community.
We estimate causal effects by imputing missing outcomes, 𝑌𝑖,𝑡 (0), namely
the outcomes that the treated unit 𝑖 would have been if it had never re-
ceived the treatment, constructing a weighted mean of control units in the
donor pool. This weighted average is called synthetic control. The weights
are chosen so that the synthetic control for a treated unit 𝑖 is very close
to the treated unit during the pre-treatment period. This method was
extended to allow the estimation of average treatment effects, also in stag-
gered adoption contexts (Dube and Zipperer (2015) Donohue et al. (2019),
Ben-Michael et al. (2022)), where the focus is on estimating the treatment
effects for each treated unit 𝑖 and pooling them together.

Among the recent developments of the original estimator (see for ex-
ample Abadie (2021), Ben-Michael et al. (2021), Doudchenko and Imbens
(2016)), we choose to adopt the novel method developed by Abadie and
L’Hour (2021), the so-called Penalized Synthetic Control Method (P-SCM).

The penalized control method imputes the missing control outcomes
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𝑌𝑖,𝑡 (0) for 𝑖 ∈ N1 as equation 2.7, where the weights are derived solving the
following minimization problem equation 2.8. For notation simplicity,

let be 𝑖 = {1, 2, . . . , 𝑛1} the index for treated units and let be 𝑗 = {𝑛1 +
1, 𝑛1 + 2, . . . , 𝑛0 + 𝑛1} the index for control units We define the synthetic
control for each 𝑖 ∈ N1 as:

𝑌𝑖,𝑡 (0) =
∑︁
𝑗∈N0

𝜔
(𝑖)
𝑗
𝑌 𝑗 ,𝑡 𝑡 ∈ (𝑡𝑖0, . . . , 𝑇) (2.7)

For notation simplicity, let be 𝑡0 = 𝑡
𝑖
0 and 𝑡𝑖

𝑇
= 𝑡𝑇 for each unit 𝑖 ∈ N1.

Let X𝑖 =
[
𝑌𝑖,0, . . . , 𝑌𝑖,𝑡0

]′
be a 𝑡0−dimensional vector of pre-treatment

outcomes, for each treated unit 𝑖 ∈ N1, and let
X 𝑗 = (

[
𝑌𝑛1+1,0, . . . , 𝑌𝑛1+1,𝑡0

]′
, . . . ,

[
𝑌 𝑗 ,0, . . . , 𝑌 𝑗 ,𝑡0

]′
, . . . ,

[
𝑌𝑛1+𝑛0,0, . . . , 𝑌𝑛1+𝑛0,𝑡0

]′)
be a (𝑡0) × |N0 |−dimensional matrix of pre-treatment outcomes, for the

set of control units 𝑗 ∈ N0

Given a positive penalization constant _(𝑖), 𝑖 ∈ 𝑛1 , the set of weights

𝝎(𝑖) = {𝜔(𝑖)
𝑗
} 𝑗∈N0

defines the penalized synthetic control unit for treated unit 𝑖. The set
of weights 𝝎(𝑖) is obtained by solving the following minimization problem.

arg min
𝝎 (𝑖)∈𝑾

X𝑖 −
∑︁
𝑗∈N0

X 𝑗𝜔
(𝑖)
𝑗


2

+ _(𝑖)
∑︁
𝑗∈N0

X𝑖 −X 𝑗

2 (2.8)

subject to

𝜔
(𝑖)
𝑗

≥ 0 ∀ 𝑗 ∈ N0;
∑︁
𝑗∈N0

𝜔
(𝑖)
𝑗

= 1,

with ∥𝑛∥ is the 𝐿2−norm: ∥v∥ =
√
v′v for v ∈ R𝑟

We choose the P-SCM estimator because it is specifically designed
for estimating average treatment effects with disaggregated treated units.
Moreover, it grants us the uniqueness of the weights. Abadie and L’Hour
(2021) and Abadie (2021) present the technical details of the estimator and
its use. As discussed in Athey et al. (2021), in observational studies where
both N and T are large, the choice of which method to use is not straight-
forward, and P-SCM may allow a data-driven solution to this problem. In
fact, when _(𝑖) → 0, the P-SCM collapses into the standard SCM, while
when _(𝑖) → ∞ the P-SCM is equivalent to the nearest-neighbour matching
estimator. P-SCM enables us to maintain an agnostic behaviour towards
the choice between matching methods and SCM.
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We chose the tuning parameter _(𝑖) by using the weighted cross-validation
approach, proposed by Abadie and L’Hour (2021). We define the function
Φ(_), exposed in Equation 2.9, which minimizes the overall Root Mean
Square Prediction Error (RMSPE) of the donor pool for a given of _ in the
treatment period.

ℜ(_, 𝑡𝑇 − 𝑡0) =

√√√
1

(𝑡𝑇 − 𝑡0)

𝑡𝑇∑︁
𝑡=𝑡0

[
𝑌 𝑗 ,𝑡 − 𝑌 𝑗 ,𝑡 (_)

]2
The tuning parameter _∗ is chosen as follows:

_∗ = argmin
_∈Λ

Φ(_) =
𝑛0∑︁
𝑗=1

ℜ(_, 𝑡𝑇 − 𝑡0) (2.9)

Table 6.4 of the Appendix 2 reports values of _ used in the estimation.

Donor pool definition

Abadie (2021) and Abadie et al. (2015) pointed out the necessity of a
proper donor pool to estimate synthetic control weights. In particular,
they suggest to subset the total control set Ω0 in a set that has similar
characteristics regarding the treated set. Usually, donor pool selection is
driven by the researcher’s experience of the characteristics of the treated
units (e.g.:Abadie et al. (2015)).

In this work, we search for the proper donor pool for each treated set
N1 by using a data-driven procedure. We choose to select the donor pool
by using a matching approach based on propensity scores, first introduced
by Rosenbaum and Rubin (1983). Let

𝜋𝑖 = 𝜋𝑖 (C) = 𝑃𝑟 (D𝑖 = 1|C) (2.10)

denote the propensity score, where C is a set of pre-treatment covariates.
We estimate the propensity score using a logistic regression model on

a set of covariates describing socio-economic, political, ethnic, and demo-
graphic characteristics (see Table 2.2 for the complete list). Once we have
estimated 𝜋 = {𝜋 𝑗 } 𝑗∈N0 for the control units, we select the donor pool by
performing a one-to-many matching, with 4 control units for each treated
unit. Thus following, N0 denotes the subset of matched control units.
Table 6.3 in the Appendix 2 shows two-sample t-tests to evaluate the simi-
larity between covariates of the treated pool and donor pool for each state.
Such a procedure for donor pool restriction speeds up weight computations.
Moreover, it allows to build the synthetic control of the treated unit from
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similar control units, without relevant losses in terms of prediction error,
see also Abadie et al. (2010).

Inference

We conduct inference using falsification tests, also named “placebo stud-
ies,” which can be viewed as a type of randomization inference.

A placebo test is constructed by reassigning the treatment to control
units in the donor pool and estimating the so-called placebo effects. Then,
the estimated treatment effect is compared with the distribution of placebo
treatment effects. A treatment effect is considered statistically significant
when the magnitude of the effect is large with respect to the distribution
of the placebo effects. See Abadie et al. (2010) and Abadie et al. (2015)
for details. Firpo and Possebom (2018) extend the original inference to
allow for different weights for placebo units, but pointed out that in real
applications it is difficult to find these weights.

Building on the aforementioned works and the work by Cavallo et al.
(2013), we use an algorithm to conduct inference with SCM and aggregate
units.

We focus on assessing the significance of the aggregate ΔN1 effects.
Therefore, we do not estimate p-values or confidence intervals for indi-
vidual effects for each i-th county. We neither estimate confidence intervals
for each time-specific effect ΔN1,𝑡 . We define the test statistics as

Θ =
ℜ(𝑡0, 𝑡𝑇 )
ℜ(0, 𝑡0)

(2.11)

whereℜ(𝑡1, 𝑡2) is the root-mean square prediction error of the estimated
ΔN1 calculated between 𝑡1 and 𝑡2, as in equation 2.6.

Let ΔN0 = {Δ1, . . . ,Δ 𝑗 , . . . ,Δ𝐽} be the set of aggregate placebo effects,
created by randomly sampling placebo effects from units in N0 and pooling
them together to find each aggregate placebo effect Δ 𝑗 . In our analysis, we
choose 𝐽 = 1000. Let ΘN0 = {Θ1, . . . ,Θ 𝑗 , . . . ,Θ𝐽} be the set of placebo Θ 𝑗

calculated using equation 2.11 on the set of placebo effects ΔN0 .
We can define the p-value as:

𝜌N1 =
1

𝐽

∑︁
𝑗∈𝐽

𝕀(Θ 𝑗 > ΘN1) (2.12)

In principle, if the effect ΔN1 is large relative to the distribution of
placebo effects ΔN0 , there should be very few Θ𝐽 > ΘN1 , and we can consider
the effect statistically significant. As stated by Abadie et al. (2010), using
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Θ as test statistics instead of Δ allows us to compare treatment units with
control units, even in presence of imperfect pre-treatment fit. Algorithm 1
shows the procedure to calculate 𝜌N1 .

Algorithm 1 SCM inference with many treated units

procedure p-values
Require: Δ̂ 𝑗 (D 𝑗 = 1), ΘN1

Ensure: 𝜌N1

1. for J ∈ (1 : 1000) do
2. Sample with replacement 𝑛1 units from the donor pool N0, forming

the placebo state 𝑗

3. Calculate Δ̂ 𝑗 according to equation 2.5 and 2.6

4. Calculate Θ 𝑗 for each placebo state as in equation 2.11

5. end for

6. Calculate the p-value 𝜌N1 for the treated state by using Equation

𝜌N1 =
1

𝐽

∑︁
𝑗∈𝐽

𝕀(Θ 𝑗 > ΘN1)

7. end procedure

2.4.4 Assessing treatment heterogeneity

After the first vaccine lottery announcement in Ohio, several states intro-
duced their own lottery, creating policies mimicking. There is some con-
sensus on the positive results of conditional cash lotteries in Ohio (Barber
and West (2021), Acharya and Dhakal (2021)); but very early evaluations
from other states (e.g.: Arkansas) head in different directions, leading the
policymakers to interrupt the policy.

These results suggest that treatment effects could have been heteroge-
neous both across states and across counties. We study treatment effect
heterogeneity in order to provide helpful insights for future decisions.

We classified treated counties according to some socio-demographic,
economic, and cultural characteristics. Table 2.1 shows the dimensions used
in this analysis. To classify treated counties, we follow a clustering approach
with Gaussian mixture models (see Fraley and Raftery (2002), McLachlan
et al. (2019)). We choose the number of clusters that minimize the selection
model’s BIC for membership in each group of counties. According to the
set of covariates C, we found six clusters of counties. Table 2.4 reports the
mean values of the covariates in each cluster.
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Cluster 1 2 3 4 5 6

Percentage of Hispanic citizens 1.918 9.060 37.379 4.999 3.203 3.794

Percentage of Afro-American citizens 1.004 13.585 2.120 0.869 30.437 5.192

Percentage of citizens in poverty 14.947 13.036 15.252 12.275 23.123 13.869

Percentage of republican party voters 75.117 50.652 53.374 61.721 61.597 66.427

Percentage of High school graduates 42.943 27.466 28.379 32.355 38.953 36.715

Percentage of college graduates 15.336 32.145 21.060 23.542 15.166 19.696

Unemployment rate 8.020 7.260 8.799 7.899 8.404 7.578

Covid-19 related deaths/100k citizens 186.523 136.933 157.225 152.466 262.130 186.280

Percentage of citizens insured with Medicare 11.369 9.001 10.074 14.034 11.675 10.750

Median yearly earnings 24612.784 29142.530 25035.187 25230.088 23198.967 25707.554

Median Age 40.726 36.809 36.742 43.274 38.634 39.975

Share of counties on treated counties set 0.204 0.205 0.126 0.095 0.186 0.184

Table 2.4: Mean value of the covariates in each cluster

As one can see in table 2.4, clusters 3 and 5 have a very different ethnic
composition compared to the others. Specifically, in cluster 5, the share of
the Afro-American population is the highest among cluster, and cluster 3
represents the one with the highest percentage of Hispanics. Cluster 2 has
the richest, and the most educated population on average and the lowest
proportion of people voting for the Republican Party. Clusters 1 and 6 are
distinguished by their high percentage of votes for Republicans. Cluster 4
has the highest median age, and the highest proportion of citizens ensured
with Medicare.

2.5 Results

2.5.1 Causal effects

This section will present the results of our matching+PSCM approach to
estimate causal effects.

Figure 6.1 shows county-level average treatment effects (ATE) during
the vaccination lottery and after the vaccination lottery. During the treat-
ment period, we find positive effects, in the northwest area (Oregon, Wash-
ington, and some areas of California), in the Midwest (Ohio, Kentucky,
Illinois, and West Virginia), and on the East Coast (New York, Maryland).
In the other areas, the effects of the lotteries are minor, and we find small or
adverse effects, in the Southern states. County treatment effects appear to
be heterogeneous within the same state and between different states. This
heterogeneity may be explained by the different background covariates, the
timing of the policy or geographical location.

We now focus on causal effects at state-level, estimated using equation
2.6. Table 2.5 shows treatment effects at state-level, and their p-values,
while figure 6.2 shows the time series of the treatment effects at the state
level. We can evaluate the goodness of fit from synthetic control estimates
using pre-treatment RMSPE. In addition, we use visual inspection of the
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RMSPE Treatment Post-treatment
Ohio 0.415 1.23 0.195

p-value 0.371 0.522
New York 0.567 0.748 0.756

p-value 0.835 0.418
Oregon 0.689 3.149 1.79
p-value 0.009 0.463

Delaware 0.710 -1.057 -0.713
p-value 0.521 0.728

Maryland 0.615 0.314 0.638
p-value 0.883 0.852

Arkansas 0.673 -0.662 -0.168
p-value 0.774 0.684

California 0.542 -0.184 0.027
p-value 0.522 0.845

Washington 0.785 2.102 1.431
p-value 0.024 0.804

Kentucky 0.517 0.759 -
p-value 0.413 -

North Carolina 0.439 0.044 0.145
p-value 0.933 0.986

Louisiana 0.647 -0.561 0.309
p-value 0.443 0.822
Nevada 0.452 0.046 -
p-value 0.697 -
Maine 0.742 0.154 0.386
p-value 0.986 0.982
Illinois 0.501 1.019 -
p-value 0.918 -

West Virginia 0.563 2.497 1.615
p-value 0.037 0.132

Michigan 0.526 -0.217 -
p-value 0.714 -

Table 2.5: State-level effects on the share of over-18 vaccinated citizenship
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pre-treatment difference between treated and synthetic control as in Abadie
et al. (2010). Colorado and New Mexico exhibit poor pre-treatment fit,
and thus we do not report results from these two states. These poor pre-
treatment fit results may depend on discrepancies in weekly reporting of
vaccination, with delays in data entry. All the other states have an RMSPE
lower than 1 percentage point, which suggests a reasonable fit. We find
statistically significant positive impacts on vaccination rollout for West
Virginia, Oregon and Washington, and positive effects, but not statistically
significant, for Ohio, New York, Maine, Illinois and Maryland. The effects
for the remaining state results are small, or even negative for Delaware,
Arkansas, and Louisiana but none of the results is statistically significant.

In the post-treatment period, however, the size of the effects tends to
decrease in all states and estimates are not statistically significant for any
state. Therefore, there is some evidence that the effect of the policy was
temporary, and, after the end of the lotteries, no long-term effect is esti-
mated. Note that we cannot evaluate post-treatment effects from Kentucky,
Nevada, New Mexico, Illinois and Michigan because lotteries ended after
August 24th, 2021.

We also conduct a macro-region analysis, considering spatial aggregates
of states. We focus on four US macro-regions, estimating ATE in each of
them:

• East Coast (New York, Maryland, Delaware, Maine)

• Southern (Louisiana, North Carolina, Arkansas)

• Midwest (Ohio, Illinois, Kentucky, Michigan, West Virginia)

• West Coast (California, Oregon, Washington)

In this macro-regions analysis, we evaluate only the effect for the treatment
period, as some of the post-treatment effects are missing due to the end of
the observation period.

Table 2.6 shows our findings. Results are consistent with those we find
at the county level. Midwest states have benefited more from the policy,
with positive and significant results. This group comprises states that
join the policy either early (Ohio), or fairly late (West Virginia, Illinois,
Michigan).

We find some positive results, although not statistically significant, in
the East Coast area, and in the West Coast.

It is worth noting that West Coast area comprises Washington and
Oregon, in which the policy has positive and statistically significant results,
and California, in which small or even negative effects were estimated.
Negative, but not statistically significant results come from Southern states
of the US, as seen in Louisiana and Arkansas ATE.
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RMSPE ATE p-value
East Coast 0.323 0.536 0.968
Southern 0.294 -0.194 0.997
Midwest 0.181 0.865 0.012
West Coast 0.326 0.581 0.589

Table 2.6: Effects on the share of over-18 vaccinated citizenship for US
macro-regions

2.5.2 Staggered adoption results

In addition to causal effects for each state, and for major macro-regions,
we assess aggregate effects for states that began vaccine lotteries simulta-
neously, or within the same short time interval.

This analysis allows us to evaluate whether the early introduction of the
policy gives some novelty effect. If so, we expect that the states who adopt
the policy at early stages have better outcomes than the states adopting
the policy later on. The considerable media buzz coming after the Ohio
announcement could, at least partially, explain the heterogeneity of the
effects between early and late policy adoption.

We consider the following groups of states:

• Early Bird states: adoption within May 20 (Ohio, New York, Oregon,
Delaware)

• Second Echelon states: adoption by the end of May (Maryland, Cal-
ifornia, Arkansas)

• Third Echelon states: adoption within mid-June (Washington, Ken-
tucky, North Carolina)

• Latecomers states: adoption by the end of June (Louisiana, Nevada,
Maine, Illinois, West Virginia, Michigan1)

We excluded Colorado and New Mexico counties from this analysis be-
cause of the unreliability of their pre-treatment fit.

Group RMSPE ATE p-value
Early Bird states 0.285 1.254 0.017
Second Echelon 0.265 -0.017 0.960
Third Echelon 0.240 0.969 0.073
Latecomers 0.188 0.498 0.535

Table 2.7: Effects on the share of over-18 vaccinated citizenship, according
to timing announcement of the lottery

1We include Michigan, which announced it on July, 01 in the June pool.
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Table 2.7 shows the ATE and p-values for the four groups of states,
classified according to the timing of policy announcements. Figure 6.3 in
Appendix 2 reports the time series of their treatment effects.

For Early Bird states and Third Echelon states the policy seems to
have induced an additional 1% of the population vaccinated against Covid-
19, and these results are statistically significant. Small and statistically
negligible results emerge for Second Echelon states and for Latecomers.

Results suggest that there may have been a novelty effect, especially
for Early Bird states. However, even if the June effect results are smaller
than those in May, the positive sign of the effect should suggest an intrinsic
positive effect from the policy, untied from the media attention. In general,
multi-level analysis of individual and pooled treatment effects suggests that
a higher level of aggregation for treatment effects grants a better fit for the
estimation of missing quantities.

2.5.3 Treatment heterogeneity analysis

In section 2.4.4, we have identified six clusters of treated counties, according
to socio-economic characteristics. We now estimate ATE within those six
clusters.

Figure 2.5 shows the boxplots for treatment and post-treatment effects
in each cluster. We estimate positive effects in mean for clusters 1, 2, and
6, which account for about 65% of the treated units. Specifically, clusters
1 and 6, markedly Republican, showed promising results from the policy,
in particular, post-treatment evaluation for cluster 6 remains positive, but
with considerable variability. We got interesting results in cluster 2, which
was wealthy, democratic and more educated on average, without persistence
in the post-treatment. We got negative or no results in clusters 3 and 5
the two clusters with higher ethnic components, these clusters accounting
for 20% of the total share. It seems that counties with higher shares of
Hispanic and Afro-American citizens and lower wealth have worse policy
outcomes. This result is consistent with previous findings in the literature,
which found a link between ethnicity and vaccine hesitancy (Quinn et al.
(2016), Reiter et al. (2020)). This hesitancy appears to be unaffected by
monetary incentives, in contrast to the idea that a financial incentive can
alter the choices of the less wealthy population.

Generally speaking, we observe high variability within each cluster.
Therefore, the background characteristics may not be enough to explain
the heterogeneity of treatment effects.
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Figure 2.5: Boxplots of county-level effects Δ𝑖, calculated according equa-
tion 2.6, classified by cluster membership

2.6 Conclusions

Policies to incentive vaccination through monetary transfers and lotteries
have been rather discussed in the literature, which finds potential benefits
in the face of ethical and equity issues, see for example Jecker (2021),
Dotlic et al. (2021), Kim (2021), Sprengholz et al. (2021). This study aims
to explain the effects of incentives in the treated states, both at different
levels of analysis (county, state, macro-region) and at different starting
dates, providing an overall picture of policy outcomes. In particular, no
previous study has focused on counties and the unique characteristics of
each unit. We can see conditional cash lotteries as a viable health policy to
incentive people to get a vaccine jab. This is relevant, especially when the
vaccination timing is a crucial variable in determining the outcome of the
vaccination rollout. However, our results suggest that the outcome of such
policies is not unidirectional. In particular, we find different results across
counties belonging to the same state and between counties belonging to
different states.

Washington, Oregon and West Virginia outperformed other states get-
ting positive and significant results. Other states got positive, yet not
statistically significant, effects (Ohio, New York and Illinois), while the
remaining states get no to negative results.

The analysis of staggered adoption effects shows that causal effects are
higher in states that adopted the policy early (Early birds states). Media-
buzz effects around the policy can explain these findings, as hypothesized
by Gorin and Schmidt (2015). Nevertheless, policies can still produce pos-
itive results, even in the case of late adoption, as in the case of West
Virginia. Cross-bordering effects are also present. In particular, treated
counties in the Midwest of the US seem to have benefited most compared
with counties in three other macro-region (East Coast, West Coast and
Southern US). The study of the effects after the lottery ending is also un-
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precedented. This analysis is relevant as it differentiates between counties
and states that could have experienced permanent effects from the policy
or only temporary ones. This dimension is decisive for the policymaker,
adopting this incentive if they should achieve policy goals fast. We observe
temporary positive effects in most of the treated counties, especially for the
counties in the Midwest and Northwestern areas. However, we got lower
effects in the Sunbelt, where monetary incentives did not convince people
who are averse to the vaccine.

After initial success, maybe backed up by the media attention, the vac-
cine lotteries did not significantly affect the vaccination choices of Ameri-
cans. Small and statistically negligible post-treatment results suggest that
lotteries have induced people that would have been vaccinated at some
point to anticipate the jab. Nonetheless, even short-term temporary im-
pacts, such as the ones we find for US lotteries, may be meaningful when
the health policy goal has to be achieved within a short time.



Chapter 3

SMaC: Spatial Matrix

Completion Method

3.1 Introduction

The Synthetic Control Method (SCM hereinafter) is a widespread method-
ology to estimate causal effects in presence of a single treated unit and
many control units, observed over time (Abadie and Gardeazabal, 2003;
Abadie et al., 2010; Abadie, 2021). With this method, the impact of an in-
tervention is evaluated as the difference between the observed value of some
primary outcome and its counterfactual value, imputed by using a weighted
average of control units. The popularity of SCM is growing rapidly, and
its field of application range from social science, to ecological studies, to
policy evaluation. Athey et al. (2021) defined it as “arguably the most im-
portant innovation in the policy evaluation literature in the last 15 years”
and nowadays the methods counts over 4,000 citations on Google Scholar.

Evidence of interest in SCM is the flurry of methodological develop-
ments. Xu (2017), Amjad et al. (2018) and Ben-Michael et al. (2021) have
broadened the original estimator, allowing for unconstrained weights. An-
other group of works suggests using penalization in the estimation of the
weight, such as the recent proposal from Abadie and L’Hour (2021), which
penalizes the discrepancies between treated and control units individually.
The estimator, called penalized synthetic control, results to be an ensemble
estimator between the classical SCM and the nearest neighbour matching
estimator. A similar proposal comes from Kellogg et al. (2021), trading off
between interpolation and extrapolation bias. Arkhangelsky et al. (2019)
and Bottmer et al. (2021) introduce double robust estimators, considering
the interaction of SCM and Difference-in-Differences (DID) models.

Doudchenko and Imbens (2016) and Athey and Imbens (2021) notice
that the SCM is a subclass of a more large set of Matrix Completion Method

60
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(MCM hereinafter) estimators, the so-called vertical regression estimators,
which impute the missing potential outcomes in post-treatment as a linear
combination of a fixed effect and control units. These recent estimators
have led to an increase in fitting performances, in spite of the original SCM
weights transparency. See Abadie (2021) for an extended review of SCM
and MCM.

Recently, the exploration of SCM and MCM alternatives heads toward
Bayesian regression models. Menchetti and Bojinov (2020), Kim et al.
(2020), Pang et al. (2022) and Pinkney (2021) use Bayesian methods for
causal effects estimation, illustrating a simple and effective proposal for in-
ference in SCM-like settings. Finally, recent work from Arbour et al. (2021)
investigates the use of multitask Gaussian Processes for weight estimations.

The growing use and acceptance of these methods are leading them to
be applied to new research areas and types of data. In particular, many
fields where SCM is commonly used study outcomes which are measured in
spatial areas such as municipalities, states or regions. Abadie (2021) sug-
gests these as the specific framework of application for SCM-like methods.
In such contexts, it is common to see treatment assigned to a single area,
and the focus is to estimate the treatment effect on this treated unit. Usu-
ally, scholars consider no second-round effects from the treatment, neither
in terms of spillovers nor in terms of effect propagation. This is coher-
ent with the no-interference assumption of the SUTVA. Some recent works
(Grossi et al., 2020; Cao and Dowd, 2019; Di Stefano and Mellace, 2020)
try to estimate causal quantities using SCM in the presence of interference.
In particular, Grossi et al. (2020) exploit a partial interference assump-
tion (Forastiere et al., 2021a; Papadogeorgou et al., 2019) to identify the
spillover effect of a new tramway line construction.

However, no previous work has addressed spatial treatment effect propa-
gation explicitly within the scope of SCM or MCM. In practice, researchers
often evaluate the extent to which treatment effects propagate through
space by applying SCM to areas of different sizes around the treated loca-
tion. In principle, this choice does not harm the unbiasedness of estimation,
but it could affect the efficiency of estimators in the presence of spatial (or
network) data. Moreover, separate estimation of coefficients can lead to
vectors of weights very different for contiguous units, where we expect sim-
ilar areas to have similar SCM weights. In this work, we propose a Bayesian
estimator for missing potential outcomes in presence of spatial correlation
among treated units. We exploit a Gaussian process prior to the vertical
regression coefficients that take into account spatial correlation, encourag-
ing regression coefficients across similar areas to be similar. We aim to
exploit this spatial information to estimate counterfactual quantities that
are still unbiased, but have improved properties in terms of mean bias and
mean square error of the point estimate with respect to the separated SCM
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or vertical regression methods. We refer to this method as Spatial Matrix
Completion or SMaC.

Our motivating application is the impact evaluation arising from the
construction of the first line of the Florentine tramway network. In par-
ticular, we wish to assess the infrastructural impact on the commercial
vitality of the treated neighbourhood, measured as the number of stores
located within some distance 𝑑 from a tramway stop.

The chapter will follow this outline: section 3.2 introduces the related
works and the empirical literature and the data related to our applica-
tion, section 3.3 introduces the causal estimands, and section 3.4 presents
the methodology (SMaC). Section 3.5 presents the simulations studies we
carried out and section 3.6 presents our study results. Finally section 3.7
concludes and discuss future research.

3.2 The tramway and the city

The impact of investments in transportation infrastructure, such as light
rail systems, is a highly debated topic in the field of urban and transport
economics (see Cervero and Landis, 1993, Landis et al., 1995, Baum-Snow
and Kahn, 2000, Hess and Almeida, 2007, Pan, 2013, Papa and Bertolini,
2015). Naturally, transportation infrastructures are designed to improve
the accessibility of the served areas, by reducing the access time, and the
congestion charge and improving the general vitality of the area. In fact,
it is not rare that transportation infrastructure developments lead to a
broader renewal in the served areas, including the revitalization of public
spaces, investments in public parks and common areas, as well as an over-
all improvement in the usability of the neighbouring areas. These effects
are expected to be more pronounced when there is a well-connected and
extensive network of public transportation, as previously demonstrated in
the studies of Mejia-Dorantes et al. (2012) and Credit (2018).

Focusing on the economic outcomes of such interventions, scholars usu-
ally analyze the relationship between improvements in urban transport and
real estate prices, with a positive correlation between the construction of
transport facilities and house selling prices (see for instance Pagliara and
Papa, 2011; Yan et al., 2012). Two pieces of work study the causal effects
of the construction of the first line of the Florentine tramway. Budiakivska
and Casolaro (2018) find an overall positive effect on real estate prices,
coherent with the literature. Grossi et al. (2020) focus on the effect on the
commercial environment, studying the direct and spillover effects triggered
by the intervention.

However, much of this literature has focused on the effects of infrastruc-
ture during its operational phase, and less attention has been paid to the
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impact of the construction period on affected areas. Specifically, decreased
accessibility may result in significant negative impacts for areas directly im-
pacted by the construction site, while a shifting of benefits to neighbouring
areas may occur. Furthermore, it is also important to consider possible dis-
placement effects, where areas in proximity to the worksite may experience
negative impacts while areas farther away may see benefits as a result of
increased accessibility and a renewed environment.

It can be reasonably assumed that the impact of the treatment will
vary based on proximity to the construction site, with the most significant
effects being observed in areas closest to the light rail stops. Thus, dur-
ing the construction period congestion charge, reduced accessibility, noise
pollution and other drawbacks can affect the inner areas leading to a re-
duction in commercial vitality. On the converse, once the light rail system
becomes operational, inner areas may experience increased accessibility
and improved surroundings, as previously demonstrated in studies such as
Credit (2018) and Pogonyi et al. (2021).

The first Florentine tramway network was built at the very beginning
of the XX century, later dismissed in favour of private forms of transport.
In the late 80s, arise a debate within the city council about the rebuilding
of a tramway network, in separate lines with respect to the car lines. After
a long debate, the tramway line we are considering has been built between
2006 and 2010, and since that moment is connecting the central railway
station in the city centre with the densely populated municipality of Scan-
dicci, passing by the south-west neighbourhood of Isolotto and Legnaia. In
total, the portion of the line we are considering spans 3.2 km with 7 stops.

3.2.1 Data

We collect information on the physical location of businesses in the Floren-
tine neighbourhood. We consider the neighbourhood of Legnaia, in which
the tramway has been built and ten additional neighbourhoods located in
the peripheral and semiperipheral areas of Florence, most similar to the
treated one based on researcher knowledge of the territory. The central
city area of Florence is not included in this analysis as it presents distinct
characteristics that differentiate it from the peripheral neighbourhoods be-
ing studied. We excluded also those peripheral neighbourhoods which have
different morphological configurations. In fact, we excluded those hilly
neighbourhoods located in the north and south of Florence.

These neighbourhoods are selected based on criteria established by the
Real Estate Observatory of the Italian Ministry of Finance.

We also collect information on the tramway stops in Florence. We dis-
tinguish between the set of tramway stops in the Legnaia neighbourhoods
and the counterfactual sets of tramway stops, located in neighbourhoods
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Figure 3.1: Catchment areas around the tramway stops, up to 0.5 km

far away from the tramway site. We treat hypothetical tram stops as be-
ing situated in streets similar to those where the tramway already runs.
The classification of stores is based on their distance from the closest tram
stop. Specifically, buffer zones of 50-meter increments up to 400 meters are
created around each tram stop, with no overlap between them. A visual
representation of this setup can be seen in the accompanying figure 3.1.
Outcome variables for each stop ring originate from the Statistical Archive
of Active Firms (SAAF, English translation of ASIA, the Italian acronym
for “Archivio Statistico delle Imprese Attive”). The SAAF is held by the
Italian National Istitute of Statistics (ISTAT).

This dataset contains information on active businesses in each year of
the analysis. It includes the geographic location and economic sector (as
classified by the Statistical Classification of Economic Activities in the
European Community, or NACE) of each business. This dataset is sourced
from the period 1996-2014, and for the purposes of our analysis, we focus
on counting the number of active firms in each buffer zone around the
tramway stops in each neighbourhood, creating a panel dataset. Our focus
is solely on commercial vitality, expressed as the number of stores in a
certain area and not on any additional outcome or background variables
due to limitations in data availability.

3.3 Causal Framework

3.3.1 Notation

Consider a space Ω that can be partitioned into N areas: Ω𝑖 in 𝑖 ∈ N =

{1, . . . , 𝑖, . . . , 𝑁}, so that
⋃𝑁
𝑖=1Ω

𝑖 = Ω and Ω𝑖 ∩ Ω 𝑗 = ∅ for each couple
𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑁}. In our study, we consider the natural partition of our
sample space into clusters representing the Florentine neighbourhoods.
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We observe treatment arising from some specific locations ω1 ∈ Ω1. We
can consider treatment locations as point treatments. Let ω1 be the set
of treatment locations, in our application we consider ω1 as the tramway
stops located in the treated area. Note that all the tramway stops of the
line we are considering are located in the treated area and none outside.
We also consider sets of locations ω𝑖, 𝑖 ∈ {2, . . . , 𝑁} as sets of points located
in neighborhoods far away from the tramway line, in streets similar to the
one that receives the treatment. Points in ω𝑖 are randomly chosen, with a
mean distance across points similar to the distance across tramway stops
in the treated neighborhood. Note that, for 𝑖 ∈ N, the total set of locations
ω =

⋃
𝑖 ω𝑖 is the set of black dots in figure 3.2.

We define our observation units as the areas around the treatment sites
ω. Therefore, for each neighbourhood 𝑖 we construct a set of buffers areas
A𝑖 = {𝐴1

𝑖
, . . . , 𝐴ℎ

𝑖
, . . . 𝐴𝐻

𝑖
} around the treatment locations ω𝑖, using the

vector of distances D = (𝑑1, . . . , 𝑑ℎ, . . . , 𝑑𝐻) representing the distance of
the ℎ−th area from the treatment site. We sort units and distances such
that 𝑑ℎ+1 ≥ 𝑑ℎ ℎ ∈ {1, 2, . . . , 𝐻 − 1}.

In several applied studies scholars consider the treatment arising from
one (or multiple) locations, with the effect spreading to neighbouring areas
(see for example Zigler et al., 2020). In principle, a treatment can arise
effects also to faraway units, but in practice, we can focus on the area
within some user-specified distance 𝑑. Thus, the choice of the vector of
distances D can be relevant. In our example, we consider distances up to
400 meters, which is a reasonable walking distance to a tramway stop, and

Figure 3.2: Red Area: treatment area Ω1; Yellow Area: control area Ω0.
Black dots represent actual tramway stops (in red area) or counterfactual
stops (in the yellow area).
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the area that is more likely to receive the effects of an urban transport
facility, in fact Guerra et al. (2012) and Guerra and Cervero (2013) states
that the area within the quarter of a mile is the one more likely to receive
the effects of new urban infrastructures.

We repeatedly observe units over time, so we consider a panel data set-
ting, with 𝐻 × 𝑁 areas observed for 𝑇0 = (1, . . . , 𝑡0 − 1) pre-treatment peri-
ods, and 𝑇1 = (𝑡0, . . . , 𝑇) post-treatment periods. All the treated units are
treated at 𝑡 = 𝑡0. Let 𝑌

ℎ
𝑖,𝑡

be our primary outcome, the number of stores in
neighbourhood 𝑖 within distance 𝑑ℎ from the tramway stops in each time pe-
riod 𝑡 ∈ 𝑇 . Let be z = [𝑧11, . . . , 𝑧

ℎ
1, . . . , 𝑧

𝐻
1 , . . . , 𝑧

ℎ
𝑖
, . . . , 𝑧𝐻

𝑁
], 𝑧ℎ

𝑖
∈ {0, 1} be a

neighbourhood-level treatment for each area 𝐴ℎ
𝑖
considered. Thus following,

units belonging to the same cluster 𝑖 can be only treated or not-treated to-
gether, therefore z = [z1, . . . , z𝑖, . . . , z𝑁 ], with z𝑖 = [𝑧1

𝑖
, 𝑧2
𝑖
, . . . , 𝑧ℎ

𝑖
, . . . , 𝑧𝐻

𝑖
].

We consider two alternative regimes for z:

z(1) = [𝑧11 = 1, . . . , 𝑧ℎ1 = 1, . . . , 𝑧𝐻1 = 1, . . . , 𝑧ℎ𝑖 = 0, . . . , 𝑧𝐻𝑁 = 0]

z(0) = [𝑧11 = 0, . . . , 𝑧ℎ1 = 0, . . . , 𝑧𝐻1 = 1, . . . , 𝑧ℎ𝑖 = 0, . . . , 𝑧𝐻𝑁 = 0]

z(1) is the scenario in which each area 𝐴ℎ1 ∈ Ω1 receives the treatment,
and no one outside. Instead, z(0) represents the scenario in which no area
results are treated, in our scenario the situation in which the tramway was
never built in Florence. We consider that areasA1 = {𝐴11, . . . , 𝐴

ℎ
1, . . . , 𝐴

𝐻
1 } ∈

Ω1 will receive the treatment starting from the period 𝑡0, and remain
treated afterwards. In our application, we consider the treated space as the
Legnaia neighbourhood where the tramway stops are located, and 𝑡0 =2006.
Units located in other parts of Florence will be considered non-treated
units with A0 = {𝐴12, . . . , 𝐴

ℎ
𝑖
, . . . , 𝐴𝐻

𝑁
} ∉ Ω1. Areas in 𝐴0 are surround-

ing the counterfactual tramway stops, which are points chosen at random
on streets located faraway from the tramway path. The mean distance
between counterfactual tramway stops is mimicking the average distance
between stops in the treated area. A sketched map of the treated and
non-treated neighbourhoods can be seen in figure 3.2.

We adopt the potential outcome approach to causal inference (Rubin,
1974, Rubin, 1978). Under consistency assumption (Rubin, 1980), for each
unit 𝐴ℎ

𝑖
in each period 𝑡 we define the following couple of potential out-

comes:
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{
𝑌 ℎ
𝑖,𝑡
(1) ≡ 𝑌 ℎ

𝑖,𝑡
(z(1)) as the potential outcome under z(1) assignment

𝑌 ℎ
𝑖,𝑡
(0) ≡ 𝑌 ℎ

𝑖,𝑡
(z(0)) as the potential outcome under z(0) assignment

(3.1)
Under consistency, we consider no hidden version of the treatment, and

therefore we define 𝑌 ℎ
𝑖,𝑡
(𝑧𝑖,𝑡) as the potential outcome for areas in neighbour-

hood 𝑖, in time 𝑡 at a distance 𝑑ℎ from the treatment.
In contexts with cluster-level treatment allocation, scholars often invoke

a partial interference assumption (Sobel, 2006, Hudgens and Halloran, 2008,
Papadogeorgou et al., 2019), which rules that interference may occur, but
not within groups. Formally:

Assumption 4. (Partial Interference). For 𝑡 = 𝑡0 + 1, . . . , 𝑇 , for all

[z1, . . . , z𝑖, . . . , z𝑁 ] 𝑎𝑛𝑑 [z∗
1, . . . , z

∗
𝑖 , . . . , z

∗
𝑁 ]

with 𝑧𝑖 = 𝑧
∗
𝑖
,

𝑌 ℎ𝑖,𝑡 ( [z(1), . . . , z𝑖, . . . , z𝑁 ]) = 𝑌 ℎ𝑖,𝑡 ( [z∗
1, . . . , z

∗
𝑖 , . . . , z

∗
𝑁 ])

for all 𝑖 ∈ 𝑁, 𝑑ℎ ∈ D.

In our application, this means that the effect of the tramway cannot
emanate up to untreated units. This assumption can be considered rea-
sonable, such as control areas are not contiguous to the treated areas nor
connected to them by the tramway. Therefore, the potential outcomes for
units in the neighbourhood 𝑖 depend only on the treatment assignment of
their own neighbourhood, and thus 𝑌 ℎ

𝑖,𝑡
(z𝑖).

We consider that the store location is not influenced by the expecta-
tion of future treatment, invoking a non-anticipating treatment assumption
(Abadie et al., 2010). Under this assumption, the outcome at some time
period is not influenced by a treatment applied later. This assumption is
crucial in vertical regression contexts, as it allows us to use the relationship
between treated and control units in 𝑇0 and predict the counterfactual val-
ues in 𝑇1. It seems to be plausible to consider non-anticipating treatment
in our application, as the construction of the first line of the Florentine
tramway network experienced a long decisional phase, with many delays
that could have discouraged potential early settlers to relocate the activity
in the future served area.

Finally, let us define the observed outcomes at time 𝑡 as:

𝑌 ℎ𝑖,𝑡 =

{
𝑌 ℎ
𝑖,𝑡
(z(0)) if 𝑡 < 𝑡0

𝑌 ℎ
𝑖,𝑡
(z(1)) otherwise

(3.2)
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Before construction starts, we do not observe any unit affected by the
treatment, while after 𝑡0, all units in the treated neighbourhood will be
impacted by the treatment.

3.3.2 Causal Estimands

In a setting in which treatment arises in some locations ω1 in the Legnaia
neighbourhood, we are interested in evaluating the causal effect on treated
areas 𝐴𝑑

𝑖
, at times 𝑡 ∈ 𝑇1. For 𝑖 = 1 and ∀𝑡 ∈ 𝑇1 we define the causal effect

for the treated units as

Δ𝑑1,𝑡 = 𝑌
ℎ
1,𝑡 (z(1)) − 𝑌

ℎ
1,𝑡 (z(0)) ∀𝑡 ∈ 𝑇1, 𝑑ℎ ∈ D (3.3)

We can define also the intertemporal average :

Δℎ1 =
1

𝑇 − 𝑡0

𝑇∑︁
𝑡=𝑡0

Δℎ1,𝑡 (3.4)

to evaluate the overall effect through the treatment period for an area in
the treated cluster, within distance 𝑑ℎ. From the comparison of effects at
different distances from the treatment site, we can get precious insights into
the transmission of treatment effects through space. In general, we could
expect decaying treatment effects up to some boundary of spatial treatment
𝑑∞, in which Δ

𝑑∞
𝑖

→ 0. Studying diffusion effects at different distances
from the treatment site can shed light on how the treatment emanates
across space. It is possible that, even in presence of spatially correlated
units, the treatment effect will differ between inner buffers and outer areas.
Such analysis can be particularly useful for those applications related to
the spatial dimension of causal effects, such as transport economics, or
environmental economics.

3.4 Estimation of causal effects

In order to describe our estimation strategy, we first introduce the SCM
estimator and its related developments. Subsequently, we introduce the
proposed Bayesian framework for Spatial Matrix Completion. Lastly, we
will compare our proposed method with the aforementioned estimators.

3.4.1 Separate vertical regressions

Denote the outcomes for areas in neighbourhood 𝑖 at distance 𝑑ℎ from treat-
ment as𝑌 ℎ

𝑖,𝑡
at time periods 𝑡 = {1, 2, . . . , 𝑇}, and Y𝑖,𝑡 = (𝑌1

2,𝑡 , . . . , 𝑌
ℎ
𝑖,𝑡
, . . . , 𝑌𝐻

𝑁,𝑡
)𝑇
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as the vector of control outcomes at time 𝑡. These outcomes can represent
both a continuous random variable (for example, the minimum tempera-
ture in an area). In our study, 𝑌 ℎ

𝑖,𝑡
is a count random variable, such as the

number of shops within a certain distance.
One might be interested in understanding the effect that treating the

specific location 𝜔𝑖 had on the area comprised within a specific distance
𝑑 ∈ D versus not treating it. Remind that for the treated units we observe
𝑌 ℎ1,𝑡 = 𝑌

ℎ
1,𝑡 (z(1)) when 𝑡 ≥ 𝑡0, so we need to impute the missing quantity

𝑌 ℎ1,𝑡 (z(0)). In panel data settings, with one o multiple treated units, one
could impute the missing outcomes by using a linear combination of the
control unit’s outcomes, as in SCM-like methods. Specifically, the estimate
of the causal effect of the treatment at time period 𝑡 ≥ 𝑇0, for treated unit
at distance 𝑑ℎ is:

Δ̂ℎ1,𝑡 = 𝑌 ℎ1,𝑡︸︷︷︸
observed, with treatment

−
(
𝑁∑︁∑︁∑︁
𝑖=2

𝑌 ℎ𝑖,𝑡𝛽
ℎ
𝑖

)
︸        ︷︷        ︸

SCM-imputed, no treatment

(3.5)

Specifically, one can find βℎ
𝐶
= (𝛽12, . . . , 𝛽

ℎ
𝑁
)𝑇 ∈ R𝑁−1 such that:

(
βℎ
𝐶

)
= argmin

βℎ
𝐶
∈R𝑁−1

{
𝑡0−1∑︁
𝑡=1

(
𝑌 ℎ1,𝑡 − (Y𝑖,𝑡)𝑇βℎ𝐶

)2}
. (3.6)

with 𝛽ℎ
𝑖
≥ 0 ∀𝑖 and ∑

𝑖 𝛽
ℎ
𝑖
= 1. βℎ

𝐶
corresponds to the solution using the syn-

thetic control method (Abadie et al., 2010), with non-negative constraint
on coefficients, that should sum up to one.

The same problem could be faced by removing the constraints on re-
gression coefficients and adding an intercept to the model. As noted by
Doudchenko and Imbens (2016) and Ferman and Pinto (2021), this mini-
mization problem is also the solution of a linear regression where the out-
come 𝑌 ℎ

𝑖,𝑡
is regressed on the outcomes of the control units during the same

time period, using data only from the first 𝑇0 − 1 time periods. Let be
𝛽ℎ0 ∈ R1, and βℎ = (𝛽ℎ0,β

ℎ
𝐶
), thus the vector of coefficients(

𝛽ℎ0
βℎ
𝑖

)
= argmin

βℎ∈R𝑁

{
𝑡0−1∑︁
𝑡=1

(
𝑌 ℎ1,𝑡 − (1 Y𝑖,𝑡)𝑇βℎ

)2}
. (3.7)

identifies the solution using a vertical regression method (Doudchenko
and Imbens, 2016, Athey et al., 2021).

The synthetic control weights and vertical regression coefficients can be
calculated separately for different choices of 𝑑 ∈ [𝑑1, 𝑑𝐻]. For example, to
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find the synthetic control weights at distances 𝑑1 < 𝑑2 < · · · < 𝑑𝐻 , one could
solve the minimization problem in 3.6 using a constrained optimization
procedure, separately for each of these distances. Alternatively, the 𝐻
different minimization problems could be stacked, and one could solve the
combined minimization problem

©«

𝛽0

β2
...

β𝑖
...

β𝑁

ª®®®®®®®®®¬
= argmin

β0,𝛽2,...,β𝑖 ,...,β𝑁 ∈R𝑁𝐻

{
𝐻∑︁
ℎ=1

𝑇0−1∑︁
𝑡=1

(
𝑌 ℎ1,𝑡 − (1 Y𝑖,𝑡)𝑇β

)2}
(3.8)

where β𝑖 = (𝛽1
𝑖
, 𝛽2

𝑖
, . . . , 𝛽𝐻

𝑖
)𝑇 is the vector of the same parameter 𝛽ℎ

𝑖
in the

𝐻 vertical regression models, which will return the exact same solutions as
solving 3.7 separately for each distance. Additionally, we can consider a
penalized vertical regression, we refer to it as pooled ridge in equation 3.9:

©«

𝛽0

β2
...

β𝑖
...

β𝑁

ª®®®®®®®®®¬
= argmin

β0,𝛽2,...,β𝑖 ,...,β𝑁 ∈R𝑁

{
𝐻∑︁
ℎ=1

𝑇0−1∑︁
𝑡=1

(
𝑌 ℎ1 − (1 Y𝑖,𝑡)𝑇β

)2
+

𝑁∑︁
𝑖=1

_βIβ

}
, (3.9)

with _ as a scalar penalization term and I the identity matrix.

3.4.2 Bayesian approach for Spatial Matrix Comple-

tion

In this section, we will introduce the Bayesian framework we will use to
impute the missing outcome 𝑌 𝑑1,𝑡 (z(0)). Building on the vertical regres-
sion idea (Abadie and Gardeazabal, 2003, Doudchenko and Imbens (2016),
Athey and Imbens (2021)) we will propose a matrix completion algorithm
that smooths regression coefficient values through contiguous treated units.
Bayesian solutions for vertical regression and SCM-like settings are arising
interest, with the recent work of Kim et al. (2020) or Pang et al. (2022)
which have proposed Bayesian alternatives to the classical SCM. One of
the most salient advantages of Bayesian modelling is its clear and trans-
parent method for evaluating uncertainty in causal effects, which allows
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for the computation of credibility intervals from the posterior distribution
of the parameters. This feature is particularly important in SCM settings
in which scholars get a single point from the estimation, and therefore
placebo-test-based inference is usually applied. See for a review of such
inferential procedures Abadie (2021), Abadie et al. (2010), Cattaneo et al.
(2021).

In order to consider the spatial structures of the observed treated units,
yet being flexible in the parameter estimation, we follow a Bayesian regres-
sion approach, using Gaussian processes as priors for control unit coeffi-
cients. For instance, consider the Gaussian process f as:

f ∼ GP(`,K𝛼,𝜌)

parameterized in the vector of means ` , and covariance function K𝛼,𝜌,
where 𝛼 is the amplitude of the process, and 𝜌) the lengthscale of the
process. Let x = {𝑥1, . . . , 𝑥𝑝, 𝑥𝑞, . . . , 𝑥𝑅} be a set of inputs 𝑥. A Gaussian
process has the appealing property that every finite collection of it has a
multivariate normal joint distribution.

f (x) ∼ MVN
(
`(x),K𝛼,𝜌 (x)

)
See Williams and Rasmussen (2006) and Gramacy (2020) for an extended
presentation of its properties. A key role in GPs is played by the covariance
function K𝛼,𝜌, ruling the characteristics of the function we wish to predict,
and therefore, our prior beliefs on the data structure. Consider for example,
the specification of an exponential smoothing kernel, such as:

K𝛼,𝜌 (x) = 𝛼 exp
{
−
(𝑥𝑝 − 𝑥𝑞)2

2𝜌2

}
We can see that the covariance between the two points 𝑥𝑝 and 𝑥𝑞 exponen-
tially decays when (𝑥𝑝 − 𝑥𝑞) increases. This representation could be useful
to represent longitudinal settings, as a couple of outcomes (𝑌𝑝, 𝑌𝑞) will be
less correlated as their temporal distance (𝑥𝑝 − 𝑥𝑞) increases. A similar
argument holds for spatial settings where we expect closer points to be in
being more correlated, with a covariance matrix ruled by K𝛼,𝜌 (x). The rel-
ative distance between two points is not the only crucial ingredient in this
recipe. In fact, the correlation matrix will depends also on our belief in the
total amplitude of the process 𝛼, representing the signal variance which
determines the average distance of the data-generating function from its
mean and on the lengthscale parameter 𝜌, which represents how smoothed
will be our process. Figure 3.3 shows realizations of Gaussian Processes
under six different scenarios, using an exponential smoothing kernel. The
first row represents GP realizations for different levels of 𝜌. We can notice
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Figure 3.3: Gaussian Process realizations with varying 𝛼 and 𝜌

that, at the same level of 𝛼, when the lengthscale increases the process will
result in smoother realizations. Instead, when 𝜌 is small, even relatively
nearby inputs can have a small covariance. In the extreme case of 𝜌 → 0
the kernel matrix will be the identity matrix. The second row instead rep-
resents GP realizations when 𝜌 is fixed and 𝛼 varies. In this case, larger
values of 𝛼 will be associated with larger ”width” of the Gaussian process,
while with smaller 𝛼 all the realization will be concentrated around the
mean.

By altering the kernel specification, different correlation structures among
observations can be achieved, thus providing a prior specification that
aligns more closely with our hypotheses. Some examples of correlation
structures that can be utilized include the periodic, linear, and Matèrn
kernels.

The use of Gaussian processes in machine learning has seen a significant
increase in recent years due to their remarkable flexibility and versatility.
Researchers have been leveraging the properties of Gaussian processes to
estimate causal quantities, as demonstrated in various studies, such as in
Alaa and Van Der Schaar (2017), Huang et al. (2019) and Witty et al.
(2020).

Building on the multitask Gaussian Process proposal from Bonilla et al.
(2007), Arbour et al. (2021) proposes a GP-based estimator for causal
quantities in panel data settings. Kanagawa et al. (2018) introduce the
similarities between Gaussian Processes and Matrix completion methods,
allowing for weighted representations of outcomes.

In our setting, Gaussian processes can be particularly useful, as we
could exploit the spatial information in our data for the specification of
regression coefficients.
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Let Yd
1 = (𝑌 𝑑1,1, 𝑌

𝑑
1,2, . . . , 𝑌

𝑑
1,𝑡0

)′ be the vector of pre-treatment outcomes
for the treated area and distances 𝑑 ∈ {1, . . . , 𝐻}. We also define the vector
Y = (Y1

1,Y
2
1, . . . ,Y

H
1 ) which is of length 𝐻𝑡0 and includes the pre-treatment

outcomes across all distances.
Similarly, let be Yd

i
= (𝑌 𝑑

𝑖,1, 𝑌
𝑑
𝑖,2, . . . , 𝑌

𝑑
𝑖,𝑡0

)′ be the vector of pre-treatment
outcomes for the control area 𝑖, and be X𝑖 the 𝑡0𝐻 × 𝐻 block-matrix of
control pre-treatment outcomes, such that

X𝑖 =

©«

Y1
𝑖

Y2
𝑖

. . .

Y𝑑
𝑖

. . .

Y𝐻
𝑖

ª®®®®®®®®¬
Then let be X = [X0,X2, , . . . ,X𝑖, . . . ,X𝑁 ] be the 𝑡0𝐻 × 𝐻 (𝑁) matrix

of pre-treatment outcomes for the control units plus an intercept matrix
X0. Let β𝑖 = (𝛽1

𝑖
, 𝛽ℎ

𝑖
, . . . , 𝛽𝐻

𝑖
) be the vector of coefficients for control unit 𝑖

relative to different treated, and let β be the vector of pooled coefficients
β = (β0,β2, . . . ,βi, . . . ,β𝑁 ) for each control unit 𝑖 ∈ {2, . . . , 𝑁} and an
intercept. We consider 𝛽 varying smoothly through space, in particular,
the vector of coefficients 𝛽ℎ will be more similar for physically close units.
We specify such structure by using a Gaussian process prior for 𝛽 such that

β𝑖 (D) ∼ GP
(
0,K𝛼𝑖 ,𝜌𝑖 (D)

)
with K𝛼𝑖 ,𝜌𝑖 (D) as a quadratic exponential smoothing kernel with parame-
ters 𝛼𝑖 and 𝜌𝑖. Thus, the (𝑝, 𝑞) entry of K𝛼𝑖 ,𝜌𝑖 (D) is

[K𝛼𝑖 ,𝜌𝑖 (D)] 𝑝𝑞 = 𝛼𝑖 exp
{
−
(𝑑𝑝 − 𝑑𝑞)2

2𝜌2
𝑖

}
Thus, β ∼ MVN(0, Σ), where Σ is an appropriate block covariance ma-

trix for the pooled coefficient estimation for multiple treated units. Hence,

Σ =

©«

K𝛼0,𝜌0 (D)
K𝛼2,𝜌2 (D)

. . .

K𝛼𝑖 ,𝜌𝑖 (D)
. . .

K𝛼𝑁 ,𝜌𝑁 (D)

ª®®®®®®®®¬
We define the Bayesian regression model as
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Y ∼ N(β𝑇X, 𝜎𝑦I) (3.10)

βi ∼ GP(0,K𝛼𝑖 ,𝜌𝑖 (D)) (3.11)

𝛼𝑖 ∼ Γ−1(50, 5) (3.12)

𝜌𝑖 ∼ Γ−1(5, 5) (3.13)

𝜎𝑦 ∼ Γ−1(5, 5) (3.14)

(3.15)

This framework has simple yet powerful relapses. In context with spatially
correlated units, Bayesian regression with Gaussian process priors has good
frequentist properties, improving inference both in terms of bias and in
terms of efficiency. Moreover, from the posterior distribution of 𝛽i we can
derive the smoothed path of the coefficient for some control unit 𝑖 across
the treated units 𝑑 ∈ D. Lastly, we can easily derive credibility intervals
for the posterior distribution of the causal effect, retrieving it from the
posterior distribution of 𝛽𝑖. Even if we choose to specify weakly informative
priors, other approaches are possible: we could also estimate from the data
the amount of spatial correlation between treated units, and exploiting an
empirical Bayes procedure, provide an estimate for the 𝛼𝐸𝐵

𝑖
, 𝜌𝐸𝐵

𝑖
and 𝜎𝐸𝐵𝑦

hyperparameters. In fact, the choice of the prior for 𝛼𝑖 is heading in this
direction, as we wish to avoid the risk of overfitting, we opt for a prior
that should induce sparsity in the regressor estimation. Implementation
of empirical Bayes methods in the context of the Gaussian process has
been also studied by Krivoruchko and Gribov (2019) and Stijnen (1982).
Building on Williams and Rasmussen (2006) and van Wieringen (2015),
we show in the Appendix that there are no differences, in terms of point
estimates, between solving the pooled minimization problem in 3.8 using
SMaC and using a generalized ridge regression with penalization matrix
Φ = Σ−1 and penalization term _ =

𝜎𝑦
𝛼
.

3.4.3 Estimated SC weights as a function of distance

In fully separated models, coefficients can take very different values also
for similar treated areas. Within the context of our study, we implemented
separate matrix completion methods for distances 𝑑 ∈ {50, 100, . . . , 400}.
In particular, within a vertical regression method, we estimate control units’
coefficients by using the SCM method (equation 3.6), the pooled ridge
vertical regression (equation 3.8) and the Bayesian vertical regression with
GP priors, or SMaC (equation 3.10). Figure 3.4 shows the SC weight and
the pooled ridge coefficient of a randomly chosen control unit in our study
as a function of distance from the treatment site 𝑑. We notice that the
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Figure 3.4: Values of an example 𝛽𝑖 at increasing distances from the treat-
ment site
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Figure 3.5: Boxplots of the difference |𝛽𝑑
𝑖
− 𝛽1

𝑖
| for 𝑖 ∈ {2, . . . , 𝑁}

value of SCM coefficient is varying quite abruptly, even if there is a small
increase in distances across units, and one could expect similar values.
Pooled ridge regression coefficient instead seems to be all shrunk toward
zero. On the converse, SMaC coefficients show similar values at different
distances, evidencing a smoothed transition between distance 𝑑ℎ and 𝑑ℎ+1

Next, we investigated how different estimated SCM coefficients are for
areas of smaller or larger distances from the treated locations. Specifically,
if 𝛽1 are the coefficients for 𝑑 = 50, and 𝛽𝑑 are the coefficients for any value
𝑑, Figure 3.5 reports boxplots of |𝛽𝑑− 𝛽1 | as a function of 𝑑−50. We notice
that SCM coefficients at distance 𝑑 are more different from corresponding
coefficients for 𝑑 = 50 as 𝑑 increases.

In a spatial setting, we expect that abrupt variations of regression co-
efficients such as the ones seen for SCM in 3.4 are unlikely. One would
expect that an area does not change much when the distance from the
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treated locations increases slightly. Therefore, the weighted combination
of controls that adequately represent the treated area is expected to be
similar for similar distances 𝑑. The results in 3.5 support this claim since
SMaC coefficients are more similar when the treated areas of interest corre-
spond to areas of similar distance from the treated location. The proposed
SMaC estimator explicitly takes advantage of this structure, and returns
smoothed transitions across distances (3.4) and smaller differences of coef-
ficients across distances (3.5).

3.5 Simulation Study

We conduct simulation analyses to study the performances of the proposed
estimator, in terms of bias and efficiency of the point estimate with re-
spect to the reference estimators for causal effects with panel data. We
focus on the comparison with the SCM and the ridge vertical regression
method, as in Doudchenko and Imbens (2016). Other estimators were pos-
sible (Augmented Synthetic Control from Ben-Michael et al. (2021), OLS,
Bayesian Regression, GLS) but we are focusing on the most commonly used
estimators in our context.

3.5.1 Design

We simulate the time series outcome 𝑌 ℎ
𝑖,𝑡
(0), for the areas 𝐴ℎ

𝑖
, with H treated

units if 𝑖 = 1 and spatially correlated, and (𝑁−1)×𝐻 control units, uncorre-
lated with the treated and among themselves. We consider three possible
data-generating processes (DGP): one generated from the Homogeneous
Poission Point process (HPP), one arising from a linear additive model,
and the last generated from N Gaussian processes.

• The first data generating process is a Homogeneous Poisson Point
process (HPP hereinafter) simulating the location of stores within
some area Ω. As in our empirical application, we split the total space
Ω into a treated space Ω1 and a control space Ω0, and create time-
fixed and non-overlapping buffers
A = {𝐴11, . . . 𝐴

𝐻
1 , . . . , 𝐴

ℎ
𝑖
, . . . , 𝐴𝐻

𝑁
} around some random location in

𝜔𝑖 ∈ Ω, at distance 𝑑 ∈ D. For each time 𝑡 ∈ 𝑇 we simulate the
point locations over a space Ω, and generate a collection of points as
follows:

𝑌 ℎ𝑖,𝑡 =

{
𝑌 ℎ
𝑖,𝑡−1 + 𝐵𝑖(𝑌

ℎ
𝑖,𝑡−1, 𝛿𝑡) − 𝐵𝑖(𝑌

ℎ
𝑖,𝑡−1, [𝑡) if 𝑡 ≠ 1

𝑌 ℎ
𝑖,1 = 𝑃𝑜(^)
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where ^ is the baseline intensity of the HPP, and 𝛿𝑡 = {𝛿1𝑡 , 𝛿0𝑡 } and
[𝑡 = {[1𝑡 , [0𝑡 } are respectively the birth and death probability in each
time 𝑡 for treated and control units.

• The Second DGP assumes that the outcomes follow an additive linear
model with normal components. For each unit of observation 𝐴ℎ

𝑖
, we

consider the following model:

𝑌 ℎ𝑖,𝑡 =


𝑌 ℎ
𝑖,𝑡−1 + 𝛿

1
𝑡 − [1𝑡 + 𝜖 ℎ𝑖,𝑡 if 𝑖 = 1 and 𝑡 > 1

𝑌 ℎ
𝑖,𝑡−1 + 𝛿

𝑖
𝑡 − [𝑖𝑡 + 𝜖 ℎ𝑖,𝑡 if 𝑖 ≠ 1 and 𝑡 > 1

𝑌 ℎ
𝑖,1 = U(𝑎, 𝑏) if 𝑡 = 1

with 𝛿𝑖𝑡 and [
𝑖
𝑡 normal terms representing the number of arising and

closing firms during year 𝑡, sampled from a normal distribution, and
𝜖𝑖,𝑡 an idiosyncratic error.

• Under the last DGP, that the outcome variable for the treated area
Ω1, 𝑌 ℎ1,𝑡 is generated from a Gaussian Process with hyperparameters
(𝛼1, 𝜌1), so that treated units are spatially correlated, with smoothing
correlation across space. The outcomes for the control units outcomes
𝑌𝑖,𝑡 are generated from (𝑁 − 1) × 𝐻 independent Gaussian Processes
with hyperparameters (𝛼ℎ

𝑖
, 𝜌ℎ

𝑖
).

In all three DGP, once 𝑌𝑖,𝑡 is simulated, we round up to the unit the out-
come. We consider three different lengths for the duration of the observa-
tion period. The first length defines a short period with 20 time points,
the second length defines a medium period with 50 time points, and the
third length defines a longer period with 100 time points. These choices
are motivated by the fact that most applications fall within the range of
100 periods. The pre-treatment period is defined setting 𝑡0 = 3𝑇/4.

For each temporal scenario, we choose to simulate two alternative sce-
narios for the number of control units. Let #𝐶 denote the number of
control units, we specify a scenario with #𝐶 = 0.5𝑇 , and another with
#𝐶 = 1.5𝑇 to test whether the performances increase or decrease across
different specifications. In total, we study 3 × 2 × 3 = 18 scenarios. We run
simulations over 200 datasets for each scenario. For Bayesian inference we
use RStan, simulating posterior distributions by running chains with 6000
iterations, and 3000 warmup iterations.

3.5.2 Simulations Results

We now focus on evaluating the point estimation properties of SMaC, com-
paring it with simulation results obtained with SCM and the pooled ridge
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Table 3.1: Overall bias and MSE - Homogeneous Poisson Process DGP

Time periods Method # Controls=0.5*T # Controls=1.5*T
Mean \1 st.Dev. \1 Mean \2 st.Dev. \2 Mean \1 st.Dev. \1 Mean \2 st.Dev. \2

20 SCM 6.944 4.628 24.330 14.056 7.173 4.371 25.089 13.326
20 P.Ridge 5.686 3.227 19.979 9.238 5.335 3.041 18.950 8.777
20 SMaC 5.438 3.195 19.291 9.291 5.538 3.145 19.501 9.277
50 SCM 6.504 4.187 23.000 12.715 6.654 4.265 23.491 13.335
50 P.Ridge 4.682 2.557 17.195 7.608 4.568 2.506 16.917 7.742
50 SMaC 4.887 2.829 18.151 8.590 4.790 2.847 17.973 8.863
100 SCM 5.983 3.857 21.996 11.866 5.612 3.626 20.416 11.052
100 P.Ridge 4.596 2.756 17.630 8.612 5.333 3.660 20,127 10.934
100 SMaC 5.054 3.160 20.083 9.774 5.308 3.670 19.860 11.045

Table 3.2: Overall bias and MSE - Additive Process DGP

Time periods Method # Controls=0.5*T # Controls=1.5*T
Mean \1 st.Dev. \1 Mean \2 st.Dev. \2 Mean \1 st.Dev. \1 Mean \2 st.Dev. \2

20 1 37.901 23.749 144.922 61.646 36.992 25.886 143.059 72.505
20 2 31.877 19.904 136.014 62.374 40.131 31.944 178.187 101.514
20 3 31.145 20.549 116.839 58.428 31.758 22.602 124.188 67.903
50 1 56.134 37.250 208.178 102.544 51.222 34.647 192.251 97.440
50 2 43.186 31.145 194.738 88.078 51.355 38.514 252.797 122.288
50 3 44.630 31.683 173.413 90.570 41.763 29.185 181.384 86.177
100 1 73.489 55.002 271.152 158.010 69.745 53.765 267.098 144.836
100 2 60.296 44.211 265.843 131.965 65.480 45.003 272.742 136.883
100 3 66.163 49.033 251.960 143.905 63.211 43.457 242.994 134.179

vertical regression. In particular, we evaluate the performance of the alter-
native inferential procedures using the mean intertemporal bias:

\1 =
1

𝑇 − 𝑡0

𝐻∑︁
ℎ=1

𝑇∑︁
𝑡=𝑡0

𝑌 ℎ1,𝑡 (0) − 𝑌
ℎ
1,𝑡 (0)

and the mean intertemporal Mean Square error:

\2 =
1

𝑇 − 𝑡0

𝐻∑︁
ℎ=1

𝑇∑︁
𝑡=𝑡0

(𝑌 ℎ1,𝑡 (0) − 𝑌
ℎ
1,𝑡 (0))

2

Table 3.3: Overall bias and MSE - Gaussian Process DGP

Time periods Method # Controls=0.5*T # Controls=1.5*T
Mean \1 st.Dev. \1 Mean \2 st.Dev. \2 Mean \1 st.Dev. \1 Mean \2 st.Dev. \2

20 SCM 1.140 0.552 6.608 1.829 1.189 0.568 6.669 2.036
20 P.Ridge 1.203 0.863 6.817 2.599 1.234 0.987 6.841 3.011
20 SMaC 0.856 0.412 5.971 1.781 0.800 0.386 5.781 1.847
50 SCM 0.892 0.418 6.571 1.194 0.943 0.424 6.925 1.512
50 P.Ridge 0.896 0.753 6.693 1.982 0.976 0.656 7.071 1.990
50 SMaC 0.549 0.247 6.040 1.139 0.619 0.315 6.335 1.507
100 SCM 0.761 0.338 6.691 0.952 0.764 0.361 6.934 1.012
100 P.Ridge 0.724 0.383 6.664 1.084 0.947 0.476 7.234 1.154
100 SMaC 0.455 0.203 6.253 0.852 0.536 0.271 6.550 0.933
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The simulation results in table 3.3 suggest that under a Gaussian pro-
cess DGP our proposed method has better performances than the SCM
estimator and the vertical regression estimator with a ridge penalization.
In particular, we can see that the mean bias for the treated units is around
30% lower than the other estimators. Similar results are derived also for
the mean MSE. We notice also a lower standard deviation, using SMaC,
for both \1 and \2 under all the scenarios considered.

Under a Homogeneous Poisson Process DGP, we notice in table 3.1
that SMaC mean bias and mean MSE are lower when T=20 and when
we have #𝐶 ≤ 𝑇 . This result sounds reasonable, when the longitudinal
information is scarce and cross-sectional information is not that important,
SMaC exploits the spatial structure of the treated units to obtain better
performances than the separated counterparts. With longer time series,
both the SCM and the pooled ridge estimators can exploit the temporal
pattern to obtain estimates with a slightly lower bias and MSE with respect
to SMaC.

Under the linear additive DGP, in table 3.2 we see that in terms of mean
bias, SMaC is performing better than the other estimator when #𝐶 ≤ 𝑇

and T=20. Similar results hold also when we consider #𝐶 ≥ 𝑇 , and results
are valid for all the time scenarios considered. Boxplots of the summary
statistics for \1 and \2 are reported in figure 7.1, 7.2 and figure 7.3 in the
appendix 3.

In general, under the three DGP considered, we notice that SMaC has
good performances in terms of bias and MSE, especially when the number
of time periods considered is not so large. In fact, working with few time
periods and spatially correlated units are common situations in policy eval-
uation, and this makes particularly attractive the estimator we propose.

3.6 Estimating the effect of the Florentine

tramway construction

Figure 3.6 and table 3.4 show the results we obtained applied the proposed
methods to the Florentine tramway study. We evaluate the treatment
effect arising from the construction of the tramway, for areas surrounding
the tramway stops. We consider the treatment effect as the average of the
posterior distribution of Δ𝑑

𝑖,𝑡
, estimated according to equation 3.3. Notice

that for each unit the outcome 𝑌 ℎ
𝑖,𝑡
is centered around its own pre-treatment

mean and divided by the pre-treatment standard deviation. Table 3.4
shows the posterior mean and the posterior 90% credible intervals based on
quantiles of the simulated posterior distribution. Our results show that the
tramway has provoked generally an increase in the commercial vitality of
the area considered. These results are particularly significant for the areas
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closer to the tramway stops, as we find significant average treatment effects
for the areas within 50 and 100 meters of the treatment sites. The positive,
yet non-statistically significant effects are present for the outer areas, from
150 to 400 meters away from the tramway stops.

We also report some goodness of fit measures, such as the mean bias of
the pre-treatment effect and the root mean square prediction error. In both
cases, we obtain a good fit from the model. These results are confirmed
by the visual inspection of pre-treatment trends in figure 3.6, from which
we can also see that the credibility intervals in every pre-treatment time
period for each treated unit comprise 0.

By inspecting the time trends of the causal effects we can derive addi-
tional insights into the effect of construction worksites, and the subsequent
effect of the tramway.

Worksites have not extensively damaged the commercial environment
of the treated area. We can note a significant and negative effect for the
area within 100 meters during the period 2006-2010. That time span was
the construction period of the tramway, and thus we could expect worse
outcomes for areas close to the construction site. However, the number of
stores steadily recovered in 2010, the inauguration year, and the overall
effect, even for this particularly affected area, is still positive. For this
purpose, it is worth noting that in the closer area to the treatment site, the
positive effect is present since the start of the construction period, some
retailers anticipate their competitors by locating the shops in the most
served areas even before the start of tramway operations. Similar results
are present also in the first chapter of the dissertation instead considers a
linear buffer of 50 meters around the tramway line.

The effect on the outer bands (𝑑 ≥ 200 meters) is similar to the ones
found for inner areas. In particular, we notice that worksites have not af-
fected the commercial environment of the outer areas, while the tramway
has improved the accessibility of the area, leading to an increase in the
number of shops present. The estimated causal effect has a growing ten-
dency, especially for the outer areas, that exhibit statistically significant
effects in the last observational periods.

Except for the effect on the second and third buffers, we cannot notice
any relevant effect coming from the construction site on the commercial
vitality of the surrounding areas.
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Table 3.4: ATE by areas within 𝑑 distance from the tramway stop, mean
value , 90% Credibility intervals, and pre-treatment mean Bias and RMSPE

ATE 5% 95% Mean Bias RMSPE
50 3.059 1.335 4.790 0.000 0.196
100 2.022 0.266 3.804 0.000 0.186
150 5.313 -2.374 13.063 0.000 0.127
200 8.042 -11.423 25.651 0.000 0.080
250 7.951 -14.828 30.905 0.000 0.080
300 10.414 -10.643 29.602 0.000 0.108
350 12.235 -4.837 28.173 0.000 0.150
400 10.263 -5.392 25.516 0.000 0.165
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Figure 3.6: Treatment effect for areas within 𝑑 meters from a tramway
stop, Red line: Treatment effect, Blue area: 90% Credibility interval -
First vertical line: tramway worksite starts (2006) - Second vertical line:
tramway operational (2010)
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3.7 Concluding Remarks

In this work, we propose a novel method for causal effects estimation in
a spatial setting. Working on the previous literature of SCM (Abadie
et al., 2010), vertical regression (Doudchenko and Imbens, 2016) and MCM
(Athey and Imbens, 2021), we propose to exploit the properties of a Bayesian
regression model, using a Gaussian Process prior for the regression coeffi-
cients we use as weights of the control units to impute the missing control
potential outcomes for the treated units.

The core idea of the proposed method is the following: in context with
spatially correlated units, it is reasonable to assume that the linear combi-
nation we use to impute the potential outcomes of a unit in a given location
𝑑, will be similar to the linear combination we exploit for imputing the miss-
ing control potential outcomes for a unit in the treated area located at a
distance 𝑑 + Y from the treatment site. In settings with spatially correlated
units, we could expect that inferential procedures that account for the spa-
tial dimension could be more efficient than procedures that do not account
for it. For this purpose, we simulate three different data-generating pro-
cesses for spatial settings and evaluate the model performances in terms of
bias and MSE of the predicted values. We find out that our SMaC grants
at least equal results to the commonly used estimators in these contexts,
the SCM and the Ridge estimator for vertical regression, with better re-
sults than counterparts when the number of time periods available is small.
This could be a particularly relevant feature, as the lack of long time series
could be an issue that affects the use of SCM and vertical regression in
many policy evaluation problems.

We illustrate the results from this model by investigating the treatment
effects on the commercial vitality arising from the construction of the first
line of the Florentine tramway. The results from the motivating applica-
tions underline the potential of our estimator, allowing us to consider the
diffusion of treatment effects around some treatment sites, the tramway
stops. We find an overall positive effect for the treated area, and statisti-
cally significant for the inner areas, located within 100 of a tramway stop.
Outer areas also exhibit positive results, yet non statistically significant,
but with a promising trend in the last observation periods.

Worksites have not generally affected the commercial environment, with
some negative effects during the construction period for the buffers between
50 and 100 meters from the tramway stop, which steadily recovered once
the tramway starts working. Notably, similar results have been found also
in the first work of this dissertation. In general, our results suggest that
investments in urban light rail systems can be a viable solution that grants
improvements in the commercial vitality of served areas.

Further research on the topic is needed. Possible extensions could em-
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brace both methodological and applied extensions. In particular, it could
deserve attention to the comparison between SMaC and the generalized
ridge estimators, the extensions to multiple sources of treatments, bipar-
tite designs, or even the application of SMaC to networked data.



Chapter 4

Bayesian longitudinal principal

stratification

4.1 Introduction

Start-up businesses can contribute significantly to urban regeneration and
regional development through the creation of innovative and creative envi-
ronments, see for instance Román et al. (2013). This is supported by re-
search indicating that start-ups are a key driver of productivity growth, and
economic renewal(Haltiwanger et al., 2013, Dumont et al., 2016). More-
over, start-ups are also a viable solution to tackle unemployment.

In recent years, policymakers have turned their attention to promot-
ing self-employment by directly supporting the creation of new businesses.
These policies aim to create and maintain a favourable environment for
small businesses, including those that have been successful in the past
but may be looking to reinvent themselves. By lending their support to
promising entrepreneurial endeavours, policymakers aim to decrease unem-
ployment by providing self-employment opportunities for aspiring business
owners and potentially, additional hiring opportunities for the unemployed.
However, it is not uncommon for start-ups to face challenges and fail during
their early stages, e.g., due to economic conditions and the inexperience of
the founders.

In such a context, the evaluation of public programs targeting these
businesses can be severely harmed by post-treatment complications. Out-
comes can be censored by death, in the sense that they are neither observed
nor defined for units who die. A first solution for these complications spans
from the work by Heckman (1976) and Heckman (1979), who sees this
problem as a sample selection situation and provides a structural equation
modelling approach to deal with it. Some authors propose Instrumental
Variables (IV) approaches (Angrist and Krueger, 1999) or conditional Dif-

84
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ference in Differences (DiD), as Heckman et al. (1998). Other recent meth-
ods rely on imputation approaches (Leete et al., 2019) or DiD methods
(Sant’Anna, 2016).

In this work, we choose to deal with the problem of truncation by
death by using the principal stratification approach, first introduced by
Frangakis and Rubin (2002), see also Zhang et al. (2008) and Mealli and
Mattei (2012). Within the principal stratification approach, the focus is
on causal effects on latent sub-populations of units (the principal strata).
The use of principal stratification to evaluate causal effects under censor-
ing complications is quite widespread, see for instance Zhang and Rubin
(2003), Chiba and VanderWeele (2011), Mattei and Mealli (2011), Mealli
and Mattei (2012), Frumento et al. (2012).

We will show the proposed approach to study the causal effects of a
policy promoting start-ups on firms’ survival and hiring policy. Building
on a recent strand of the literature (Bia et al. (2020)), we propose an
extended framework for the analysis of longitudinal studies, where units can
be censored at different time points, and the main endpoints are observed
and well-defined only up to the censoring time.

This work aims to contribute to the existent literature about the evalu-
ation of public-policy programs by expanding to multiple time periods the
framework developed by Bia et al. (2020), and possibly opening the strand
to a multiple-times principal stratification framework. Moreover, we wish
to contribute to the thematic literature about the evaluation of public sup-
port in self-employment programs and start-up development, which is a
relevant discussion topic in the current literature strand.

The work proceeds as follows: section 4.2 illustrates our motivating
application, its main complication and the relevant literature on the applied
field. Section 4.3 shows our data sources and some descriptive statistics.
Section 4.4 illustrated the methodological environment and the empirical
strategy to estimate causal effects. Section 4.5 present the main findings
of the work. Section 4.6 concludes.

4.2 The subsidized start-up puzzle

The evaluation of programs supporting start-ups is a debated theme in
economic policy literature. The idea behind financial aid for start-ups is
articulated into several levels of analysis. At first glance, there is some con-
sensus on the positive effect of start-up businesses in fostering employment.
For reference, Kane (2010) and Decker et al. (2014) analyze the US labour
market finding out the positive role of start-ups in job creation, more-
over, they find that older firms are net job destroyers. In these pieces of
study, start-ups work as re-distributors of resources from low-productivity
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sectors to more profitable ones. Moreover, Aghion et al. (2009) stresses
the pressure posed by new-established firms on incumbents, accelerating
the natural renewal process of entrepreneurship. Job creation ability of
start-ups has been inquired by Kuschel et al. (2018) focuses on the role of
women in job creation, finding no relevant differences with a male counter-
part. Choi et al. (2020) study the role of Korean tech start-ups in terms
of job creation and job quality, finding out that innovative tech projects
grant desirable results.

On the other hand, the results we find in the start-up literature are
not fully generalized. Several works find dependence between the starting
blocks for each firm and its future development. See for example Brown
et al. (2019), that shed light on founder characteristics for a successful
project.

The financing ability of firms could be a serious issue for new en-
trepreneurial projects. Freshly established firms are usually disadvantaged
in accessing credit because of the little relational capital of the firm owner,
and the asymmetric information about the project potential, as pointed out
by Peneder (2008). From a financial point of view, start-ups do not usually
rely on past liquidity provisions, and they usually lack robust guarantees
for their loan application, see for instance Colombo and Grilli (2007) and
Nigam et al. (2020). Thus following, the credit market can present signif-
icant barriers to the development and growth of new businesses. In these
cases, public sector intervention through market corrections can play a cru-
cial role in addressing these deficiencies and promoting an environment that
is more conducive to the emergence of fresh-starting projects. This can be
done by various means like creating a favourable regulatory framework,
providing access to financing, investing in infrastructure and education or
directly investing or supporting those projects or ventures. The decision
to provide public support to start-up businesses is a nuanced one as start-
ups can be fragile and uncertain. Several studies focus on the impact of
public policy on the survival of start-ups. Battistin et al. (2001), stud-
ies the relationship between public subsidies and the start-ups’ survival,
Boyer and Blazy (2014) studies the drivers for the economic durability of
start-ups, finding a relationship between the outcome and the age, gender,
financial support and network of the firm owner. Duhautois et al. (2015)
and Alonso-Nuez and Galve-Górriz (2012) shed light on the effect of public
support on start-ups. Recently, Mariani et al. (2019) used a causal frame-
work to examine the survival of subsidized firms using data from the same
program as the one analyzed in this study. They find ambiguous results:
public support helps young men and women to exit from unemployment
and create additional jobs in the short term but at the price of investing
resources in projects with low potential.

From a policymaker’s perspective, there are some additional topics that



87

deserve to be mentioned. Start-up subsidies can be also seen as a viable
policy to promote entrepreneurship among the disadvantaged classes of the
population, promoting self-employment (Caliendo and Künn, 2014). Lack
of experience, self-confidence and contacts could harm even those potential
entrepreneurs. Public interventions may help to level the playing field and
create a more equitable environment for new ventures to compete and suc-
ceed in the marketplace, ultimately fostering a more robust and dynamic
economy. On the one hand, the social purpose of these programs is pretty
straightforward. First, they can reduce the barriers to getting access to the
credit market, reducing the gap between youth and female entrepreneurs
and the other firm owners, as pointed out by Caliendo (2016). Second,
self-employment can be seen as an active labour policy, with a direct effect
on the unemployment level of more vulnerable social groups. Additional
relapses can encompass job formation, due to the hiring in freshly estab-
lished firms and innovation dissemination. On the other hand, there is
little consensus on the positive effects of such policies. The most relevant
issue regards the personal abilities of the firm owner and the potential of
the start-up projects. In fact, funding people that have not shown partic-
ular entrepreneurship ability could result in a net loss of public funding,
see Shane (2009). Lukeš et al. (2019) find out that start-up incubators
should not be financed by public actors, as they are not granting results
in terms of job creation and business growth. Interestingly, Caliendo et al.
(2020), catch the double nature of start-up subsidies: on the one hand
subsidization has a positive impact as an active labour policy in reducing
unemployment, but on the other hand, subsidized firms cannot reach the
performances of the untreated counterparts. In the short run, this is ex-
plained by the different starting abilities, while in the long run is explained
by the different development paths. Audretsch et al. (2020) confront 38
different start-up projects finding out that there are few constant results
across different environments, and policy outcomes will also depend on the
economic environment. Additionally, Koski and Pajarinen (2013) found
significant differences between incumbent firms and start-ups and argued
that financial support does not appear to be a critical factor in business
development. Other scholars find that subsidization could help as an active
labour policy where conformal approaches fail to generate employment, and
therefore they should be taken into account in the policymaker toolkit as
Pfeiffer and Reize (2000), Caliendo and Kritikos (2010), or Duhautois et al.
(2015).

Few causal studies focused on the results of such policies. This turns
out to be a relevant topic as the positive or negative results found from
descriptive analysis often are not confirmed by causal studies Pfeiffer and
Reize (2000). Most of the causal studies focusing on the impact of subsidies
on start-ups focus on the causal effects on the survival probability of firms
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at some endpoints. Mealli and Pagni (2001) and Mariani et al. (2019)
investigate the effects of this program on the survival probability of Tuscan
start-ups, finding longer survival probability for subsidized firms but at the
price of supporting low-productivity projects. A recent work from Manaresi
et al. (2021) analyze the results of the Italian ”Start-up Act” on several
business dimensions and found promising results in terms of market failure
corrections and improved survival of start-ups.

4.3 Doing business in Tuscany

The data used in this work are referred to the program implemented in
Tuscany, called ”Fare Impresa” (Doing Business), which has the goal of
fostering entrepreneurship between young and female business in the very
first period of activity through bank loans assisted by public guarantees.

The eligibility criteria for this public policy program are based on the
age of the firms. Both newly established firms (no older than two years, or
starting activity within six months) and established firms seeking expansion
opportunities (with less than 5 years of activity) are eligible to participate.
In addition to these requirements, applicants have to meet the following
criteria: they need to be female of any age, or male aged 18-40.

During the period 2011-2015, firms participating in the program were
eligible to receive a public-assisted guarantee to help them obtain bank
loans to start or grow their businesses. These loans could last up to ten
years, with the guarantee covering up to 80% of the requested amount.
A regional financial intermediary oversaw the loan request process and
ensured that it was conducted correctly. Additionally, once approved for
the program, firms were eligible to receive a reduced interest rate on their
loans.

In total, 1837 firms received the guarantee backed by public authorities,
among these 1563 projects were funded by banks, with 274 credit rejections.
We consider a treatment 𝑊𝑖 ∈ {0, 1}, the granting of a loan from a bank.
Thus, we consider as treated (𝑊𝑖 = 1 the 1563 units which have received
the bank credit to promote their projects, and as control units (𝑊𝑖 = 0)
those which have not received the loan. Moreover, 185 firms ceased the
activity by the end of the observation period. The first chart of Table 4.3
depicts the count of firms that were censored, active, and closing in each
time period. The second chart illustrates the number of firms that hired
employees in each period. Table 8.1 in the appendix 4 reports the mean
values for hiring decisions within the groups defined by the treatment and
censoring status.

We obtained information on the main characteristics of the firms in the
study from the records of a regional financial intermediary (Fidi Toscana).
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Table 4.1: First pane: Proportion of ceased, active and closing firms in
each year. - Second pane: Proportion of censored, hiring and no-hiring
firms in each year.

Status t=1 t=2 t=3
𝑊𝑖 = 0 𝑊𝑖 = 1 𝑊𝑖 = 0 𝑊𝑖 = 1 𝑊𝑖 = 0 𝑊𝑖 = 1

Ceased NA NA 0.193 0.022 0.270 0.071
Active 0.807 0.978 0.730 0.929 0.701 0.877
Closing 0.193 0.022 0.077 0.049 0.029 0.052

Status t=1 t=2 t=3
𝑊𝑖 = 0 𝑊𝑖 = 1 𝑊𝑖 = 0 𝑊𝑖 = 1 𝑊𝑖 = 0 𝑊𝑖 = 1

Censored 0.193 0.022 0.270 0.071 0.299 0.122
Hiring 0.628 0.598 0.591 0.655 0.599 0.707
No-Hiring 0.179 0.380 0.139 0.274 0.102 0.171

These records included information on the start date for the firm’s activ-
ity, the business sector, the location of the investment, and demographic
characteristics of the owner such as age and gender. We also collected data
on the end date for each firm’s activity from the Chamber of Commerce
archives. In addition, we gathered hiring information from the Tuscan Job
Information system, which tracks changes in hiring and resignation. This
system also provides information on the type of contract and its duration.

Table 4.2 reports the proportion of each covariate used in the study. As
all the variables that we considered in the study were binary variables, we
are reporting their proportion in the sample as well as the number of firms
as a way to present descriptive statistics.

Around three forty of the firms in the study were owned by young
individuals (76.2%), while female owners made up 57.1%. The majority
of firms were new start-ups (92.1%), and 60.6% were owned by a single
individual. Around half of the loans were granted by a local bank, and
only 19.8% of the projects were located in urban areas. This suggests that
the program was particularly focused on rural areas in Tuscan, where local
banks are more common. Additionally, 25.1% of the firms have already
hired workers at the beginning of the observation period.

The firms participating in the program represent a range of different
industries, with 11.1% of the sample involved in manufacturing, 32.7% en-
gaged in retail, 27.6% in hospitality, and 12.2% in beauty and hairdressing.
The remaining portion of the sample represents other types of economic
activities. All of the eligible firms participating in the study applied for
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Table 4.2: Descriptive statistics on covariates in the study

Covariates Mean Num. of firms
𝑊𝑖 = 0 𝑊𝑖 = 1 Overall 𝑊𝑖 = 0 𝑊𝑖 = 1 Overall

Young 0.770 0.760 0.765 211 1188 1399
Female 0.540 0.576 0.571 148 901 1049
Has employed 0.226 0.257 0.251 62 402 464
Start-up 0.901 0.925 0.921 247 1445 1692
Sole-ownership 0.657 0.597 0.606 180 933 1113
Manufacturing 0.131 0.107 0.111 36 168 205
Retail 0.296 0.332 0.327 81 519 600
Hospitality 0.226 0.285 0.276 62 445 507
Service to person 0.080 0.130 0.122 22 203 225
Local bank 0.401 0.553 0531 110 865 975
Urban location 0.197 0.198 0.198 54 310 364

a bank loan backed by a public guarantee, with around the 85% which
receives bank loans. We do not have data on loan rejections, but we have
data on the firm’s and owner’s characteristics, as well as the local or na-
tional business area of the bank. It is possible that loan denials will be
related to some specific condition of the firm, such as the young age of the
owner, or the type of ownership. It is also possible that loan denials may
be connected to the firm owner’s relationship capital. Local banks may be
more inclined to fund local projects, and thus small business projects can
be financed. Additionally, national banks may have stricter requirements
for loan approval, which can result in the rejection of applications that do
not meet their standards. Covariate imbalance between treated and con-
trol units is reported in figure 8.1, and we can notice the similarity between
funded and non-funded firms.

4.4 Methodology

4.4.1 Notation and Setting

We consider a set of 𝑁 firms indexed by 𝑖 = 1, . . . , 𝑁, and observed in three
post-treatment periods, namely 𝑡 ∈ {1, 2, 3}, post-treatment periods which
correspond to years 2012, 2013 and 2014.

For each unit 𝑖, we observe the main outcome 𝑌𝑖,𝑡 which is a binary
indicator for the hiring decision for start-up 𝑖 in each post-treatment period
𝑡, with 0 if no contracts have been formed during the year 𝑡, and 1 otherwise.
𝑌𝑖,𝑡 is truncated by death, in the sense that is neither observed nor defined
for firms that cease their activity before year 𝑡. Let 𝑆𝑖,𝑡 denote the survival
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status of firm 𝑖, with 𝑆𝑖,𝑡 = 1 if firm 𝑖 does not cease activity during the year
𝑡 and 0 if it interrupts the activity during the year 𝑡. Therefore, 𝑌𝑖,𝑡 = ∗
when 𝑆𝑖,𝑡 = 0, where ∗ is a non-real value. Please note that 𝑆𝑖,𝑡 and 𝑌𝑖,𝑡 are
collected together, with 𝑆𝑖,𝑡 ∈ {0, 1} and 𝑌𝑖,𝑡 ∈ {0, 1} ∪ {∗}.

Moreover, we observe for each unit 𝑖 a vector of time-invariant and firm-
specific covariates X𝑖. Let W, Y𝑡 , S𝑡 , 𝑡 ∈ (1, 2, 3), be 𝑁-dimensional vectors
with 𝑖th entries equal to 𝑊𝑖, 𝑌𝑖,𝑡 and 𝑆𝑖,𝑡 , respectively. Let X be a 𝑁 × 𝐾
matrix of pre-treatment variables, with the 𝑖-th row equal to X𝑖.

Causal estimands are defined under a potential outcome approach (Ru-
bin, 1974), so we have to specify potential outcomes under treatment and
control for each post-treatment variable. In particular, we assume the va-
lidity of SUTVA, (Rubin, 1980):

Assumption 5. SUTVA

• No hidden version of the treatment

• No interference between units

SUTVA implies a single version of the treatment and the absence of in-
terference between units. We can consider the treatment as homogeneous
across the different firms, as all the businesses are similar in size, and there-
fore we could expect similar entrepreneurial projects with similar financed
amounts.

We can also safely assume no interference between units, considering
the fact that treated businesses are scattered through Tuscany, and thus
we could expect low interaction between them. Moreover, it is unlikely that
the granting of a loan to firm 1 has a sizeable effect on the hiring decisions
for firm 2.

For each start-up 𝑖 and time 𝑡 we define the following couple of potential
outcomes for the hiring decision:{

𝑌𝑖,𝑡 (1) ≡ 𝑌𝑖,𝑡 (𝑊𝑖 = 1) If firm i is assigned to treatment

𝑌𝑖,𝑡 (0) ≡ 𝑌𝑖,𝑡 (𝑊𝑖 = 0) If firm i is assigned to control
(4.1)

Similarly, we define the potential outcomes for the firm survival:

{
𝑆𝑖,𝑡 (1) ≡ 𝑆𝑖,𝑡 (𝑊𝑖 = 1) If firm i is assigned to treatment

𝑆𝑖,𝑡 (0) ≡ 𝑆𝑖,𝑡 (𝑊𝑖 = 0) If firm i is assigned to control
(4.2)

Let Y𝑡 = (𝑌𝑖,𝑡 (0), 𝑌𝑖,𝑡 (1)) and S𝑡 = (𝑆𝑖,𝑡 (0), 𝑆𝑖,𝑡 (1)) be the 𝑁 × 2 matrices
of potential outcomes.
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4.4.2 Principal Stratification Approach

The hiring decision for each firm can be seen as a consequence of bank
loans granted to the firm, but also from the overall performances of the
firm during the first years of activity. In this situation, our treatment
evaluation could in be harmed by the non-ignorable missingness of the
potential outcome 𝑌𝑖,𝑡 , due to the censoring by death in the multiple post-
treatment periods. To face this problem, we use the principal stratification
approach, firstly proposed by Frangakis and Rubin (2002). Applications
of principal stratification embrace typical post-treatment complications,
as non-compliance ( Forastiere et al., 2016), treatment switching (Mattei
et al., 2020) or censoring by death (Mattei and Mealli, 2007).

Principal stratification allows us to classify units into latent groups, the
principal strata defined by the joint potential outcomes of the intermedi-
ate variable, under each of the treatments given in the study, 𝑆𝑖,𝑡 (𝑊𝑖) =

(𝑆𝑖,𝑡 (0), 𝑆𝑖,𝑡 (1)).
In our study, at each time point t, t=1,2,3, we classify units into four

latent groups with respect to their survival status under treatment and
control, as shown in Table 4.3.

𝑆𝑖𝑡 (0) 𝑆𝑖𝑡 (1) Definition
0 0 Never survivor (NS)
1 0 Defiant survivor (DS)
0 1 Compliant survivor (CS)
1 1 Always survivor (AS)

Table 4.3: Indicators for the membership of unit 𝑖 at time 𝑡

Let 𝐺𝑖𝑡 be the indicator for the principle strata membership of unit 𝑖 at
time 𝑡, 𝐺𝑖𝑡 ∈ 𝑁𝑆, 𝐷𝑆, 𝐶𝑆, 𝐴𝑆. Never survivors are those firms that would
cease their activity in time 𝑡, irrespective of their treatment assignment.
Always survivors businesses would continue the activity both under treat-
ment and under control. Compliant survivors are businesses that would
continue the activity, if they are assigned to the treatment, but would
have ceased the activity if assigned to control. Finally, defiant survivors
are the firms that would cease the activity if they received the treatment
but would have continued the activity if assigned to control.

Considering the longitudinal framework we are dealing with, we should
classify our observations according to the repeated membership to each of
the four principal strata in table 4.3. In particular, we observe three post-
treatment variables, the survival of the businesses in each post-treatment
period, and therefore we classify the principal strata membership on the
joint value of these variables in each post-treatment time period. Following
Bia et al. (2020), we define the longitudinal principal strata membership
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for each unit 𝑖 as follows:

(𝑆𝑖,1(0), 𝑆𝑖,1(1), 𝑆𝑖,2(0), 𝑆𝑖,2(1), 𝑆𝑖,3(0), 𝑆𝑖,3(1))

Let
G𝑖 = (𝐺𝑖,1, 𝐺𝑖,2, 𝐺𝑖,3)

G𝑖 ∈ (𝐴𝑆, 𝐷𝑆, 𝐶𝑆, 𝑁𝑆) × (𝐴𝑆, 𝐷𝑆, 𝐶𝑆, 𝑁𝑆) × (𝐴𝑆, 𝐷𝑆, 𝐶𝑆, 𝑁𝑆)

be the indicator for the longitudinal principal strata membership.
Therefore, according to this cross-classification, we have 4 × 4 × 4 = 64

latent strata.

4.4.3 Causal Effects

In this section, we introduce the causal estimand we are interested in.
Causal effects with censored data could be challenging, as the potential
outcomes we want to estimate are not defined under treatment and under
control for all the units. For example, according to the cross-classification
we give in table 4.3, we notice that 𝑌𝑖,𝑡 (0) = ∗ for compliant survivors. Sim-
ilarly, 𝑌𝑖,𝑡 (1) will be not defined for defiant survivors, which continue ac-
tivity only under control assignment. Finally, both the potential outcomes
for never survivors units will be not defined, and therefore no comparison
are possible. Rubin et al. (2006) proposes to focus on the survivor average
treatment effects, specifically at each time point we are interested in the
survival average causal effect:

𝑆𝐴𝑇𝐸𝑡 (𝑌 ) = E[(𝑌𝑖,𝑡 (1) − 𝑌𝑖,𝑡 (0) |𝐺𝑖,𝑡 = 𝐴𝑆)] 𝑡 ∈ {1, 2, 3} (4.3)

In our work, we are also interested in longitudinal SATE:

𝑆𝐴𝑇𝐸2(𝑌 ) = E[(𝑌𝑖,2(1) − 𝑌𝑖,2(0) |𝐺𝑖,2 = 𝐴𝑆, 𝐺𝑖,1 = 𝐴𝑆)] (4.4)

𝑆𝐴𝑇𝐸3(𝑌 ) = E[(𝑌𝑖,3(1) − 𝑌𝑖,3(0) |𝐺𝑖,3 = 𝐴𝑆, 𝐺𝑖,2 = 𝐴𝑆, 𝐺𝑖,1 = 𝐴𝑆)] (4.5)

𝑆𝐴𝑇𝐸𝑡 (𝑌 ) 𝑡 ∈ 2, 3 is the average causal effect for firms that would survive
under both treatment and control assignment at least up to time 𝑡.

These estimands are particularly interesting as we can derive useful in-
sights by observing the evolution of the causal effect over different times.
In particular, comparing SATE effect through time can help us in under-
standing the short and long-term effects of the policy. Specifically, in our
application hiring decision can be boosted during the first time by the
bank loan concession, while long-term impact will remain more difficult to
predict
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4.4.4 Assumptions

The identification of causal effects introduced above can be particularly
troublesome, as we deal with observational data. Unfortunately, we do not
generally observe the principal stratum membership for any unit, as we
usually cannot observe both the potential outcomes in the post-treatment.
We can only observe the realized outcome for both the intermediate variable
and the main outcome under the actual treatment, while the other potential
outcomes are missing.

For inference, we need to posit the treatment assignment mechanism. In
particular, in this work, we have to deal with observational data describing
firms that voluntarily participate in a public policy program. In such a
context, we invoke the strong ignorability assumption (Rosenbaum and
Rubin, 1983).

Assumption 6. Strong Ignorability of treatment assignment

• Unconfoundness: 𝑃𝑟 (𝑊𝑖 |𝑆𝑖,1, 𝑆𝑖,2, 𝑆𝑖,3, 𝑌𝑖,1, 𝑌𝑖,2, 𝑌𝑖,3,X𝑖) = 𝑃𝑟 (𝑊𝑖 |X𝑖)

• Overlap: 0 < 𝑃(𝑊𝑖 = 1|X𝑖) < 1

Strong ignorability consists of two parts. The first part regards uncon-
foundness assumption, which is not testable in the majority of cases. Even
if this is the case, we are not particularly worried about making this as-
sumption, as there are no structural differences between the treated units
and the control ones. Both of them were willing to receive the treatment,
but some of their applications were rejected for unknown causes. Over-
lap means that, within the cells defined by the X, there are present both
treated and control units. With these two sub-assumptions, within the cells
defined by the set of covariates X𝑖, we can consider the treatment as given
at random.

Even under assumption 6 SATE are not identifiable, as different princi-
pal strata correspond to the same joint distribution (see Gustafson, 2010,
and Ricciardi et al., 2020). In fact, we can observe directly only some
groups, classified on the treatment assignment and their survival status at
each time. These observed groups are mixtures of several latent strata, see
for reference table 4.5.

To disentangle such latent strata, we should first simplify our environ-
ment by introducing some realistic yet useful assumptions. Even if, by
construction, we define 64 principal strata, it is that some of these latent
strata are unfeasible.

For instance, consider the units that will be classified as never surviving
at time 1 (𝐺𝑖,1 = 𝑁𝑆). In principle, all of these units could evolve as always
survivors, compliant survivors or defiant survivors in the following times.
We state that these transitions are unfeasible, as the never surviving firms
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will be censored at time 1. In particular, if 𝑆𝑖,𝑡∗ (0) = 0 then 𝑆𝑖,𝑡 (0) =

0 ∀𝑡 > 𝑡∗, and similarly if 𝑆𝑖,𝑡∗ (1) = 0 then 𝑆𝑖,𝑡 (1) = 0 ∀𝑡 > 𝑡∗.
Therefore, we invoke an assumption on the never surviving firms:

Assumption 7. Never survivor firms

{
If 𝐺𝑖,1 = 𝑁𝑆 then 𝐺𝑖,2 = 𝑁𝑆, 𝐺𝑖,3 = 𝑁𝑆

If 𝐺𝑖,2 = 𝑁𝑆 then 𝐺𝑖,3 = 𝑁𝑆

We cannot allow a unit to be censored under treatment and under
control the first time, and then be active, for instance, under treatment in
the following times.

In our study, the existence of defiant survivors firms that would cease
the activity if received the bank loan but would survive if did not receive
the loan seems to be implausible. In fact, we think that is improbable that
a business closes in the following three years after receiving a bank loan,
given that they start to refund the loan from the seventh year. Therefore
we exclude this subgroup from the study with a monotonicity assumption.

Assumption 8. Monotonicity

𝑆𝑖,𝑡 (1) ≥ 𝑆𝑖,𝑡 (0) ∀𝑖, 𝑡

Lastly, we should consider that some transitions between strata are
impossible by construction, a unit classified as compliant survival at time 𝑡
would result censored under control assignment. Therefore it is impossible
to classify this unit as always survivor at time 𝑡 + ℎ, because its potential
outcome under control would be not definite. We refer to this consideration
as dominance. Thus, 𝐺𝑖,𝑡 = 𝐶𝑆 then 𝐺𝑖,𝑡+ℎ ∈ {𝐶𝑆, 𝑁𝑆} ∀ℎ ∈ 𝑁+

Assumptions 7 and 8, imply that the number of possible principal strata
reduces to ten. Table 4.4 reports the cross-classification of units accord-
ing the potential outcome of the survival variable, and the longitudinal
principal strata.

When we examine the observed compositions of the subgroups, we find
that 95.5% of the treated units fall into the final subgroup in which units
are not censored at the end of the study. In decreasing order, we also see
units censored at the first time (2.44%), second time (1.46%), and third
time (0.56%). In the control group, the composition is more varied, with
uncensored units making up 47.8% of the observations. Censored firms
become more prevalent as the time periods increase, with 13.2% censored
at time 1, 18.9% censored at time 2, and 20.2% censored in the final time
period.
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Intermediate variable Long. Strata
𝑆𝑖,1(0) 𝑆𝑖,1(1) 𝑆𝑖,2(0) 𝑆𝑖,2(1) 𝑆𝑖,3(0) 𝑆𝑖,3(1) G𝑖

0 0 0 0 0 0 NS.NS.NS
0 1 0 1 0 1 CS.CS.CS
0 1 0 1 0 1 CS.CS.NS
0 1 0 0 0 0 CS.NS.NS
1 1 1 1 1 1 AS.AS.AS
1 1 1 1 0 1 AS.AS.CS
1 1 1 1 0 0 AS.AS.NS
1 1 0 1 0 1 AS.CS.CS
1 1 0 1 0 0 AS.CS.NS
1 1 0 0 0 0 AS.NS.NS

Table 4.4: Longitudinal principal strata classification

4.4.5 Bayesian Inference

Our study aims to investigate the causal effects of various factors on con-
tract formation within a sample over time. However, this sample is not ho-
mogenous and consists of latent subpopulations, or distinct groups, which
may experience different causal effects. To examine these changes and ef-
fects over time, we are taking a longitudinal perspective. This presents a
challenge because the number of latent subpopulations increases over the
course of the study, resulting in more missing data. Under assumptions
1-4, we have reduced from 64 to 10 the number of principal strata. Al-
though this simplification process, principal strata proportions and SATE
remain not fully parametrically identifiable. To address these inferential
challenges, we propose using a Bayesian approach to causal inference, in-
troducing modelling assumptions.

The model-based Bayesian approach, introduced by Rubin (1978), is a
comprehensive and versatile framework for analyzing complex data with
missing information. It posits that all unknown quantities - including
parameters and missing potential outcomes - can be treated as random
variables with a joint posterior distribution given the observed data. In
this way, we can make inferences about the causal effects of interest by
examining the posterior distributions of the relevant parameters.

The general structure for conducting Bayesian causal inference with
principal stratification was first outlined by Imbens and Rubin (1997). It
was initially developed to address issues of all-or-none treatment noncom-
pliance but has since been extended and applied in various contexts. Our
work builds on previous research in this area, including contributions by
Mattei and Mealli (2007), Jin and Rubin (2008), Baccini et al. (2017),
Ricciardi et al. (2020) and Bia et al. (2020).
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W 𝑆𝑖,1 𝑆𝑖,2 𝑆𝑖,3 𝐺𝑖 𝑃({𝑆𝑖,𝑡}3𝑡=1 | 𝑊𝑖)
1 0 0 0 NS.NS.NS 2.44%
1 1 0 0 AS.NS.NS 1.46%

CS.NS.NS
1 1 1 0 AS.AS.NS 0.56%

CS.CS.NS
AS.CS.NS

1 1 1 1 AS.AS.AS 95.54%
CS.CS.CS
AS.CS.CS
AS.AS.CS

0 0 0 0 NS.NS.NS 13.18%
CS.CS.CS
CS.NS.NS
CS.CS.NS

0 1 0 0 AS.CS.CS. 18.91%
AS.CS.NS
AS.NS.NS

0 1 1 0 AS.AS.CS 20.15%
AS.AS.NS

0 1 1 1 AS.AS.AS 47.76%

Table 4.5: Composition and proportion of observed groups
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Modelling assumptions

We first introduce an assumption over the hiring decision and future ex-
pectations on the survival status:

Assumption 9.

𝑃(𝑌𝑖,1(𝑊𝑖) |𝐺𝑖,1, 𝐺𝑖,2, 𝐺𝑖,3,X𝑖) = 𝑃(𝑌𝑖,1(𝑊𝑖) |𝐺𝑖,1,X𝑖) ∀𝑖 ∈ {1, . . . , 𝑁}

and

𝑃(𝑌𝑖,2(𝑊𝑖) |𝐺𝑖,1, 𝐺𝑖,2, 𝐺𝑖,3,X𝑖) = 𝑃(𝑌𝑖,1(𝑊𝑖) |𝐺𝑖,1, 𝐺𝑖,2,X𝑖) ∀𝑖 ∈ {1, . . . , 𝑁}

We state that hiring decisions at time 𝑡 will not be affected by the
expectations over the survival status in the following times. This is a
reasonable assumption, as we think that present hiring will be ruled by the
present ”health status” and needs of the firm.

We now show the model for the joint distribution of the principal
strata membership in each time, Gi,t and a couple of potential outcomes
(𝑌𝑖,𝑡 (0), 𝑌𝑖,𝑡 (1)) 𝑡 ∈ 1, 2, 3. Under assumption 6 and unit exchangeability
(Rubin, 1978), the joint distribution can be expressed as

𝑁∏
𝑖=1

𝑃(𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3, 𝑌𝑖1(0), 𝑌𝑖2(0), 𝑌𝑖3(0), 𝑌𝑖1(1), 𝑌𝑖2(1), 𝑌𝑖3(1) |X, θ) (4.6)

Notice that, under units exchangeability, the joint posterior distribu-
tion can be viewed as the product of the model for the conditional proba-
bility of the longitudinal principal strata membership, given the covariates
𝑃𝑟 (G3,G2,G1 |X𝑖, \) and the model for the principal outcome, given the
covariates and the longitudinal principal strata membership. By applying
the law of total probability, and under the assumptions over the firm’s
behaviour, we can rewrite the joint probability distribution as:
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𝑁∏
𝑖=1

𝑃(𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3, 𝑌𝑖1(0), 𝑌𝑖2(0), 𝑌𝑖3(0), 𝑌𝑖1(1), 𝑌𝑖2(1), 𝑌𝑖3(1) |X, θ) =

𝑁∏
𝑖=1

∏
𝑊𝑖∈{0,1}

𝑃(𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3, 𝑌𝑖1(𝑊𝑖), 𝑌𝑖2(𝑊𝑖), 𝑌𝑖3(𝑊𝑖) |X, θ) =

𝑁∏
𝑖=1

𝑃(𝐺𝑖1 |X, θ) × 𝑃(𝐺𝑖2, |𝐺𝑖1,X, θ) × 𝑃(𝐺𝑖3, 𝐺𝑖1, 𝐺𝑖2 |X, θ)×∏
𝑊𝑖∈{0,1}

𝑃(𝑌𝑖1(𝑊𝑖) |𝐺𝑖1,X, θ) × 𝑃(𝑌𝑖2(𝑊𝑖) |𝐺𝑖1, 𝐺𝑖2, 𝑌𝑖1,X, θ)

×𝑃(𝑌𝑖3(𝑊𝑖) |𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3𝑌𝑖1, 𝑌𝑖2,X, θ)

(4.7)

Parametric modelling

In subsection 4.4.5, we have specified the modelling assumption and struc-
ture of the joint probability distribution of longitudinal principal strata
membership, covariates and principal outcome. Now we present the para-
metric model we use to estimate both the probability of longitudinal prin-
cipal strata membership and the probability of a hiring for each unit.

Equation 4.8 shows the parametric models we used to estimate the
principal stratum membership each year. We employ a multivariate logit
model, using the 𝐺𝑖,𝑡 = 𝑁𝑆 as a reference level. In the model for principal
stratum membership, we use the matrix of pre-treatment covariates X𝑖 and
a fixed effect 𝛿0 that depends on the principal strata membership in the
previous period. Please remember that, by construction, some transitions
are not feasible. Thus following we have that 𝑃(𝐺𝑖,𝑡 = 𝐴𝑆 |𝐺𝑖,𝑡−1 = 𝐶𝑆) = 0
and 𝑃(𝐺𝑖,𝑡 = 𝑁𝑆 |𝐺𝑖,𝑡−1 = 𝑁𝑆) = 1



log

(
𝑃(𝐺𝑖,1 = 𝑔𝑖,1 |X𝑖)
𝑃(𝐺𝑖,1 = 𝑁𝑆 |X𝑖)

)
= 𝛿

𝑊𝑖
0,1 + δ1X𝑖 𝑔𝑖,1 ∈ {𝐴𝑆, 𝐶𝑆}

log

(
𝑃(𝐺𝑖,2 = 𝑔𝑖,2 |𝐺𝑖1,X𝑖)
𝑃(𝐺𝑖,2 = 𝑁𝑆 |X𝑖)

)
= 𝛿

𝑊𝑖 ,𝐺𝑖,1
0,2 + δ2X𝑖 𝑔𝑖,2 ∈ {𝐴𝑆, 𝐶𝑆}

log

(
𝑃(𝐺𝑖,3 = 𝑔𝑖,3 |𝐺𝑖1, 𝐺𝑖2X𝑖)

𝑃(𝐺𝑖,3 = 𝑁𝑆 |X𝑖)

)
= 𝛿

𝑊𝑖 ,𝐺𝑖,1,𝐺𝑖,2
0,3 + δ3X𝑖 𝑔𝑖,3 ∈ {𝐴𝑆, 𝐶𝑆}

(4.8)
We consider the potential outcome dependent on past values of 𝑌𝑖 and

G𝑖, and contemporaneous values of G𝑖 but not on future values. We specify
different fixed terms according to the treatment assignment and principal
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strata membership. To account for the potential temporal dependence of
hiring decisions, we included an autoregressive coefficient in our analysis.
We do not specify different coefficients for covariates belonging to different
latent strata G𝑖: β𝐴𝑆

𝑡 = β𝐶𝑆𝑡 = β𝑁𝑆𝑡 , but we consider principal strata and

treatment specific fixed effect 𝛽𝑊𝑖 ,G𝑖𝑡 .



log

(
𝑃(𝑌𝑖,1(𝑊𝑖) = 1|𝐺𝑖,1,X𝑖)

1 − 𝑃(𝑌𝑖,1(𝑊𝑖) = 1|𝐺𝑖,1,X𝑖)

)
= 𝛽

𝑊𝑖 ,𝐺𝑖,1
0,𝑡 + β1X𝑖

log

(
𝑃(𝑌𝑖,2(𝑊𝑖) = 1|𝐺𝑖,1, 𝐺𝑖,2,X𝑖)

1 − 𝑃(𝑌𝑖,𝑡 (𝑊𝑖) = 1|𝐺𝑖,1, 𝐺𝑖,2,X𝑖)

)
= 𝛽

𝑊𝑖 ,𝐺𝑖,1,𝐺𝑖,2
0,𝑡 + _𝑊𝑖 ,𝐺𝑖,1𝑡 𝑌𝑖,𝑡−1 + β1X𝑖

log

(
𝑃(𝑌𝑖,𝑡 (𝑊𝑖) = 1|𝐺𝑖,1, 𝐺𝑖,2, 𝐺𝑖,3,X𝑖)

1 − 𝑃(𝑌𝑖,𝑡 (𝑊𝑖) = 1|𝐺𝑖,1, 𝐺𝑖,2, 𝐺𝑖,3,X𝑖)

)
= 𝛽

𝑊𝑖 ,𝐺𝑖,1,𝐺𝑖,2,𝐺𝑖,3
0,𝑡 + _𝑊𝑖 ,𝐺𝑖,1,𝐺𝑖,2𝑡 𝑌𝑖,𝑡−1 + β1X𝑖

(4.9)
We specify proper, yet non-informative prior distributions. It has been

argued by Gustafson (2010) that even if a statistical model is only partially
identified, by utilizing appropriate prior distributions, we can still obtain
meaningful posterior distributions. Therefore, from a Bayesian perspective,
there is no fundamental difference between fully and partially identified
models.

To obtain posterior distributions for the relevant parameters and miss-
ing quantities, we use a statistical algorithm called Hamiltonian Monte
Carlo (HMC). The estimations were carried out using the RStan software.
We used 2000 iterations with 1000 warm-up iterations, and no pathological
behaviour is found in the diagnostic results. Prior specifications, further
results and posterior checks are reported in Appendix 4.

4.5 Results

In this section we collect results from our analysis. Valuable insights can
be derived both from the principal strata membership and from the longi-
tudinal causal effects.

4.5.1 Principal strata membership

Table 4.7 shows the summary statistics (mean st. deviation, fifth and
ninety-fifth quantiles) for the probabilities of longitudinal principal stratum
membership. We note that the majority of firms are compliant survivors
(58.7 %) which are carrying on their activity because of the bank loan. A
sizeable part of start-ups are classified as always survivors (34.5 %) suggest-
ing that around one-third of the units exhibit some level of entrepreneurial
ability and their businesses would have survived irrespective of treatment
assignment. Few units would have failed anyway. In particular, the 2.4 %,
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Table 4.6: Descriptive statistics for strata membership probability in 𝑡 ∈
{1, 2, 3}

Mean st.dev 0.025 0.05 0.95 0.975
𝑃(𝐺1,𝑡 = 𝐴𝑆) 0.384 0.129 0.191 0.207 0.631 0.674
𝑃(𝐺1,𝑡 = 𝐶𝑆) 0.592 0.129 0.303 0.343 0.768 0.786
𝑃(𝐺1,𝑡 = 𝑁𝑆) 0.024 0.002 0.021 0.021 0.027 0.028
𝑃(𝐺2,𝑡 = 𝐴𝑆) 0.343 0.128 0.149 0.165 0.583 0.636
𝑃(𝐺2,𝑡 = 𝐶𝑆) 0.603 0.128 0.313 0.365 0.780 0.799
𝑃(𝐺2,𝑡 = 𝑁𝑆) 0.054 0.002 0.050 0.050 0.055 0.055
𝑃(𝐺3,𝑡 = 𝐴𝑆) 0.343 0.130 0.148 0.165 0.587 0.638
𝑃(𝐺3,𝑡 = 𝐶𝑆) 0.604 0.130 0.308 0.360 0.782 0.798
𝑃(𝐺3,𝑡 = 𝑁𝑆) 0.054 0.001 0.052 0.053 0.054 0.054

5.3 % and 5.3% are never survivors in the first, second and third period,
respectively. Other strata (AS.CS.NS, AS.AS.CS, CS.NS.NS) seem to be
very uncommon, as the posterior mean of belonging to these strata is lower
than 1%. Table 4.6 reports the summary statistics for the principal strata
membership at each time. It is worth noting that transitions between dif-
ferent categories, such as from always survivors to Compliant Survivors are
relatively uncommon. Once a firm is classified in a specific subgroup, it
tends to remain in that subgroup.

From the posterior probability of the longitudinal principal strata, it
appears that easing credit access is a key factor in the survival of these
firms. This can be seen as a positive outcome of the policy, as it achieved its
goal of supporting self-employment for young people and women. However,
there seems to be a strong connection between the survival of businesses
and the receipt of public support, indicating that many firms that receive
subsidies may not have strong growth potential. This raises the question
of whether this type of support is the most effective use of public funds,
and whether it exposes public actors to the financial risk of unpaid loans.

Figure 8.6 in the Appendix 4 reports the boxplots for each covariate
across different longitudinal principal strata. There are some differences
in the pre-treatment covariates among the different strata. In particular,
we can see that firms classified as always survivors in the first two periods
differ from compliant survivors in terms of their characteristics. Compli-
ant survivors are more likely to have a young, single owner and to be new
establishments in the retail and service sectors. On the other hand, al-
ways survivors are often more established businesses, owned by women,
and operating in the manufacturing sector, which is relatively rare among
compliant survivors. Compliant survivors also tend to rely more on local
bank loans, while always survivors may have access to national banks due
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Table 4.7: Descriptive statistics for the posterior probability of longitudinal
principal strata memberships

Mean St.Dev 0.05 0.95
NS.NS.NS 0.024 0.002 0.021 0.027
CS.NS.NS 0.007 0.002 0.003 0.011
AS.NS.NS 0.046 0.003 0.041 0.051
AS.AS.NS 0.016 0.007 0.007 0.031
AS.CS.NS 0.000 0.000 0.000 0.001
CS.CS.NS 0.037 0.007 0.022 0.047
CS.CS.CS 0.587 0.138 0.322 0.778
AS.CS.CS 0.013 0.036 0.000 0.070
AS.AS.CS 0.002 0.003 0.000 0.009
AS.AS.AS 0.345 0.130 0.165 0.587

to their stronger financial standing. In general, there seems to be a distinc-
tion between established firms with higher potential and start-up projects
that are mainly led by young entrepreneurs and heavily reliant on bank
loans in the first period but do not show particularly strong potential.

4.5.2 Principal strata effects

AS AS.AS AS.AS.AS

Mean 0.1079 0.0576 -0.0287

SD 0.0548 0.0680 0.0573

0.05 0.0038 -0.0735 -0.1305

0.95 0.2177 0.1892 0.0802

Table 4.8: Descriptive statistics for SATE effects in each period 𝑡 ∈ {1, 2, 3}

Table 4.8 and figure 4.1 show the summary statistics (mean, st.deviation,
fifth and ninety-fifth quantiles) of the posterior distribution of SATE. We
can get precious insights from the analysis of such effects.

First, we can observe a positive effect of the treatment in the first pe-
riod after the bank loan. We can hypothesize that the additional liquidity
provided by the bank loan help firms not only to start the activity but also
to hire the human resources needed for the firm’s operations. Instead, for
firms established recently, it is possible that this loan support an enlarge-
ment opportunity with an increase in the employed number.

Second, we can observe a temporal trend in the treatment effects. Com-
paring the SATE causal effects in 𝑡 ∈ {1, 2, 3} we can see that the estimated
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effect diminishes with the passage of time. The SATE causal effect is pos-
itive and statistically significant in the first period. During the second pe-
riod, the effect is still positive, but smaller and not statistically significant.
In the last period, the effect is very small and not statistically significant.
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Figure 4.1: SATE posterior probabilities at 𝑡 ∈ {1, 2, 3}

These results can be reasonable: firms hire new workers during the kick-
off periods of the financed project, and these projects seem to have not
generated enough growth to allow for additional hiring in the subsequent
years. This is a negative result because even the more promising projects
have not generated enough sales to justify further investment in human
resources.

Table 4.9 reports some measures for the goodness of fit (GOF) of the
estimations. Working with a binary outcome (hiring yes/no in year 𝑡), we
have compared the predicted outcomes from our model with the observed
outcomes. We also construct a pseudo-𝑅2 measure as the share of corrected
estimates on the total observations. We get 58.6% of correct estimates in
the first period, and around 70% in the following periods, which can be
considered a reasonable estimate. Table 4.10 instead reports the descriptive
statistics for the probability of correcting estimating the hiring or non hiring
decision in the three post-treatment period. Interestingly, we can notice
that model performance increases in periods 2 and 3. Figure 8.4 and 8.5 in
the Appendix 4 reports share of corrected predicted outcomes for the two
levels of hiring decision.
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Table 4.9: Goodness of fit measures, mean results over the HMC iteration

Underestimation Correct Overestimation Pseudo-R2
t=1 255.006 1024.197 469.796 0.586
t=2 250.525 1170.957 230.518 0.709
t=3 154.120 1062.444 347.435 0.680

Table 4.10: Descriptive statistics for the correct estimation of hiring de-
cision (first pane) and non-hiring decision (second pane) of the outcome
model

Mean St.Dev 0.05 0.95
t=1 0.603 0.089 0.471 0.759
t=2 0.463 0.107 0.258 0.623
t=3 0.477 0.128 0.254 0.661

Mean St.Dev 0.05 0.95
t=1 0.575 0.082 0.422 0.695
t=2 0.805 0.068 0.691 0.919
t=3 0.726 0.086 0.578 0.858

4.6 Conclusions

This work investigates the impact of a public policy aiming to ease access
to the credit market for start-ups. One major challenge we faced is non-
ignorable censoring. In particular, it was impossible to evaluate the effect
of the policy on the main outcome (hiring decisions made by the funded
start-ups) when the outcome was censored by the closure of the business.

To address this issue, we adopted a principal stratification approach
based on the proposal by Bia et al. (2020) within the potential outcomes
framework. We modified this method to accommodate the longitudinal
structure of our data and identified principal strata based on the survival
of the firms in each post-treatment time period. This allowed us to identify
subpopulations of units that would have survived regardless of their treat-
ment assignment and to estimate the causal effects within these groups.

Our work expands on the literature on using principal stratification to
address censoring problems in a longitudinal setting. We identified prin-
cipal strata for three time periods and provided reasonable assumptions
to simplify the number of strata to be estimated. Additionally, the lon-
gitudinal perspective allowed us to examine the temporal patterns of the
estimated effects.

Exploiting a Bayesian approach for inference, we imputed missing po-
tential outcomes via a data augmentation algorithm and derive the poste-
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rior distribution for longitudinal stratum membership and causal effects on
hiring decisions.

Policy evaluation of subsidies to start-ups is a debated theme in eco-
nomic literature, but few studies focus on the second-round effect of such
policies and even fewer exploit a proper causal structure. In this work, we
explicitly address both of these gaps. We focus on the secondary outcome of
this policy, which is the hiring decisions made by funded start-ups, and aim
to determine if this active labour policy has the potential to create addi-
tional jobs and provide a ”double dividend” for the community. Our study
adds to the existing literature on public support for start-ups by using a
rigorous causal framework to analyze the effect of subsidies on a collateral
outcome, namely the employment generated by public intervention.

Our results show that the policy has a positive effect on the stratum of
always survivors, which is statistically significant in the first year after the
treatment. This may be due to the initial period of the projects. In the
subsequent years, no statistically significant effects are observed, suggesting
that there is a temporal dependence between the loan period and the hiring
decisions of the start-ups. This suggests that the policy is successful in
creating new job openings, but once these positions are filled, the start-
ups struggle to expand and create additional employment. Therefore, job
creation appears to be dependent on the fundraising ability of the firm
owner.

We also found that the survival of the majority of firms is heavily de-
pendent on the policy, as about 60% of the firms would have closed without
treatment. These start-ups seem to be the most fragile, with less potential
for growth. About 35 % of the firms would have remained active in the
market regardless of their treatment assignment, suggesting that they have
higher potential.

We also characterize firms according to their longitudinal principal
strata membership. We found that incumbent firms were more likely to sur-
vive regardless of their treatment assignment, which highlights the strength
of their entrepreneurial projects. Additionally, we observed that start-up
projects were more likely to be undertaken by young firm owners, but these
projects were also more dependent on financial subsidies. There were also
differences in treatment dependence among economic sectors, with manu-
facturing firms being less reliant on public aid and restaurants and service
firms being more reliant on support.

Our research concurs with the conclusions of Mariani et al. (2019) in
suggesting that the provision of public support for facilitating credit market
access constitutes a viable strategy for active labour market policy. How-
ever, it must be acknowledged that such a strategy entails the utilization
of public resources for projects whose potential outcomes may be open to
debate.
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Overall, our results provide insight into the complementary effects of
public support for start-ups. On the one hand, we found that easing access
to credit had notable effects on self-employment and job creation, resulting
in a double impact on unemployment reduction. On the other hand, the
effect of this policy is temporary, and the majority of firms seemed to be
dependent on public support, indicating limited potential. These findings
can inform policymakers as they consider the use of public subsidies to
support start-ups.



Conclusions

In this work, I focused my attention on the methods and applications of
policy evaluation for panel data.

Policy evaluation studies often deal with observational data, and thus
many complications could arise from real-data environments. Even in rel-
atively simple settings, many challenges could harm the correctness of the
study, and thus, I provide some proposals to deal with such complications.

One of these complications is the presence of spillovers between treated
and untreated units. In policy evaluation problems with panel data set-
tings, usually scholars rule out the interference across units. In this work,
we provide a solution for estimating direct, indirect and spillover effects
using the Synthetic Control Method. Our approach is very innovative and
poses itself into the emerging literature of policy evaluation in interference
settings, which will be more and more important for describing real-world
applications in the following years. We exploit such a method in evaluat-
ing the causal effect of the construction of the first line of the Florentine
tramway, providing useful insights to policymakers interested in under-
standing better the dynamics of urban infrastructures and retail vitality.

Estimating causal effects with panel data in presence of a multiplicity of
treated units and a staggered adoption framework could be challenging. In
the second chapter of this work, we evaluate the effects of a lottery policy
implemented by several US states to foster the Covid-19 vaccination in the
population. Using a disaggregated framework, we study the causal effect of
such policy, estimating the causal effect at the county level, state level and
macro-region level. Results from our analysis show a wide heterogeneity
in the treatment effects across different areas, even within the same state.
By studying the timing of policy implementation we derive some useful
insights for policymakers. We also study the treatment effect heterogeneity
investigating the role of socio-demographic characteristics.

The third chapter of this dissertation proposes a novel estimator for
estimating causal effects in panel data framework, with spatially correlated
treated units. We call this method SMaC, as Spatial Matrix Completion
Method. Usually, in such environments, scholars estimate causal effects
by estimating one-by-one the causal effects for each treated unit. Even
if this is correct, it does not take into account the underlying correlation
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structure. We propose to consider it by estimating the causal effect with
a Bayesian regression, built on the SCM and vertical regression literature,
with Gaussian Processes as priors for the regression coefficients. We show
with simulation under several scenarios the properties of our estimator.
We apply SMaC to the evaluation of the construction of the first line of
the tram in Florence, estimating the causal effect of the tramway on the
number of shops comprised within various distances. This method can be
particularly effective in helping policymakers to understand how a treat-
ment effect emanates through space.

The last chapter of the dissertation proposes a novel method to deal
with non-ignorable censoring in policy evaluation. In panel data studies,
with longitudinal outcomes and post-treatment complications, we propose
a longitudinal principal stratification approach to evaluate the effects of a
policy implemented in Tuscany to stimulate entrepreneurship among young
and female citizens. The results of our analysis underline the importance of
public support to freshly established firms, especially in easing their access
to the credit market. In doing so, we got promising results from the further
job creation of treated units stressing the double dividend effect of such a
policy.

Further research on these topics is needed. In particular, real-world ob-
servations often present underlying structures, as in spatial, or spatiotem-
poral data and networked data, which policy evaluation should address
explicitly. On this basis, the future focus of my research will be on the
bridge between econometrics and causal inference in order to develop and
disseminate reliable and transparent methods for policy evaluation. Nev-
ertheless, further research will focus on a common approach to deal with
interference across units in panel data settings, providing a unified frame-
work to estimate the direct and spillover effects of policies.



Chapter 5

Appendix - Chapter 1

5.1 Bootstrap-accelerated confidence inter-

vals

Let \ ∈ Θ the estimand of interest, where Θ is the parameter space and let \̂
be an estimate of \. Let 𝐹 (·) denote the bootstrap cumulative distribution
function of the estimator of \. Define 𝑔 : [0, 1] −→ Θ, such that for each
𝑢 ∈ [0, 1]

𝑔(𝑢) = 𝐹−1
(
Φ

(
𝑧0 +

𝑧0 + 𝑧𝑢
𝑎(𝑧0 + 𝑧𝑢)

))
,

where Φ(·) is the standard normal cumulative distribution function, 𝑧0 =

Φ−1(𝐹 (\̂)), 𝑧𝑢 = Φ−1(𝑢) and 𝑎 is an acceleration constant. For 𝛼 ∈
(0, 1), the accelerated bootstrap (1 − 𝛼) confidence interval is given by
[𝑔(𝛼/2), 𝑔(1 − 𝛼/2)]. We estimate the acceleration constant, 𝑎, as

𝑎 =

∑𝑛
𝑖=1 𝐼

3
𝑖

6(∑𝑛
𝑖=1 𝐼

2
𝑖
) 32

where 𝑛 is the sample size and 𝐼𝑖 denotes the influence of data point 𝑖 on
the estimation of \ that we approximate using the finite-sample Jackknife
method.

5.2 Tables
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Table 5.1: Values for the outcomes of interest for the streets in the treated
neighborhood

Number of stores selling durable goods
Talenti Pollaiolo Pisana Scandicci Magnolie Baccio

1996 7.983 13.524 10.007 6.299 10.448 7.092
1997 9.166 15.026 11.042 6.693 10.448 7.092
1998 8.870 13.899 10.352 5.906 10.448 7.447
1999 9.758 13.899 10.697 6.299 11.194 7.801
2000 11.236 15.402 11.042 6.693 12.687 8.511
2001 11.236 15.402 11.387 7.874 12.687 9.220
2002 10.053 13.148 10.697 7.087 11.940 8.511
2003 10.053 12.772 10.697 7.874 11.194 9.929
2004 9.758 12.772 10.007 6.693 11.940 10.638
2005 9.758 12.772 11.042 6.299 12.687 12.057
2006 9.462 12.772 11.042 6.693 12.687 12.057
2007 10.053 13.148 11.732 5.512 11.194 12.057
2008 9.758 11.270 11.732 5.512 9.701 11.348
2009 9.758 10.894 11.732 5.118 8.955 11.348
2010 9.758 12.397 11.387 5.118 10.448 11.702
2011 8.575 12.021 12.077 5.906 10.448 12.057
2012 7.688 12.397 11.732 6.299 11.194 10.638
2013 7.688 11.645 9.662 6.299 11.194 9.574
2014 7.096 12.021 9.662 7.480 11.194 8.865

Number of stores selling non-durable goods
Talenti Pollaiolo Pisana Scandicci Magnolie Baccio

1996 6.801 9.767 10.697 6.299 11.194 8.156
1997 7.392 10.518 12.422 7.087 11.940 9.220
1998 7.392 10.143 10.007 5.512 11.194 7.801
1999 7.688 10.894 10.697 5.906 11.940 8.156
2000 8.575 11.270 11.387 6.299 11.940 9.929
2001 9.758 11.270 11.732 5.906 12.687 10.993
2002 7.392 9.016 10.697 5.118 11.940 9.220
2003 7.983 8.640 10.697 5.512 11.194 9.220
2004 7.688 8.640 9.662 5.512 12.687 9.929
2005 7.392 9.391 11.042 5.906 12.687 10.993
2006 7.983 10.143 12.077 5.906 14.925 10.638
2007 7.688 10.894 12.077 4.724 14.925 11.348
2008 7.688 10.518 12.077 4.724 14.925 10.638
2009 7.688 11.645 12.077 4.724 14.179 11.348
2010 9.166 12.397 11.387 5.118 14.179 11.702
2011 9.462 12.021 12.767 5.512 14.179 12.057
2012 9.758 10.518 10.697 5.118 12.687 11.348
2013 9.462 8.640 10.697 4.724 11.940 10.284
2014 8.279 7.137 8.972 4.331 11.194 9.929
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Table 5.2: Penalization terms - A: Number of stores selling durables, B:
Number of stores selling non-durables

_(𝑖) _

Talenti St. Streets in Legnaia neighbourhood
A B A B

0.089 0.009 0.089 0.009

Table 5.3: Weights through which the synthetic control values of the
outcome variables 𝑌1𝑡 (0, 0𝑁1) and 𝑌𝑖𝑡 (0, 0𝑁1). A: number of stores selling
durables; B: number of stores selling non-durables

𝑌11,𝑡 (0, 0𝑁1) 𝑌1𝑖,𝑡 (0, 0𝑁1)
Talenti Pollaiolo Pisana Scandicci Magnolie Baccio da M.

A B A B A B A B A B A B
Affrico 0 0 0 0 0 0 0 0.2703 0.0520 0.0483 0.2103 0

Alderotti 0 0 0 0 0 0 0 0 0.0719 0 0 0
Aretina 0 0.1335 0 0.1097 0 0.0521 0 0 0 0.0180 0 0
Baracca 0 0 0 0 0 0 0 0 0 0 0 0

Caracciolo 0.115 0 0.1292 0.0542 0.02 0.0834 0.184 0.1140 0 0 0 0
Centostelle 0.0678 0 0 0 0 0 0 0 0 0 0 0

Corsica 0 0 0 0 0 0 0.2531 0 0 0 0 0.2702
DAnnunzio 0.1306 0 0 0 0 0 0 0 0 0 0 0

Datini 0.0454 0.0344 0.1587 0 0 0 0 0 0 0 0 0
DeSantis 0 0 0 0 0 0 0 0 0 0.0233 0 0
Europa 0 0 0.1235 0 0 0 0 0 0 0 0 0

Faentina 0 0.1742 0 0 0.0182 0 0 0 0 0 0 0
Galliano 0 0 0 0.3826 0 0 0 0.5391 0 0.0653 0 0
Giuliani 0.0291 0 0 0 0 0 0 0 0.0449 0 0 0
Guidoni 0 0 0 0 0 0.3818 0 0.0085 0 0.3946 0 0.0376
Maffei 0 0.0649 0 0 0 0 0 0 0 0.0164 0.0319 0.2277

Maragliano 0.0085 0.1879 0.0688 0 0.3725 0 0.0572 0 0 0 0 0
Mariti 0 0 0 0 0 0 0 0 0 0.1349 0.198 0.3335

Masaccio 0 0 0 0 0 0 0.2861 0 0 0 0 0.0668
Mille 0.1372 0 0 0 0 0 0 0 0.4193 0 0 0

Morgagni 0 0.2263 0.1424 0 0.0177 0 0 0.0681 0 0.1089 0 0
Novoli 0 0 0 0 0 0 0 0 0 0 0 0
Panche 0 0 0 0.0109 0.0707 0 0 0 0 0 0 0
Peretola 0 0 0 0 0 0 0 0 0 0 0 0

Piagentina 0 0 0 0 0 0 0 0 0.0003 0 0 0
Pistoiese 0 0 0 0 0 0 0 0 0 0 0 0

PontealleMosse 0 0 0 0 0 0 0 0 0.1295 0 0.1942 0
PontediMezzo 0 0 0 0 0 0.3168 0 0 0 0 0 0

Pratese 0.2016 0 0 0 0 0 0 0 0.1521 0 0 0
Redi 0 0 0 0 0 0 0 0 0.1132 0 0.3657 0.1018

Ripoli 0 0 0 0 0 0 0.1636 0 0 0 0 0
Romito 0 0 0.1554 0.3063 0 0 0 0 0 0 0 0

Rondinella 0 0 0 0 0 0.1389 0 0 0.0072 0 0 0.0217
Tavanti 0 0 0.0353 0.0407 0 0 0 0 0 0 0 0
Toselli 0.2648 0.0407 0 0 0 0 0 0 0 0 0 0

Villamagna 0 0.0357 0 0.0798 0.5009 0 0 0 0 0.1867 0 0
VittorioEmanuele 0 0.1289 0.1867 0 0 0 0.056 0 0 0 0 0

Volta 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5.4: RMSPE for the treated street, Talenti St. and the for untreated
streets in the treated cluster

𝑌1𝑖,𝑡 (0, 0𝑁1)
Number of stores selling

Street durable goods non-durable goods
Talenti St. 0.1829 0.1112
Pollaiolo St. 0.2148 0.1082
Pisana St. 0.1854 0.2305
Scandicci St. 0.2452 0.2598
Magnolie St. 0.2080 0.3024
Baccio St. 0.2619 0.4416

5.3 Figures



113

Figure 5.1: Observed values of the number of purveyors of durable (left
panel) and non-durable (right panel) goods every 500 meters over the time
period 1996-2014 in the treated street (Talenti St.) and in other streets
belonging to the same urban neighborhood (Pollaiolo St., Pisana St., Baccio
da Montelupo St., Scandicci St., and Magnolie St.)
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Figure 5.2: Streets involved in the analysis, clustered in their own urban
neighborhoods
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Appendix - Chapter 2

6.1 Tables

State Lottery Start Lottery End Tr. Days Tr. Weeks Program Cost (in $)
Ohio 13/05/2021 23/06/2021 41 6 5000000

New York 20/05/2021 11/06/2021 22 4 5078340
Oregon 21/05/2021 28/06/2021 38 6 1360000

Delaware 24/05/2021 29/06/2021 36 5 302000
Maryland 25/05/2021 04/07/2021 40 6 2000000
Colorado 25/05/2021 04/07/2021 40 6 5000000
Arkansas 25/05/2021 30/06/2021 36 5 1000000
California 27/05/2021 18/07/2021 52 7 15000000

Washington 03/06/2021 13/07/2021 40 6 2000000
Kentucky 04/06/2021 27/08/2021 84 8 3000000

North Carolina 10/06/2021 04/08/2021 55 8 4000000
Louisiana 17/06/2021 31/07/2021 44 7 1400000
Nevada 17/06/2021 31/08/2021 75 10 5000000

New Mexico 17/06/2021 31/08/2021 75 10 10000000
Maine 17/06/2021 04/07/2021 17 3 896809
Illinois 17/06/2021 27/08/2021 71 10 7000000

West Virginia 20/06/2021 04/08/2021 45 6 2000000
Michigan 01/07/2021 30/08/2021 60 9 4500000
Missouri 21/07/2021 30/08/2021 40 4 9000000

Table 6.1: Relevant information for each lottery programs
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May 12th July 1st August 24th
Alabama 30.281 34.506 41.873
Arizona 52.893 62.479 68.471

Arkansas 34.336 38.589 49.084
California 45.829 53.536 59.193
Colorado 19.585 24.051 55.048

Connecticut 67.267 76.883 82.550
Delaware 53.533 62.167 67.400

District of Columbia 57.900 67.700 73.500
Florida 43.426 49.759 58.054
Georgia 14.497 17.199 22.760
Illinois 45.740 52.076 57.314
Indiana 40.218 44.730 51.424

Iowa 49.362 54.032 58.071
Kansas 41.564 45.436 51.099

Kentucky 38.741 44.318 50.206
Louisiana 33.606 37.961 48.013

Maine 60.337 68.744 72.938
Maryland 55.258 64.729 69.871

Massachusetts 48.257 55.471 58.771
Michigan 47.984 51.783 53.338

Minnesota 51.134 55.913 59.277
Mississippi 34.158 37.906 50.096

Missouri 32.781 36.793 43.314
Montana 42.341 47.350 50.822
Nebraska 21.554 21.870 22.123
Nevada 38.065 42.865 47.682

New Hampshire 53.120 66.750 70.680
New Jersey 57.571 67.671 73.700
New Mexico 21.583 22.090 22.090

New York 53.625 62.395 66.354
North Carolina 43.316 48.482 53.916
North Dakota 41.784 45.020 48.438

Ohio 31.113 33.336 34.493
Oklahoma 37.418 41.906 48.047

Oregon 49.874 57.883 62.137
Pennsylvania 49.219 57.064 61.949
Rhode Island 29.840 29.840 78.440

South Carolina 38.641 44.830 50.911
South Dakota 19.858 20.617 21.698

Tennessee 34.167 38.199 45.519
Utah 36.035 39.504 58.773

Vermont 50.500 59.008 61.623
Virginia 24.056 27.471 30.078

Washington 49.329 58.712 63.483
West Virginia 21.873 26.602 29.631

Wisconsin 49.865 55.525 59.699
Wyoming 37.113 40.770 45.591

Mean 40.220 45.677 52.282
St.Dev. 13.439 15.985 16.680

5% 19.681 21.055 22.101
50% 41.674 45.228 53.627
95% 57.785 67.690 73.630

Table 6.2: First panel:% of 18+ citizens vaccinated with first dose per each
state, Second panel: % of 18+ citizens vaccinated with first dose in the US
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Hispanic Black Poors Republicans High School College Unemployment Death/100k Medicare Median Earnings Median Age
Ohio 0.000 0.288 0.373 0.023 0.001 0.038 0.153 0.843 0.816 0.184 0.696
New York 0.760 0.872 0.131 0.869 0.577 0.242 0.296 0.607 0.890 0.204 0.685
Oregon 0.401 0.569 0.171 0.023 0.008 0.088 0.163 0.026 0.365 0.516 0.417
Delaware 0.615 0.653 0.557 0.883 0.824 0.698 0.912 0.325 0.887 0.893 0.783
Maryland 0.151 0.543 0.231 0.179 0.121 0.210 0.261 0.391 0.144 0.032 0.201
Arkansas 0.988 0.555 0.803 0.974 0.748 0.811 0.737 0.935 0.818 0.337 0.995
California 0.000 0.000 0.004 0.000 0.000 0.013 0.000 0.000 0.232 0.005 0.163
Washington 0.785 0.008 0.076 0.017 0.028 0.503 0.001 0.000 0.492 0.582 0.162
Kentucky 0.000 0.093 0.000 0.002 0.085 0.000 0.012 0.941 0.536 0.016 0.530
North Carolina 0.708 0.490 0.479 0.291 0.706 0.754 0.353 0.319 0.792 0.839 0.837
Louisiana 0.095 0.359 0.076 0.692 0.028 0.583 0.134 0.791 0.125 0.560 0.030
Nevada 0.713 0.636 0.601 0.741 0.520 0.535 0.577 0.579 0.725 0.369 0.753
Maine 0.175 0.125 0.316 0.426 0.695 0.264 0.788 0.069 0.194 0.316 0.214
Illinois 0.778 0.793 0.906 0.483 0.685 0.303 0.136 0.465 0.440 0.859 0.710
West Virginia 0.000 0.291 0.045 0.044 0.003 0.104 0.000 0.133 0.874 0.061 0.276
Michigan 0.170 0.843 0.674 0.963 0.813 0.157 0.000 0.399 0.010 0.013 0.010

Table 6.3: P-values for two-sample t-test of equality between treatment
and control group for each state

State _∗ Φ(_)
Ohio 0 394.175

New York 0 412.276
Oregon 0 390.725

Delaware 0.1 13.385
Maryland 0 364.435
Colorado 0 465.4
Arkansas 0 514.787
California 0 466.172

Washington 0 479.462
Kentucky 0 707.136

North Carolina 0 445.95
Louisiana 0 488.767
Nevada 0 500.973

New Mexico 0 408.573
Maine 0 385.986
Illinois 0 571.956

West Virginia 0 417.775
Michigan 0 522.446

Table 6.4: Cross-validation results of _∗ for each states
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6.2 Figures

Figure 6.1: Average Treatment Effect Δ𝑖 during treatment and post treat-
ment, represented at county level, estimated according equation 2.6
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Figure 6.2: Intertemporal effect ΔS,𝑡 - solid line: estimated effect. First
vertical line: lottery announcement for the treated state, second vertical
line: end of lottery.
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Appendix - Chapter 3

7.1 Spatially-penalized vertical regression

We return to the stacked SCM in 3.8, and we consider a penalized version
of the form

©«

𝛽0

β2
...

β𝑖
...

β𝐻

ª®®®®®®®®®¬
= argmin

β0,β2,...,β𝑁 ∈R𝑁

{
𝐻∑︁
ℎ=1

𝑇0−1∑︁
𝑡=1

(
𝑌 ℎ1,𝑡 − (1 Y 𝑇

𝑖,𝑡 )𝑇β𝑖
)2

+
𝑁∑︁
𝑖=1

_𝑖β𝑖Φ𝑖β𝑖

}
, (7.1)

where β𝑖 = (𝛽1
𝑖
, 𝛽2

𝑖
, . . . , 𝛽𝐻

𝑖
)𝑇 is the vector of the same parameter 𝛽𝑖 in

the 𝐻 vertical regression models, Φ𝑖 is (𝐻) × (𝐻) positive definite distance
matrices with 1s on the diagonal, and _𝑖 > 0 are scalars. For _𝑖 = 0 for
all 𝑖, this minimization problem is equivalent to the one in 3.8. Also, for
Φ𝑖 equal to the identity matrix, this minimization problem is equivalent to
using separate ridge regressions to estimate synthetic control weights.

We consider Φ𝑖 matrices that are not diagonal. Following Tibshirani
et al. (2005), we could specify the penalization matrix Φ = 𝑑𝑖𝑎𝑔[𝑘𝑖 (1)𝑁𝑖=2]
where 𝑘𝑖 (1) is the 1-d penalization matrix

𝑘𝑖 (1) =

©«

1 −1
1 −1

1 −1
. . .

1 −1

ª®®®®®®¬
.
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Fused estimators (Tibshirani et al., 2005, Irie, 2019) can represent a viable
solution for a smoothed estimation. This class of estimators, commonly
applied to spatial structures and image detection problems, penalizes the
distance between coefficients, allowing them to vary smoothly. The ma-
jority of previous applications in literature follows an l1−penalty, specify-
ing a lasso penalization, while few work has been previously publicized for
l2−penalty terms as in ridge estimators, e.g. Goeman (2008) or van Wierin-
gen (2015). Recently, Obakrim et al. (2022) use the generalized ridge to
predict outcomes when the covariates exhibit a spatial structure. Note
that with this penalization matrix, all control unit coefficients are equally
penalized. Other orders of penalization are possible, see Tibshirani and
Taylor (2011) and van Wieringen (2015) for further examples.

7.2 Generalized Ridge and Gaussian process

In this section we show the similarities across these two estimators. In the
two previous sections we have presented Spatial matrix completion meth-
ods, under a frequentist approach with a Generalized ridge regression and
in a Bayesian framework, using a Gaussian process prior for the coefficients.
It is worth noting that, under some assumptions and specifications, these
two models are equivalent in term of point estimates, which is the focus of
this work.

let be

𝑝(𝑦 |X,β) =
𝑁∏
𝑖=1

𝑝(𝑦𝑖 |X𝑖,β) =

𝑁∏
𝑖=1

1
√
2𝜋𝜎𝑦

exp

(
−
(𝑦𝑖 −X𝑇

𝑖
β)2

2𝜎𝑦

)
𝑁∏
𝑖=1

1
√
2𝜋𝜎𝑛𝑦

exp

(
−
(𝑦𝑖 −X𝑇

𝑖
β)2

2𝜎𝑦

)
∼ N(X𝑇𝑖 β, 𝜎𝑦I)

Let also be β ∼ GP(0, 𝛼Σ\), the posterior distribution of β will result

as 𝑝(β |𝑦,X) = 𝑝(𝑦 |X,β)𝑝(β)
𝑝(𝑦 |X) . 𝑝(𝑦 |X) is a constant term so, 𝑝(β |𝑦,X) ∝

𝑝(𝑦 |X,β)𝑝(β). Thus,

𝑝(β |Y,X) ∝ exp

(
− 1

2𝜎2
𝑦

(Y −X𝑇𝑖 β)𝑇 (Y −X𝑇𝑖 β)
)
exp

(
− 1

2𝛼
(β − 0)𝑇Σ−1(β − 0)

)
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∝ exp

(
− 1

2𝜎2
Y

(Y𝑖 −X𝑇𝑖 β)𝑇 (Y𝑖 −X𝑇𝑖 β) −
1

2𝛼
(β − 0)𝑇Σ−1(β − 0)

)
∝ exp

(
−(Y𝑖 −X𝑇𝑖 β)𝑇 (Y𝑖 −X𝑇𝑖 β) −

𝜎Y

𝛼
β𝑇𝛼Σ−1β

)
Thus, we can maximise it with _ =

𝜎Y
𝛼

and Φ = Σ−1, as it corresponds
to solving equation 7.1.

argmax
β0,β2,...,β𝑁 ∈R𝑁×𝐻

exp
(
−(Y𝑖 −X𝑇𝑖 β)𝑇 (Y𝑖 −X𝑇𝑖 β) − _β𝑇Φβ

)
argmax
β∈R𝑁×𝐻

(
−(Y𝑖 −X𝑇𝑖 β)𝑇 (Y𝑖 −X𝑇𝑖 β) − _β𝑇Φβ

)
argmin
β∈R𝑁×𝐻

(Y𝑖 −X𝑇𝑖 β)𝑇 (Y𝑖 −X𝑇𝑖 β) + _β𝑇Φβ

β̂ = (X𝑇X + _Φ)X𝑇Y

which is the solution to the maximisation problem in 7.1 and the solution
for generalized ridge with Tikhonov matrix Φ.

7.3 Figures
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Figure 7.1: Post-Treatment bias and MSE for the selected estimators -
HPP DGP. first row: T=20, second row: T=50, third row: T=100, first
and second column: C=T*0.5, third and last column: C=T*1.5
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Figure 7.2: Post-Treatment bias and MSE for the selected estimators - Ad-
ditive Linear DGP. first row: T=20, second row: T=50, third row: T=100,
first and second column: C=T*0.5, third and last column: C=T*1.5
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Figure 7.3: Post-Treatment bias and MSE for the selected estimators
- Gaussian Process DGP. first row: T=20, second row: T:50, third
row: T=100, first and second column: C=T*0.5, third and last column:
C=T*1.5
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Appendix - Chapter 4

8.1 Priors specification

In this subsection of the appendix we report the prior specifications we used
in our analysis. We assume prior distributions are a-prior independent.

Let 0k be a k-dimensional vector of zeros. Similarly, let be Ik be a
identity matrix with dimensions 𝑘 × 𝑘.

• Priors for the strata membership model

𝛿0,1 = 𝛿0,2 = 𝛿0,3 ∼ N(0, 2)
δ1 = δ2 = δ3 ∼ N𝑘 (0k, 𝜎Ik)
𝛾𝐴𝑆1 = 𝛾𝐶𝑆1 ∼ N(0, 2)
𝛾
(𝐴𝑆 |𝐺𝑖,1=𝐴𝑆)
2 = 𝛾

(𝐶𝑆 |𝐺𝑖,1=𝐴𝑆)
2 ∼ N(0, 2)

𝛾
(𝐶𝑆 |𝐺𝑖,1=𝐶𝑆)
2 ∼ N(0, 2)
𝛾
(𝐴𝑆 |𝐺𝑖,1=𝐺𝑖,2=𝐴𝑆)
3 = 𝛾

(𝐶𝑆 |𝐺𝑖,1=𝐺𝑖,2=𝐴𝑆)
3 ∼ N(0, 2)

𝛾
(𝐶𝑆 |𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐶𝑆)
3 ∼ N(0, 2)
𝛾
(𝐶𝑆 |𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝐶𝑆)
3 ∼ N(0, 2)

• Priors for the strata membership model

𝛽0,1 = 𝛽0,2 = 𝛽0,3 ∼ N(0, 2)
β1 = β2 = β3 ∼ N𝑘 (0k, 𝜎Ik)
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_
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2 = _
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_
(𝑊𝑖=1,𝐺𝑖,1=𝐶𝑆)
2 ∼ N(0, 2)
_
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3 = _

(𝑊𝑖=0,𝐺𝑖,1=𝐺𝑖,2=𝐴𝑆)
3 ∼ N(0, 2)

_
(𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐶𝑆)
3 ∼ N(0, 2)
_
(𝑊𝑖=1,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝐶𝑆)
3 ∼ N(0, 2)
𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆
1 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆
1 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐶𝑆
1 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐶𝑆
1 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝑁𝑆
1 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝑁𝑆
1 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐴𝑆
2 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐴𝑆
2 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐶𝑆
2 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐶𝑆
2 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝑁𝑆
2 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝑁𝑆
2 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝐶𝑆
2 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝐶𝑆
2 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝑁𝑆
2 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝑁𝑆
2 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐴𝑆,𝐺𝑖,3=𝐴𝑆
3 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐴𝑆,𝐺𝑖,3=𝐴𝑆
3 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐴𝑆,𝐺𝑖,3=𝐶𝑆
3 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐴𝑆,𝐺𝑖,3=𝐶𝑆
3 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐴𝑆,𝐺𝑖,3=𝑁𝑆
3 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐴𝑆,𝐺𝑖,3=𝑁𝑆
3 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐶𝑆,𝐺𝑖,3=𝐶𝑆
3 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐶𝑆,𝐺𝑖,3=𝐶𝑆
3 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝐶𝑆,𝐺𝑖,3=𝐶𝑆
3 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝐶𝑆,𝐺𝑖,3=𝐶𝑆
3 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐶𝑆,𝐺𝑖,3=𝑁𝑆
3 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐴𝑆,𝐺𝑖,2=𝐶𝑆,𝐺𝑖,3=𝑁𝑆
3 ∼ N(0, 2)

𝛼
𝑊𝑖=1,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝐶𝑆,𝐺𝑖,3=𝑁𝑆
3 = 𝛼

𝑊𝑖=0,𝐺𝑖,1=𝐶𝑆,𝐺𝑖,2=𝐶𝑆,𝐺𝑖,3=𝑁𝑆
3 ∼ N(0, 2)

8.2 Tables

W S1 S2 S3 Y1 Y2 Y3
0 0 * * * * *
1 0 * * 0.257 * *
0 1 0 * 0.047 * *
1 1 0 * 0.303 * *
0 1 1 0 0.125 0.125 *
1 1 1 0 0.309 0.186 *
0 1 1 1 0.244 0.193 0.146
1 1 1 1 0.398 0.302 0.194

Table 8.1: Observed outcomes
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Figure 8.1: Covariate Balance

8.3 Figures
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Figure 8.2: Posterior probability for principal strata membership in each
post-treatment period
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Figure 8.3: Number of corrected estimated outcomes for hiring decision in
each period 𝑡 ∈ 1, 2, 3 over the HMC iterations
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Figure 8.4: % of correct predictions for non-hiring decisions
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Figure 8.7: HMC traceplots for 𝛼𝑊𝑖 ,𝐺𝑖1
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Figure 8.8: HMC traceplots for 𝛼𝑊𝑖 ,𝐺𝑖2
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Figure 8.9: HMC traceplots for 𝛼𝑊𝑖 ,𝐺𝑖3
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Figure 8.10: HMC traceplots for 𝛽1
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Figure 8.11: HMC traceplots for 𝛽2
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Figure 8.12: HMC traceplots for 𝛽3
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Figure 8.13: HMC traceplots for _
𝑊𝑖 ,𝐺𝑖,𝑡−1
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study with french data. Revue d’économie industrielle, (149):11–41.

Dumont, M., Rayp, G., Verschelde, M., and Merlevede, B. (2016). The con-
tribution of start-ups and young firms to industry-level efficiency growth.
Applied Economics, 48(59):5786–5801.

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the
American statistical Association, 82(397):171–185.

Engin, C. and Vezzoni, C. (2020). Who’s skeptical of vaccines? preva-
lence and determinants of anti-vaccination attitudes in italy. Population
Review, 59(2).

Featherstone, J. D., Bell, R. A., and Ruiz, J. B. (2019). Relationship of peo-
ple’s sources of health information and political ideology with acceptance
of conspiratorial beliefs about vaccines. Vaccine, 37(23):2993–2997.

Ferman, B. and Pinto, C. (2021). Synthetic controls with imperfect pre-
treatment fit. Quantitative Economics, 12(4):1197–1221.

Firpo, S. and Possebom, V. (2018). Synthetic control method: Inference,
sensitivity analysis and confidence sets. Journal of Causal Inference,
6(2).

Forastiere, L., Airoldi, E. M., and Mealli, F. (2021a). Identification and es-
timation of treatment and interference effects in observational studies on
networks. Journal of the American Statistical Association, 116(534):901–
918.



144

Forastiere, L., Lattarulo, P., Mariani, M., Mealli, F., and Razzolini, L.
(2021b). Exploring encouragement, treatment, and spillover effects us-
ing principal stratification, with application to a field experiment on
teens’ museum attendance. Journal of Business & Economic Statistics,
39(1):244–258.

Forastiere, L., Mealli, F., and VanderWeele, T. J. (2016). Identification
and estimation of causal mechanisms in clustered encouragement designs:
Disentangling bed nets using bayesian principal stratification. Journal
of the American Statistical Association, 111(514):510–525.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant
analysis, and density estimation. Journal of the American statistical
Association, 97(458):611–631.

Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal
inference. Biometrics, 58(1):21–29.

Frumento, P., Mealli, F., Pacini, B., and Rubin, D. B. (2012). Evaluating
the effect of training on wages in the presence of noncompliance, nonem-
ployment, and missing outcome data. Journal of the American Statistical
Association, 107(498):450–466.

Gobillon, L. and Magnac, T. (2016). Regional policy evaluation: Interactive
fixed effects and synthetic controls. Review of Economics and Statistics,
98(3):535–551.

Goeman, J. J. (2008). Autocorrelated logistic ridge regression for prediction
based on proteomics spectra. Statistical Applications in Genetics and
Molecular Biology, 7(2).

Gorin, M. and Schmidt, H. (2015). ‘i did it for the money’: incentives,
rationalizations and health. Public Health Ethics, 8(1):34–41.

Gowda, C. and Dempsey, A. F. (2013). The rise (and fall?) of parental
vaccine hesitancy. Human vaccines & immunotherapeutics, 9(8):1755–
1762.

Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design,
and optimization for the applied sciences. Chapman and Hall/CRC.

Grossi, G., Lattarulo, P., Mariani, M., Mattei, A., and Öner, Ö. (2020).
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