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A REDUCTION THEOREM
FOR THE GALOIS–MCKAY CONJECTURE

GABRIEL NAVARRO, BRITTA SPÄTH, AND CAROLINA VALLEJO

Abstract. We introduce H-triples and a partial order relation on them, gen-
eralizing the theory of ordering character triples developed by Navarro and
Späth. This generalization takes into account the action of Galois automor-
phisms on characters and, together with previous results of Ladisch and Turull,
allows us to reduce the Galois–McKay conjecture to a question about simple
groups.

Introduction

The origin of the McKay conjecture dates back to a paper of John McKay from
1972 ([McK72]), where it is stated for finite simple groups and for p “ 2.

Conjecture (The McKay conjecture). Let G be a finite group, let p be a prime,
and let H “ NGpP q be the normalizer in G of a Sylow p-subgroup P of G. Then

|Irrp1 pGq| “ |Irrp1 pHq| ,

where Irrp1 pGq is the set of irreducible complex characters of G of degree not
divisible by p.

In 2007, Martin Isaacs, Gunter Malle and the first-named author reduced the
McKay conjecture to a problem about simple groups in [IMN07]. Using this reduc-
tion theorem, G. Malle and the second-named author have recently proven that the
McKay conjecture holds for all finite groups for p “ 2 in [MS16].

In 2004, the first-named author predicted that not only the degrees of the com-
plex characters of G and H were related but also their values (see [Nav04]). For a
fixed prime p, let H be the subgroup of G “ GalpQab{Qq consisting of the σ P G
for which there exists an integer f such that σpξq “ ξp

f for every root of unity ξ of
order not divisible by p.
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Conjecture (The Galois–McKay conjecture). Let G be a finite group, let p be a
prime, and let H “ NGpP q be the normalizer in G of a Sylow p-subgroup P of G.
Then the actions of H on Irrp1 pGq and Irrp1 pHq are permutation isomorphic.

As a matter of fact, this conjecture is stated only for cyclic subgroups of H in
Conjecture A of [Nav04], but it is suggested in the above more general form at the
end of the same paper. The Galois–McKay conjecture as stated above is equivalent
to the existence of a McKay bijection preserving fields of values of characters over
the field Qp of p-adic numbers. Recall that if Q Ď F is a field extension and χ is
a character of a group G, then the field of values Fpχq of χ over F is obtained by
adjoining to F all the values of χ. The conjecture appeared in this latter form in
[Tur08a] (also including local Schur indices).

The Galois–McKay conjecture has been proved for p-solvable groups in [Tur08b]
and for alternating groups in [Nat09] and [BN18]. It has been established for groups
with cyclic Sylow p-subgroups in [Nav04], and for groups of Lie type in defining
characteristic in [Ruh17]. For sporadic groups, it can now be easily checked with
[GAP].

Also, some of its main consequences have been obtained since its formulation.
For instance, in [NTT07] it was proven that, for p odd, NGpP q “ P if and only
if G has no non-trivial p-rational valued irreducible character of p1-degree. More
recently, for p “ 2, it has been proved in [SF18] that NGpP q “ P if and only if all
the odd-degree irreducible characters of G are fixed by σ0 P H, where σ0 squares
odd roots of unity and fixes 2-power roots of unity. Some other consequences, such
as determining the exponent of P {P 1 from the character table, have been treated
recently in [NT19]. In particular, we now know that the character table determines
the exponent of the abelianization of a Sylow 2-subgroup thanks to [NT19] and
[Mal19]. In all these papers, ad hoc reductions to simple groups have been provided
for fixed elements σ P H, and then the classification of finite simple groups has been
used to prove the theorems. However, the Galois–McKay conjecture has eluded a
general reduction until now. The following is the main result of this paper. We
recall that a simple group S is involved in G if S – K{N for some N Ÿ K ď G.

Theorem A. Suppose that G is a finite group, and p is a prime. If all simple
groups involved in G satisfy the inductive Galois–McKay condition for p (Defini-
tion 3.1), then the Galois–McKay conjecture holds for G and p.

One of the main differences between our reduction theorem and the reduction
theorem for the McKay conjecture is that we cannot make use of the general theory
of character triples and character triple isomorphisms, since these do not preserve
in general fields of values. We remedy this by introducing the notion of H-triples in
Section 1. There we also introduce a partial order relation between H-triples that
allows us to construct H-equivariant bijections between character sets. The original
partial order relation between character triples that we now generalize and whose
use is crucial in this work was introduced in [NS14]. Here we mostly refer to the
exposition given in [Nav18]. In Section 2 we study how to construct new ordered
H-triple pairs from old ones. In Section 3 we give the inductive Galois–McKay
condition that we expect all finite simple groups to satisfy. Finally in Section 4,
we prove Theorem A relying on key results due to Friedrich Ladisch and Alexandre
Turull. We care to remark that our Theorem A does not provide a different proof
of the p-solvable case of the Galois–McKay conjecture as our method depends on
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the study of the character theory over Glauberman correspondents that has been
carried out by A. Turull in different papers.

The verification of the inductive Galois–McKay condition for finite simple groups
brings up a new challenge, as it requires a vast knowledge of the character values
of decorated simple groups and the interplay between Galois action and the action
of group automorphisms on characters, a subject that is still not fully understood.
Examples of families of simple groups satisfying the inductive Galois–McKay con-
dition will appear in [Spä20].

1. H-triples

Let G be a finite group, let N Ÿ G, and let θ P IrrpNq. We denote by IrrpG|θq

the set of χ P IrrpGq such that θ is an irreducible constituent of the restriction χN .
If θ is G-invariant, then it is said that pG,N, θq is a character triple. The aim of
this section is to extend the theory of ordering character triples developed in [NS14]
by taking into account the action of Galois automorphisms on characters.

Let G “ GalpQab{Qq, where Qab is the field generated by all roots of unity in
C. Recall that G is abelian. By Brauer’s theorem on splitting fields [Bra45], every
character of a finite group can be afforded by a representation with entries in Qab.
Also, the group G acts on the irreducible characters of every finite group. If σ P G,
and N and θ P IrrpNq are as before, we denote by θσ the irreducible character of
N given by θσpnq “ θpnqσ “ σpθpnqq for every n P N .

Let p be a prime which is fixed but arbitrary. Let H be the subgroup of G
consisting of the σ P G for which there exists an integer f such that σpξq “ ξp

f for
every root of unity ξ of order not divisible by p. For every non-negative integer n, the
restriction of the automorphisms in H to Qpξnq yields a group Hn ď GalpQpξnq{Qq

which is isomorphic to GalpQppξnq{Qpq, where ξn is a primitive nth root of unity
and Qp is the field of p-adic numbers.

We denote by θH the H-orbit of θ and by IrrpG|θHq the set of irreducible char-
acters of G which lie over some H-conjugate of θ. This set is

ď

σPH
IrrpG|θσq .

If χ P IrrpG|θHq, then we call the natural number χp1q{θp1q the character degree
ratio of χ (with respect to θH).

We denote by GθH the stabilizer in G of the set θH with respect to the action of
G on IrrpNq by conjugation. Note that GθH “ tg P G | θg “ θσ for some σ P Hu.
We write pG,N, θqH if GθH “ G; in other words, if

tθg | g P Gu Ď tθσ | σ P Hu.

In this case, we call pG,N, θqH an H-triple. Notice that if pG,N, θqH is an H-triple,
then pG,N, θσqH is also an H-triple for every σ P H. Also, note that pGθH , N, θqH
is always an H-triple.

Suppose that pG,N, θqH is an H-triple. Let Gθ be the stabilizer of θ in G. If
g P G, then there is σ P H such that θg “ θσ. Therefore pGθqg “ Gθ, and we
have that Gθ Ÿ G. Furthermore, notice that via gGθ ÞÑ σHθ we obtain an injective
homomorphism G{Gθ Ñ H{Hθ. We will denote by HG,θ the subgroup of H such
that HG,θ{Hθ is the image under the above monomorphism. We will write just HG

whenever θ is clear from the context.
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We start with the following result on projective representations. For background
on these, see Chapter 11 of [Isa06] or Section 10.4 of [Nav18]. It is a version of
the main result of [Rey65]. Recall that two (projective) representations P and P1
of G are similar if there exists an invertible complex matrix M such that Ppgq “

M´1P1pgqM for every g P G. Notice that two similar projective representations
have the same factor set.

Theorem 1.1. Suppose that Q is a projective representation of a finite group G
whose factor set α only takes roots of unity values and satisfies αp1, 1q “ 1. Then
there is a similar representation Q1 with entries in a finite cyclotomic extension
of Q.

Proof. As in Theorem 5.6 of [Nav18], let Z be a finite subgroup of Cˆ containing
all values of α. Define pG “ tpg, zq | g P G, z P Zu with multiplication given by

pg1, z1qpg2, z2q “ pg1g2, αpg1, g2qz1z2q.

The product above is associative as α is a factor set. Since αpg, 1q “ αp1, 1q “

αp1, gq “ 1 for every g P G (by Lemma 11.5 of [Isa06]), we get that αpg, g´1q “

αpg´1, gq, and that Ĝ is a finite group. Define pQppg, zqq “ zQpgq for every pg, zq P

pG. Then pQ is an ordinary representation of pG. By Brauer’s theorem (Theorem
10.3 of [Isa06] or [Bra45]), there exists a representation pD of pG similar to pQ with
matrix entries in some finite cyclotomic extension of Q. Then we easily check that
Q1pgq “ pDpg, 1q is a projective representation of G similar to Q and such that the
values of Q1 lie in some finite cyclotomic extension of Q. �

Given a character triple pG,N, θq, one can find a projective representation P of
G associated with θ in the sense of Definition 5.2 of [Nav18]. Since P|N is an
ordinary representation affording θ, notice that αp1, 1q “ 1.

Corollary 1.2. If pG,N, θq is a character triple, then there is a projective repre-
sentation P of G associated with θ with entries in Qab and whose factor set only
takes roots of unity values. If P is any such representation, then Ppgq has finite
order for every g P G.

Proof. By Theorem 5.5 of [Nav18], there exists a projective representation P 1 of G
associated with pG,N, θq such that the factor set α only takes roots of unity values.
Since α is the factor set of P 1, we have that αp1, 1q “ 1. By Theorem 1.1, let P be
a similar projective representation of G with values in Qab. Since P and P 1 have
the same factor set, it easily follows that P is a projective representation associated
with θ satisfying the required properties.

Finally, if P is any such representation, let Z be a finite subgroup of Cˆ con-
taining all values of α. Define pG “ tpg, zq | g P G, z P Zu with multiplication given
by

pg1, z1qpg2, z2q “ pg1g2, αpg1, g2qz1z2q

as in the proof of Theorem 1.1. Then pP defined as pPpg, zq “ zPpgq for every
pg, zq P pG is an ordinary representation of pG. The last statement follows since
pPpg, zq has finite order for every pg, zq P pG. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

REDUCTION THEOREM FOR THE GALOIS–MCKAY CONJECTURE 6161

Remark 1.3. Recall that if pG,N, θq is a character triple, then two projective rep-
resentations P and P1 of G are associated with θ if and only if there is a func-
tion μ : G Ñ Cˆ constant on cosets of N , with μp1q “ 1 and a complex invert-
ible matrix M such that P1pgq “ μpgqM´1PpgqM for all g P G (this is Lemma
10.10(b) of [Nav18]). Notice that μ is uniquely determined by the pair pP,P1q.
Indeed, if P1pgq “ μ1pgqM´1

1 PpgqM1 for all g P G and for some function μ1 with
μ1pnq “ 1 for all n P N , then we will have that M´1PpnqM “ M´1

1 PpnqM1 for
all n P N . By Schur’s lemma, we have that M1 “ λM for some λ P Cˆ. Hence
μpgqM´1PpgqM “ μ1pgqM´1PpgqM for all g P G, and thus μpgq “ μ1pgq using
that M´1PpgqM is non-zero.

Let P be a projective representation of G with factor set α. If f : G Ñ G1 is
a group isomorphism (we will use exponential notation for images of f), then we
define Pf pg1q “ Ppgf

´1

1 q for g1 P G1. This is a projective representation of G1
with factor set αf , where αf pxf , yf q “ αpx, yq for x, y P G. (See Theorem 10.9
of [Nav18].) If σ P GalpQab{Qq and P has entries in Qab, then Pσpgq :“ Ppgqσ

(where σ is applied entrywise) defines a projective representation of G with factor
set ασpx, yq “ αpx, yqσ for x, y P G. Notice that αpx, yq P Qab in this case.

In what follows, we shall use that if N Ÿ G, then GˆG acts naturally on IrrpNq.
Indeed, if θ P IrrpNq, g P G and σ P G, then θgσ is the irreducible character of N
given by θgσpnq “ θpgng´1qσ for n P N . (To simplify notation, we often use gσ
instead of pg, σq.)

Throughout this work, we will use „ to denote similarity of (projective) repre-
sentations. In order to avoid too much notation, we also employ „ to denote matrix
similarity. We hope that which meaning is in use should be clear from the context.

Lemma 1.4. Suppose that N Ÿ G, θ P IrrpNq, and assume that θgσ “ θ for some
g P G and σ P GalpQab{Qq. Let P be a projective representation of Gθ associated
with θ with values in Qab and factor set α. Then

Pgσ
pxq “ Ppgxg´1

q
σ,

where we apply σ entrywise, defines a projective representation of Gθ associated
with θ, with factor set αgσpx, yq “ αgpx, yqσ. In particular, there is a unique
function

μgσ : Gθ Ñ Cˆ

with μgσp1q “ 1, constant on cosets of N such that Pgσ „ μgσP.

Proof. Notice that g normalizes Gθ. The rest is straightforward using Remark 1.3.
�

We are now ready to define a partial order relation between H-triples.

Definition 1.5. Suppose that pG,N, θqH and pH,M,ϕqH are H-triples. We write
pG,N, θqH ěc pH,M,ϕqH if the following conditions hold:

(i) G “ NH, N X H “ M , CGpNq Ď H.
(ii) pH ˆ Hqθ “ pH ˆ Hqϕ. In particular, Hθ “ Hϕ.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6162 GABRIEL NAVARRO, BRITTA SPÄTH, AND CAROLINA VALLEJO

(iii) There are projective representations P of Gθ and P 1 of Hϕ associated
with θ and ϕ with entries in Qab with factor sets α and α1, respectively,
such that α and α1 take roots of unity values, αHθˆHθ

“ α1
HθˆHθ

, and for
c P CGpNq, the scalar matrices Ppcq and P 1pcq are associated with the
same scalar ζc.

(iv) For every a P pHˆHqθ, the functions μa and μ1
a given by Lemma 1.4 agree

on Hθ.

In (iii), notice that if c P CGpNq, then c P Hθ, and Ppcq and P 1pcq are scalar
matrices by Schur’s Lemma (applied to the irreducible representations PN and
P 1
M ).
In the situation described above we say that pP,P 1q gives

pG,N, θqH ěc pH,M,ϕqH .

Note that if pP,P 1q gives pG,N, θqH ěc pH,M,ϕqH as above, then pP,P 1q is
associated with pGθ, N, θq ěc pHϕ,M, ϕq in the sense of Definition 10.14 of [Nav18].

The following technical result will be useful at the end of Section 2.

Lemma 1.6. Assume that pP,P 1q gives pG,N, θqH ěc pH,M,NqH. Let U ď

Cˆ be the subgroup of roots of unity of C. If ε : Gθ Ñ U is any map constant
on N-cosets and such that εp1q “ 1, then pεP, εHθ

P 1q also gives pG,N, θqH ěc

pH,M,ϕqH.

Proof. Conditions (i) and (ii) of Definition 1.5 are satisfied. Write P̂ “ εP and
P̂ 1 “ εHθ

P 1; we will show that pP̂, P̂ 1q gives pG,N, θqH ěc pH,M,ϕqH.
Note that P̂ is a projective representation with entries in Qab associated with θ.

If ν : Gθ Ñ U is any arbitrary function, we can define δpνq : Gθ ˆ Gθ Ñ U by

δpνqpx, yq “ νpxqνpyqνpxyq
´1

so that δpνq is a factor set. It is routine to check that the factor set of pP is β “ δpεqα.
Also, P̂ 1 is a projective representation with values in Qab associated with ϕ, and
with factor set β1 “ δpεHθ

qα1 “ βHθˆHθ
. For every c P CGpNq, the matrices P̂ 1pcq

and P̂ 1pcq correspond to the same scalar εpcqζc, where Ppcq and P 1pcq correspond
to the scalar ζc. Hence pP̂, P̂ 1q satisfies condition (iii) of Definition 1.5. Whenever
ph, σq P pH ˆ Hqθ, it is straightforward to check that

P̂hσ
„ μ̂hσP̂ and pP̂ 1q

hσ
„ μ̂1

hσP̂ 1 ,

where μ̂hσ “ μhσ
εhσ

ε , μ̂1
hσ “ μ1

hσp
εhσ

ε qHθ
, and the functions μhσ and μ1

hσ given by
Lemma 1.4 satisfy

Phσ
„ μhσP and pP 1

q
hσ

„ μ1
hσP 1 .

In particular μ̂1
hσ “ pμ̂hσqHθ

, and thus the pair pP̂, P̂ 1q satisfies all the conditions
in Definition 1.5. �

The following technical lemma allows us to show that in order to check (iv) of
Definition 1.5 on pH ˆ Hqθ it is enough to check the condition on a transversal of
Hθ in pH ˆ Hqθ.
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Lemma 1.7. Suppose that pG,N, θqH is an H-triple. Let P be a projective rep-
resentation of Gθ associated with θ with entries in Qab and whose factor set α
takes roots of unity values. Then the following hold:

(a) Let g P Gθ. Then Pgpyq “ μgpyqMPpyqM´1 for all y P Gθ, where

μgpyq “
αpg, g´1q

αpg, yg´1qαpy, g´1q

and M “ Ppgq. In particular, μg has values in Qabzt0u.
(b) Let pg, σq P pGˆHqθ and suppose that we write g “ tx, where t P Gθ and

x P G. Then θxσ “ θ, pGθqx “ Gθ and

μgσ “ μxσ
t μxσ ,

where μxσ
t pyq “ μtpxyx

´1qσ for every y P Gθ, and the functions μt, μxσ

and μgσ are given by Lemma 1.4.

Proof. Part (a) follows directly from the definitions of Pg, of a projective repre-
sentation, the uniqueness in Remark 1.3 and Lemma 1.4 applied to σ “ 1. Given
pg, σq P pG ˆ Hqθ, suppose that we write g “ tx for some t P Gθ and x P G.
Note that θxσ “ θ. In particular, x normalizes Gθ. By Lemma 1.4 we have that
Pt “ μtM

´1PM and Pgσ “ μgσX
´1PX . Notice that since P has entries in Qab,

then M “ Ppgq has entries in Qab. Then for every y P Gθ we have that

Pgσ
pyq “ Ppgyg´1

q
σ

“ Pptxyx´1t´1
q
σ

“ pPt
pxyx´1

qq
σ

„ μtpxyx
´1

q
σPpxyx´1

q
σ

“ μxσ
t pyqPxσ

pyq

„ μxσ
t pyqμxσpyqPpyq,

being the conjugating matrix MσX which does not depend on y P Gθ. Hence
Pgσ „ μxσ

t μxσP as claimed. �

We will often use the following fact in Section 2.

Lemma 1.8. Suppose that pG,N, θqH and pH,M,ϕqH are H-triples satisfying the
conditions (i) and (ii) in Definition 1.5. Write A “ pH ˆ Hqθ. Suppose that P
and P 1 are projective representations satisfying (iii) from Definition 1.5. Then
condition (iv) of Definition 1.5 holds for every a P A if and only if it holds for a
complete set of representatives of Hθ-cosets in A.

Proof. Note that Hθ Ÿ A since θhσ “ θ implies that h normalizes Hθ. The direct
implication trivially holds. Assume that (iv) of Definition 1.5 holds for a complete
set of representatives T of the Hθ-cosets in A. Given a P A, write a “ hxσ for
h P Hθ and xσ P T. By Lemma 1.7(b) we have that

μa “ μxσ
h μxσ and μ1

a “ pμ1
hq

xσμ1
xσ.

By assumption μ1
xσ is the restriction of μxσ. By Lemma 1.7(a) we have that μh

depends only on the factor set α of P and μ1
h depends only on the factor set α1 of
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P 1. Since P and P 1 satisfy condition (iii) of Definition 1.5, we have that α1 is the
restriction of α. Hence μ1

a is the restriction of μa as wanted. �

Let pP,P 1q be associated with pG,N, θqH ěc pH,M,ϕqH. Since pP,P 1q is as-
sociated with pGθ, N, θq ěc pHϕ,M, ϕq as in Definition 10.14 of [Nav18], we have
defined character bijections via pP,P 1q

τJ : IrrpJ |θq Ñ IrrpJ X H|ϕq

whenever N Ď J ď Gθ as in Theorem 10.13 of [Nav18]. These bijections preserve
ratios of character degrees.

Lemma 1.9. Suppose that pP,P 1q is associated with pG,N, θqH ěc pH,M,ϕqH.
(a) For every N Ď J ď Gθ, let τJ : IrrpJ |θq Ñ IrrpJ X H|ϕq be the bijective

map defined via pP,P 1q. If ph, σq P pH ˆ Hqθ, then Jh Ď Gθ and

τJhpχhσ
q “ τJpχq

hσ

for every χ P IrrpJ |θq.
(b) Let HG{Hθ ď H{Hθ be the image of G{Gθ in H{Hθ under the natural

monomorphism. If for χ P IrrpG|θq, we define τ pχq “ pτGθ
pψqqH , where

ψ P IrrpGθq is the Clifford correspondent of χ lying over θ, then the map
τ : IrrpG|θq Ñ IrrpH|ϕq is an HG-equivariant bijection preserving ratios
of character degrees.

Proof. We have that pP,P 1q is associated with pGθ, N, θq ěc pHϕ,M, ϕq in the
sense of Definition 10.14 of [Nav18]. For every N Ď J ď Gθ, we have defined
character bijections

τJ : IrrpJ |θq Ñ IrrpJ X H|ϕq.

Given χ P IrrpJ |θq, recall that χ is the trace of a representation of the form Q b

PJ , where Q is an irreducible projective representation of J{N , with factor set
β “ pα´1qJˆJ , that can be chosen with matrix entries in some finite cyclotomic
extension of Q (by Theorem 1.1). Then τJpχq is the character afforded by QJXH b

P 1
JXH .
Let a “ ph, σq P A “ pH ˆHqθ. Then θa “ θ and also ϕa “ ϕ, as A “ pH ˆHqϕ.

Hence χa P IrrpJh|θq. The character χa of Jh is afforded by

pQ b PJ q
a

“ Qa
b pPJ q

a
“ Qa

b pPa
qJh „ Qa

b pμaqJhPJh “ pμaqJhQa
b PJh .

This implies that pμaqJhQa is a projective representation of Jh{N with factor set
pα´1qJhˆJh . By definition, we have that τJpχaq is afforded by

pμaQa
qJhXH b P 1

JhXH “ pQa
qJhXH b pμ1

aP 1
qJhXH „ pQJXHq

a
b pP 1

JXHq
a .

Just notice that pQJXHqa b pP 1
JXHqa “ pQJXH b P 1

JXHqa affords τJ pχqa.
We next prove the second statement. If σ P HG, then let g P H be such that

θgσ “ θ (there exists such g P H by the definition of HG, and using the fact that
G “ GθH). Since pg, σq P pH ˆ Hqθ “ pH ˆ Hqϕ, we have ϕgσ “ ϕ. Consequently
χσ P IrrpG|θq and τ pχqσ P IrrpH|ϕq. Since ψgσ is the Clifford correspondent of χσ,
we have that

τ pχσ
q “ τGθ

pψgσ
q
H

“ pτGθ
pψq

gσ
q
H

“ pτGθ
pψq

H
q
σ

“ τ pχq
σ ,

where τGθ
pψgσq “ τGθ

pψqgσ by the first part of this proof, so τ is HG-equivariant.
Notice that our map preserves ratios of character degrees because character triple
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isomorphisms do, and it is a bijection since τGθ
and the Clifford correspondence

are bijections. �

Ordered pairs of H-triples yield H-equivariant bijections between related char-
acter sets.

Theorem 1.10. Suppose that pG,N, θqH ěc pH,M,ϕqH. Then there is an H-
equivariant bijection IrrpG|θHq Ñ IrrpH|ϕHq that preserves ratios of character
degrees.

Proof. By the definition of H-character triples, we have that G acts on θH. Suppose
that θ1, . . . , θs are representatives of the G-orbits, where say θ1 “ θ and θi “ θσi .
Notice that Gθi “ Gθ. Also notice that if we set ϕi “ ϕσi , then ϕ1, . . . , ϕs are
representatives of the H-orbits on ϕH (using that pHˆHqθ “ pHˆHqϕq. If pP,P 1q

is associated with pG,N, θqH ěc pH,M,ϕqH, then pPσi , pP 1qσiq is associated with
pG,N, θiqH ěc pH,M,ϕiqH. We have that

IrrpG|θHq “
9

ď

i

IrrpG|θiq and IrrpH|ϕH
q “

9
ď

i

IrrpH|ϕiq.

Note that if we write τi for the bijection IrrpG|θiq Ñ IrrpH|ϕiq given by Lemma
1.9, then τi ˝ σi “ σi ˝ τ1. Let HG be as in Lemma 1.9. Recall HG{Hθ ď H{Hθ

is isomorphic to G{Gθ. Note that HG is the stabilizer in H of any of the G-orbits
on θH (this is because H is abelian). Hence H “ 9

Ť

iHGσi. Let τ : IrrpG|θHq Ñ

IrrpH|ϕHq be the bijection defined in the obvious way from the bijections τi. Given
χ P IrrpG|θ1q and σ “ ωσi P H with ω P HG, we have that

τ pχσ
q “ τipχ

ωσiq “ τipχ
σiq

ω
“ pτ1pχqq

σiω “ τ pχq
σ,

where we use that the bijections τi are HG-equivariant and τi ˝ σi “ σi ˝ τ1. It
easily follows that τ is H-equivariant. As each τi preserves character degree ratios,
then so does τ . �

Let N Ÿ G and θ P IrrpNq not necessarily satisfying GθH “ G. By the Clifford
correspondence, induction of characters defines a bijection

IrrpX|θσq Ñ IrrpG|θσq

for every σ P H, whenever Gθ Ď X ď G. Hence induction of characters defines an
H-equivariant surjective map

IrrpX|θHq Ñ IrrpG|θHq ,

which turns out to be injective if and only if GθH Ď X.

Corollary 1.11. Let NŸ G and H ď G be such that G “ NH. Write M “ NXH.
Suppose that pGθH , N, θqH ěc pHϕH ,M, ϕqH. Then there is an H-equivariant
bijection

IrrpG|θHq Ñ IrrpH|ϕH
q

that preserves ratios of character degrees.

Proof. Let τ : IrrpGθH |θHq Ñ IrrpHϕH |ϕHq be the H-equivariant bijection preserv-
ing ratios of character degrees given by Theorem 1.10. Define τ̂ : IrrpG|θHq Ñ

IrrpH|ϕHq in the following way. For χ P IrrpG|θHq, let ψ P IrrpGθH |θHq be such
that ψG “ χ; then τ̂ pχq :“ τ pψqH . The conclusion then follows from the comments
preceding this result. �
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2. Constructing new H-triples from old ones

The following results show easy ways to construct H-triples from given ones.
The proofs are straightforward from the definitions. Note that if pG,N, θqH ěc

pH,M,ϕqH and N Ď J ď G, then
pJ,N, θqH ěc pJ X H,M,ϕqH.

Lemma 2.1. Let pG,N, θqH ěc pH,M,ϕqH. Suppose that f : G Ñ Ĝ is a group
isomorphism. Then pĜ, N̂ , θf qH ěc pĤ, M̂ , ϕf qH, where we write Ĵ “ Jf (using
exponential notation for images of f) and ψf pxf q “ ψpxq for every ψ P IrrpJq and
x P J .

Sometimes it will be easier to apply the following weaker version of the above
result.
Lemma 2.2. Let N Ÿ G and H ď G be such that G “ NH. Write M “ H X N .
Suppose that N Ď K ď G and pK,N, θqH ěc pK X H,M,ϕqH. Then for every
h P H

pKh, N, θhqH ěc pKh
X H,M,ϕh

qH.

Under the hypotheses of the above lemma, assume that pP,P 1q gives pK,N, θqH
ěc pK X H,M,ϕqH and let h P H. Then we will consider that

pKh, N, θhqH ěc pKh
X H,M,ϕh

qH

is given by pPh, pP 1qhq. Hence, if τθ and τθh are the bijections given by Theorem
1.10, we will have that τθhpχhq “ τθpχqh for every χ P IrrpG|θHq. In particular, if
τ̂θ and τ̂θh are the bijections given by Corollary 1.11, then τ̂θ “ τ̂θh .
Lemma 2.3. Let pG,N, θqH ěc pH,M,ϕqH and σ P H. Then pG,N, θσqH ěc

pH,M,ϕσqH.
Suppose that pP,P 1q gives pG,N, θqH ěc pH,M,ϕqH. For every σ P H, we will

always consider that pG,N, θσqH ěc pH,M,ϕσqH is given by pPσ, pP 1qσq. In this
way, if τθ and τθσ are the bijections given by Theorem 1.10, then by construction
τθσpχσq “ τθpχqσ for every χ P IrrpG|θHq. By Theorem 1.10 τθ is H-equivariant, in
particular τθσ “ τθ. Hence, by construction the bijections given by Corollary 1.11
are also equal.
Lemma 2.4. Let pG,N, θqH ěc pH,M,ϕqH. Suppose that L Ÿ G is contained in
kerpθq X kerpϕq X CGpNq, and CG{LpN{Lq “ CGpNq{L. Then

pG{L,N{L, θqH ěc pH{L,M{L,ϕqH,

where θ and ϕ are considered as characters of N{L and M{L.
Lemma 2.5. Let pGi, Ni, θiqH ěc pHi,Mi, ϕiqH for i “ 1, 2. Then

pGθH , N, θqH ěc pHϕH ,M, ϕqH,

where G “ G1 ˆ G2, H “ H1 ˆ H2, N “ N1 ˆ N2, M “ M1 ˆ M2, θ “ θ1 ˆ θ2
and ϕ “ ϕ1 ˆ ϕ2.
Proof. The group-theoretical conditions are easily checked. Also, it is easy to check
that pHθH ˆHqθ “ pHϕH ˆHqϕ. Now we have to construct appropriate projective
representations of pGθHqθ “ Gθ “ pG1qθ1 ˆ pG2qθ2 and pHϕHqϕ “ Hϕ “ pH1qϕ1 ˆ

pH2qϕ2 . This is done as in Lemma 10.20 of [Nav18]. Checking conditions (ii), (iii)
and (iv) of Definition 1.5 is straightforward. �
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Denote by Sm the symmetric group acting on m letters. In the next two results
we deal with H-triples and wreath products of groups. We follow the notation in
Chapter 10 of [Nav18]. If G is a finite group, then Gm will denote the direct product
G ˆ ¨ ¨ ¨ ˆ G (m times), and if θ P IrrpGq, then in our context θm “ θ ˆ ¨ ¨ ¨ ˆ θ P

IrrpGmq. Recall that Sm acts naturally on Gm by

pg1, . . . , gmq
ω

“ pgω´1p1q, . . . , gω´1pmqq

whenever gi P G and ω P Sm.

Lemma 2.6. Let pG,N, θqH and pH,M,ϕqH be H-triples such that pG,N, θqH ěc

pH,M,ϕqH. For any m P Zą0

ppGθ � SmqΔmG,Nm, θmqH ěc ppHθ � SmqΔmH,Mm, ϕm
qH,

where Δm : G Ñ Gm denotes the diagonal embedding of G into the direct product
Gm.

Proof. We claim that pGmqpθmqH “ pGθqmΔmG. Let pg1, . . . , gmq P pGmqpθmqH .
Then there exists some σ P H such that pθmqpg1,...,gmq “ pθmqσ. Hence θgi “ θσ for
each i. In particular, Gθgi “ Gθgj for every i and j. Hence, we can write gi “ xig1
for some xi P Gθ and for every i. Thus pg1, . . . , gmq P pGθqmΔmG. The other
inclusion is also clear using that given g P G, there is σ P H such that θg “ θσ, by
our hypothesis. This also implies that

pG � SmqpθmqH “ pGθ � SmqΔmG .

Similarly, pH � SmqpϕmqH “ pHϕ � SmqΔmH “ pHθ � SmqΔmH as Hθ “ Hϕ by
hypothesis.

We follow the proof of Theorem 10.21 of [Nav18]. First, we easily check that
pG � Smqθm “ Gθ � Sm. Conditions (i) and (ii) of Definition 1.5 for

ppGθ � SmqΔmG,Nm, θmqH ěc ppHθ � SmqΔmH,Mm, ϕm
qH

follow from the above discussion together with the discussions in Theorem 10.21
of [Nav18]. Let pP,P 1q be associated with pG,N, θqH ěc pH,M,ϕqH. Construct
projective representations P̃ and P̃ 1 of Gθ � Sm and of Hθ � Sm as in Theorem 10.21
of [Nav18]. Condition (iii) of Definition 1.5 is proven in Theorem 10.21 of [Nav18].
It remains to check condition (iv) of Definition 1.5.

For any pγ, σq P ppH � Smq ˆ Hqθm , we have that γ P pHθ � SmqΔmH. We denote
by μ̃γσ and μ̃1

γσ the functions given by Lemma 1.4 with respect to the action of γσ
on P̃ and P̃ 1. By Lemma 1.8 we only need to check the condition for a transversal
of Hθ � Sm in ppHθ � SmqΔmH ˆ Hqθm . In particular, it is enough to check the
condition for elements pγ, σq such that γ “ py, . . . , yq “ Δmy for some y P H with
θyσ “ θ.

We check below that, for every xi P Hθ and ω P Sm,

μ̃γσppx1, . . . , xmqωq “

m
ź

i“1
μyσpxiq.

First let Xθp1q be the permutation representation as in Theorem 10.21 of [Nav18].
We use that Pyσ “ μyσMPM´1 and

pM b ¨ ¨ ¨ b MqXθp1qpωq “ Xθp1qpωqpM b ¨ ¨ ¨ b Mq.
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Given px1, . . . , xmqω P Hθ � Sm we have that

P̃γσ
ppx1, . . . , xmqωq “ P̃ppxy´1

1 , . . . , xy´1

m qωq
σ

“ pPyσ
px1q b ¨ ¨ ¨ b Pyσ

pxmqqXθp1qpωq

„

m
ź

i“1
μyσpxiqP̃ppx1, . . . , xmqωq;

the conjugating matrix M b ¨ ¨ ¨ b M does not depend on px1, . . . , xmqω P Hθ � Sm.
Similarly one can check that for every px1, . . . , xmqω P Hθ � Sm

pμ̃1
γσqppx1, . . . , xmqωq “

m
ź

i“1
pμ1

yσqpxiq.

Since μ1
yσ is the restriction of μyσ the proof is finished. �

The following is a special feature of H-triples with respect to wreath products.

Theorem 2.7. Let pG,N, θqH and pH,M,ϕqH be H-triples such that pG,N, θqH
ěc pH,M,ϕqH. Let k,m P Zą0. Let σi P H for i “ 1, . . . , k. Write θi “ θσi and
ϕi “ ϕσi. Suppose that θi and θj are not G-conjugate whenever i ‰ j. Then for
n “ mk

ppG � Snqθ̃H , Nn, θ̃qH ěc ppH � Snqϕ̃H ,Mn, ϕ̃qH,

where θ̃ “ θm1 ˆ ¨ ¨ ¨ ˆ θmk and ϕ̃ “ ϕm
1 ˆ ¨ ¨ ¨ ˆ ϕm

k .

Proof. The statement makes sense since G � Sn “ NnpH � Snq, Nn X pH � Snq “

Mn and CG�Sn
pNnq Ď CGpNqn Ď Hn Ď H � Sn. Moreover, we see next that

pH � Sn ˆ Hqθ̃ “ pH � Sn ˆ Hqϕ̃. Write θ̃ “ β1 ˆ ¨ ¨ ¨ ˆ βn and ϕ̃ “ ξ1 ˆ ¨ ¨ ¨ ˆ ξn. We
know that each βi is θτi for some τi P H and then ξi “ ϕτi . Let a P pH � Sn ˆ Hqθ̃.
Hence a “ pγ, τq, where γ “ pa1, . . . , anqω P H � Sn and τ P H. The equality θ̃a “ θ̃

implies that β
aω´1piqτ

ω´1piq
“ βi for every i “ 1, . . . , n. This is exactly the same as

θ
ajτjττ

´1
ωpjq “ θ

for every j “ 1, . . . , n. Write cj “ ajτjττ
´1
ωpjq

P pHˆHqθ “ pHˆHqϕ. Then ϕcj “ ϕ

for every j “ 1, . . . , n implies ϕ̃a “ ϕ̃. The above discussion shows that conditions
(i) and (ii) of Definition 1.5 are satisfied by the H-triples ppG � Snqθ̃H , Nn, θ̃qH and
ppH � Snqϕ̃H ,Mn, ϕ̃qH.

Next we explain how to construct projective representations giving the relation
between the aforementioned H-triples. Let pP,P 1q be associated with pG,N, θqH
ěc pH,M,ϕqH. As in Lemma 2.6 we can construct projective representations P̃
and P̃ 1 associated with
(1) ppGθ � SmqΔmG,Nm, ψqH ěc ppHθ � SmqΔmH,Mm, ξqH,

where ψ “ θm and ξ “ ϕm. Write P̃i “ pP̃qσi and P̃ 1
i “ pP̃ 1qσi for i “ 1, . . . , k. In

particular, each pP̃i, P̃ 1
iq gives

pGθ � Sm, Nm, ψiq ěc pHθ � Sm,Mm, ξiq,

where ψi “ ψσi “ θmi and ξi “ ξσi “ ϕm
i . The pair pP̃, P̃ 1q of tensor product

representations

P̃ “ P̃1 b ¨ ¨ ¨ b P̃k and P̃ 1 “ P̃ 1
1 b ¨ ¨ ¨ b P̃ 1

k
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gives
ppGθ � Smq

k, Nn, θ̃q ěc ppHθ � Smq
k,Mn, ϕ̃q.

Notice that pGθ � Smqk “ pG � Snqθ̃ and pHθ � Smqk “ pH � Snqϕ̃. This is because
θi and θj are not G-conjugate whenever i ‰ j. Notice that we have constructed P̃
and P̃ 1 as in Definition 1.5(iii).

It only remains to check condition (iv) of Definition 1.5. As before write θ̃ “

β1 ˆ ¨ ¨ ¨ ˆ βn. Note that βi “ θj whenever i P Λj “ tpj ´ 1qm ` 1, . . . , jmu for
j “ 1, . . . , k.

Let a P pH � Sn ˆ Hqθ̃. Hence a “ pγ, τq, where γ “ pa1, . . . , anqω P pH � Snqθ̃H

and τ P H. The equality θ̃a “ θ̃ is equivalent to

β
aω´1piqτ

ω´1piq
“ βi

for every i “ 1, . . . , n. In particular

β
aω´1piqτ

ω´1piq “ θj whenever i P Λj .

Hence ω´1pΛjq “ Λl for some l P t1, . . . , ku, and θσlaiτ “ θaiτ
i “ θj “ θσj for every

i P Λl. In particular σlτσ
´1
j P HH,θ. Fix for each l P t1, . . . , ku an element cl P H

such that θcl “ θσlτσ
´1
j . Hence ai “ a1

icl for some a1
i P Hθ for every i P Λl and for

l “ 1, . . . , k. Write bl “ Δmcl for each l.
Define π P Sn by πppl ´ 1qm ` iq “ pj ´ 1qm ` i if ωpΛlq “ Λj for every

i “ 1, . . . ,m. Hence πplq “ j if ωpΛlq “ Λj , and in this way we can view π P Sk.
For j “ 1, . . . , k, define πj P Sn by πj |Λj

“ ωπ´1|Λj
and fixing t1, . . . , nuzΛj . By

definition ω “ π1 ¨ ¨ ¨πkπ.
Then γ “ xγ1, where x “ pa1

1, . . . , a
1
nqπ1 ¨ ¨ ¨πk P pHθ �Smqk and γ1 “ pb1, . . . , bkqπ

P pH � Snqθ̃H (this is because pb1, . . . , bkq and π1 ¨ ¨ ¨πk commute). By Lemma 1.8,
in order to verify condition (iv) of Definition 1.5 for γ we may assume that γ “ γ1.

With the above assumptions and notation, we have that ψ
blσlτσ

´1
πplq “ ψ for all

l. Note that γ´1 “ pb´1
π´1p1q

, . . . , b´1
π´1pkq

qπ´1. Let py1, . . . , ykq P pHθ � Smqk. Then
we have

pP̃1 b ¨ ¨ ¨ b P̃kq
γτ

py1, . . . , ykq

“ P̃σ1τ b ¨ ¨ ¨ b P̃σkτ py
b´1
1

πp1q
, . . . , y

b´1
k

πpkq
q

“ P̃σ1τb1pyπp1qq b ¨ ¨ ¨ b P̃σkτbkpyπpkqq

“ pP̃b1σ1τσ
´1
πp1q pyπp1qqq

σπp1q b ¨ ¨ ¨ b pP̃bkσkτσ
´1
πpkq pyπpkqqq

σπpkq .

Write τl “ σlτσ
´1
πplq. For each l P t1, . . . , ku, we have that ψblτl “ ψ. By Lemma

1.4, we have functions μ̃blτl and invertible matrices Ml such that

(2) pP̃q
blτl “ μ̃blτlM

´1
l P̃Ml .

Write

μ̃γτ py1, . . . , ykq :“
k

ź

l“1
μ̃blτlpyπplqq

σπplq .
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Then for py1, . . . , ykq P pHθ � Smqk we have

pP̃σ1 b ¨ ¨ ¨ b P̃σkq
γτ

py1, . . . , ykq

„ μ̃γτ py1, . . . , ykqP̃σπp1q pyπp1qq b ¨ ¨ ¨ b P̃σπpkq pyπpkqq

„ μ̃γτ py1, . . . , ykqP̃σ1 b ¨ ¨ ¨ b P̃σkpy1, . . . , ykq ,

where the first similarity relation is given by M “ M1 b ¨ ¨ ¨ b Mk, and the second
similarity relation is obtained by conjugating by the matrix X pπq associated with
the action of π on the tensors

v1 b ¨ ¨ ¨ b vk ÞÑ vπ´1p1q b ¨ ¨ ¨ b vπ´1pkq.

Since the matrices M and X pπq do not depend on py1, . . . , ykq P pHθ � Smqk, we
have that pP̃σ1 b ¨ ¨ ¨ b P̃σkqγτ „ μ̃γτ P̃σ1 b ¨ ¨ ¨ b P̃σk .

We have analogous relations for P̃ 1
1 b ¨ ¨ ¨ b P̃ 1

k with

μ̃1
γτ py1, . . . , ykq :“

k
ź

l“1
μ̃1

blτl
pyπplqq

σπplq .

By equation (1) (in the second paragraph of this proof) each μ̃1
b̃jτj

is the restriction
of μ̃b̃jτj

, and hence the result follows. �

We will need to control the character theory and H-action over some characters
of central products. Suppose that K is the product of two subgroups N and Z with
N Ÿ K and Z ď CKpNq. Then K is the central product of N and Z. In this case

IrrpKq “
9

ď

νPIrrpZXNq

IrrpK|νq,

where IrrpK|νq “ tθ ¨ λ | θ P IrrpN |νq and λ P IrrpZ|νqu. Note that, whenever a
group A acts by automorphisms on K, stabilizing N and Z, if a P A and θ ¨ λ P

IrrpKq, then pθ ¨ λqa “ θ ¨ λ if and only if θa “ θ and λa “ λ. The same happens if
A ď G “ GalpQab{Qq.

Theorem 2.8. Let pG,N, θqH and pH,M,ϕqH be H-triples such that

pG,N, θqH ěc pH,M,ϕqH .

Suppose that Z Ÿ G is abelian and satisfies Z Ď CGpNq. Let ν P IrrpZ X Nq be
under θ and λ P IrrpZ|νq. Then

pGpθ¨λqH , NZ, θ ¨ λqH ěc pHpϕ¨λqH ,MZ,ϕ ¨ λqH.

In particular, there exists an H-equivariant bijection

τθ : IrrpGpθ¨λqH |pθ ¨ λq
H

q Ñ IrrpHpϕ¨λqH |pϕ ¨ λq
H

q

that preserves ratios of character degrees.

Proof. Note that Z Ď CGpNq Ď H. Hence Z X N “ Z X M . Since pG,N, θqH ěc

pH,M,ϕqH, we have that ϕ lies over ν.
Note that pθ ¨ λqgσ “ θ ¨ λ if and only if θgσ “ θ and λgσ “ λ for g P G and

σ P H. Hence, Gpθ¨λqH XH “ Hpϕ¨λqH , and Definition 1.5(i) is easily checked. Since
pHˆHqθ “ pHˆHqϕ, we have that pHpϕ¨λqH ˆHqθ “ pHpϕ¨λqH ˆHqϕ, so Definition
1.5(ii) holds.
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Since Gpθ¨λq “ Gθ X Gλ Ď Gθ and Hθ¨λ “ Gθ¨λ “ Hϕ¨λ, if pP,P 1q gives
pG,N, θqH ěc pH,M,ϕqH,

then pPGθ¨λ ,P 1
Hθ¨λ

q gives
pGpθ¨λqH , N, θqH ěc pHpθ¨λqH ,M, ϕqH.

To ease the notation we assume G “ Gpθ¨λqH and write P for PGθ¨λ and P 1 for
P 1
Hθ¨λ

. In particular, pG,NZ, θ ¨ λqH and pH,MZ,ϕ ¨ λqH are H-triples.
We next show how to construct a pair of projective representations giving

pG,NZ, θ ¨ λqH ěc pH,MZ,ϕ ¨ λqH

from pP,P 1q.
Let pP be a projective representation of Gθ¨λ associated with θ ¨ λ with entries

in Qab, as in Corollary 1.2. In particular, pP is associated with pGθ¨λ, N, θq and
by Remark 1.3, pP „ εP, where ε : Gθ Ñ Cˆ is constant on N -cosets and satisfies
εp1q “ 1. The values of ε are roots of unity since Ppgq and pPpgq have finite order
for every g P Gθ¨λ. As in the proof of Lemma 1.7, define

δpεqpx, yq “ εpxqεpyqεpxyq
´1

for every x, y P Gθ¨λ. Then pα “ δpεqα. In particular, the values of δpεq are roots
of unity. Define Q “ εP and Q1 “ εHϕ¨λP 1. The proof of Lemma 1.6 applies and
the pair pQ,Q1q gives pG,N, θqH ěc pH,M,ϕqH. Note that Q is associated with
θ ¨ λ because Q „ pP. One can check that Q1 is associated with ϕ ¨ λ. In particular,
pQ,Q1q gives

pG,NZ, θ ¨ λqH ěc pH,MZ,ϕ ¨ λqH .

To finish the proof apply Theorem 1.10. �
The following is an H-triple version of the most important result concerning

the application of the theory of centrally isomorphic character triples to reduction
theorems: the ordering of two H-triples only depends on the automorphisms of
the normal subgroup defined via conjugation by the overgroup; see the butterfly
theorem (Theorem 5.3 in [Spä14]).

Theorem 2.9. Let pG,N, θqH and pH,M,ϕqH be H-triples such that pG,N, θqH
ěc pH,M,ϕqH. Let ε : G Ñ AutpNq be the group homomorphism defined by
conjugation by G. Suppose that N Ÿ Ĝ and ε̂pĜq “ εpGq, where ε̂ : Ĝ Ñ AutpNq

is given by conjugation by Ĝ. Let NCĜpNq Ď Ĥ ď Ĝ be such that ε̂pĤq “ εpHq.
Then

pĜ,N, θqH ěc pĤ,M,ϕqH.

Proof. Note that CGpNq Ď H and CĜpNq Ď Ĥ, so the group theory conditions in
Definition 1.5(i) are satisfied by Theorem 10.18 of [Nav18].

Recall that the map ε̄ : G{CGpNq Ñ Ĝ{CĜpNq given by ε̄pCGpNqxq “ CĜpNqy

whenever εpxq “ ε̂pyq defines a group isomorphism. Let x P G and y P Ĝ. If
εpxq “ ε̂pyq, notice that θx “ θσ for some σ P H if and only if θy “ θσ, so condition
(ii) of Definition 1.5 also holds.

Following Theorem 10.18 of [Nav18] and given a tranversal T of MCGpNq in Hϕ

with 1 P T, we can define a transversal pT of MCĜpNq in Ĥϕ with 1̂ “ 1.
Suppose that pP,P 1q gives pG,N, θqH ěc pH,M,ϕqH and let λ : CGpNq Ñ

Qabzt0u be given by the scalar associated with P and P 1 for every c P CGpNq.
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Choose a function λ̂ : CĜpNq Ñ Qabzt0u semimultiplicative with respect to ZpNq

as in Theorem 10.18 of [Nav18]. Also following Theorem 10.18 of [Nav18], we can
construct projective representations P̂ of Ĝθ and P̂ 1 of Ĥϕ with respect to pT, λ̂ and
P and P 1, respectively. Then P̂ is associated with θ, P̂ 1 is associated with ϕ, and
they satisfy Definition 1.5(iii).

It remains to check Definition 1.5(iv) for pP̂, P̂ 1q. We have that H acts by
conjugation on the transversal T with t ÞÑ t ¨ h if and only if pt ¨ hq´1th “ mhch P

MCGpNq for h P H. Similarly Ĥ acts on pT. In fact, from the definition of pT it
follows that if εphq “ ε̂pĥq for h P H, ĥ P Ĥ, then

t̂ ¨ ĥ “ yt ¨ h

and pyt ¨ hq´1t̂ĥ “ mhĉĥ P MCG1pNq for every t P T.
Let pĥ, σq P pĤ ˆ Hqθ so that θh

´1σ “ θ and Ph´1σ „ μh´1σP with conjugating
matrix X. Let t P T, m P M and ĉ P CĜpNq. Then

P̂ ĥ´1σ
pt̂mĉq “ P̂pt̂ĥmh

pĉqĥq
σ

“ P̂pyt ¨ hmhĉĥm
h

pĉqĥq
σ

“ Ppt ¨ hq
σPpmhm

h
q
σλ̂pĉĥpĉqĥq

σ

“ Ppthm´1
h c´1

h mhm
h

q
σλpĉĥpĉqĥq

σ

“ Ppptmq
h

q
σλpc´1

h q
σλ̂pĉĥpĉqĥq

σ

“ Ph´1σ
ptmqλpc´1

h q
σλ̂pĉĥpĉqĥq

σ

„ μh´1σptmqλpc´1
h q

σλ̂pĉĥpĉqĥq
σPptmqλ̂pĉqλ̂pĉq´1

“ μh´1σptmqλpc´1
h q

σλ̂pĉĥpĉqĥq
σλpĉq´1P̂pptmc1

q

“ μ̂ĥ´1σpt̂mĉqP̂pt̂mĉq,

where μ̂ĥ´1σpt̂mĉq “ μh´1σptmqλpc´1
h qσλ̂pĉĥpĉqĥqσλpĉq´1 and the conjugating ma-

trix X does not depend on t̂mĉ. Hence P̂ ĥ´1σ „ μ̂ĥ´1σP̂.
Similarly

pP̂ 1q
ĥ´1σ

pt̂mĉq „ μ̂1

ĥ´1σ
pt̂mĉqP̂ 1pt̂mĉq,

where μ̂1

ĥ´1σ
pt̂mĉq “ μ1

h´1σptmqλpc´1
h qσλ̂pĉĥpĉqĥqσλpĉq´1, so that μ̂ĥ´1σ and μ̂1

ĥ´1σ

agree on Ĥϕ provided that μh´1σ and μ1
h´1σ agree on Hϕ. �

3. The inductive Galois–McKay condition

We refer the reader to Appendix B of [Nav18] for a compendium of the definitions
and results on the theory of universal covering groups that are specifically needed
in our context.

We can now define the inductive Galois–McKay condition on finite non-
abelian simple groups.

Definition 3.1. Let S be a finite non-abelian simple group, with p dividing |S|.
Let X be a universal covering group of S, R P SylppXq and Γ “ AutpXqR. We
say that S satisfies the inductive Galois–McKay condition for p if there exist some
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Γ-stable proper subgroup N of X with NXpRq Ď N and some Γ ˆ H-equivariant
bijection

Ω: Irrp1 pXq Ñ Irrp1 pNq ,

such that for every θ P Irrp1 pXq we have
pX ¸ ΓθH , X, θqH ěc pN ¸ ΓθH , N,ΩpθqqH.

We recall that for a quasisimple group X (a perfect group whose quotient by its
center is simple) and any n P Zą0,

AutpXn
q “ AutpXq � Sn .

Moreover, whenever R ď X

AutpXn
qRn “ AutpXqR � Sn .

These results appear as Lemma 10.24 of [Nav18], for example.

Theorem 3.2. Suppose that S satisfies the inductive Galois–McKay condition
for p, and X, R, Γ, N and Ω are as above. Then for any n P Zą0 the map

Ω̃ : Irrp1 pXn
q Ñ Irrp1 pNn

q

given by Ω̃pθ̃q “ ϕ̃, where θ̃ “ θ1 ˆ ¨ ¨ ¨ ˆ θn and ϕ̃ “ ϕ1 ˆ ¨ ¨ ¨ ˆϕn with Ωpθiq “ ϕi,
is a bijection. Write Γ̃ “ Γ � Sn. Then Ω̃ is Γ̃ ˆ H-equivariant and for every
θ̃ P Irrp1 pXnq

pXn
¸ Γ̃θ̃H , Xn, θ̃qH ěc pNn

¸ Γ̃θ̃H , Nn, ϕ̃qH.

Proof. Notice that Γ̃ “ AutpXnqRn . The fact that Ω̃ is a Γ̃ˆH-equivariant bijection
follows straightforwardly from the definitions. Also notice that Xn ¸ Γ̃ “ XnpNn ¸

Γ̃q and Xn X pNn ¸ Γ̃q “ Nn.
Given θ̃ P Irrp1 pXnq, we prove the statement on H-triples in a series of steps

concerning assumptions on θ̃. Note that, by applying Lemma 2.2 we can replace θ̃
by any Γ̃-conjugate of θ̃.

If θ̃ “ θ1 ˆ ¨ ¨ ¨ ˆ θn, then we write HΓi
for the subgroup of H such that HΓi

{Hθi

is the image of the natural monomorphism ΓθH
i

{Γθi Ñ H{Hθi . We refer to the θi

as factors of θ̃.

Step 1. We may assume that all factors of θ̃ are H-conjugate and any two Γ-
conjugate (in particular HΓi

-conjugate) factors are equal.
By Lemma 2.2 and after conjugating by an element of Γn, we may assume that

any two factors of θ̃ are either equal or not Γ-conjugate. In particular, and after
maybe conjugation by an element of Sn, we can write θ̃ “

Ś�
j“1 θ̃j , where all the

factors of θ̃j lie in θHj . Notice that any two factors of θ̃j are either equal or not
HΓj

-conjugate. Hence Γ̃θ̃H “
Ś�

j“1 Γθ̃H
j

and Γθ̃ “
Ś�

j“1 Γθ̃j
. By Lemma 2.5 we

may assume � “ 1, that is, all the factors of θ̃ lie in the same H-orbit.

Step 2. We may assume that θ̃ “ θm1 ˆ ¨ ¨ ¨ ˆ θmk for some m, where θi “ θσi for
some σi P H and HΓσi ‰ HΓσj whenever i ‰ j. Here HΓ “ HΓ

θH ,θ as defined
above.

By Step 1 and after conjugating θ̃ by an element of Sn, we can write θ̃ “

pθ1qn1 ˆ ¨ ¨ ¨ ˆ pθkqnk , where θi “ θσi for some σi P H and two different σi define
different HΓ-cosets. We work to show that any element γ P Γ̃θ̃H permutes θi and θj
if and only if ni “ nj . If we can show that then, after conjugating θ̃ by an element
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of Sn, we may decompose θ̃ as a direct product of characters ψ̃ “ ψs
1 ˆ ¨ ¨ ¨ ˆ ψs

r

which do not have any factor in common (pairwise). In particular, Γ̃θ̃H decomposes
as a direct sum of pΓ � Ssrqψ̃H . By Lemma 2.5 the claim of the step would follow.

Given ξ̃ “ ξ1 ˆ ¨ ¨ ¨ ˆ ξn P IrrpXnq such that all ξi lie in one H-orbit, we can
associate to ξ̃ the multiset rξ̃s of the HΓ,ξ1 -orbits of the factors, namely rξ̃s “

rξ
HΓ,ξ1
1 , . . . , ξ

HΓ,ξ1
n s, where HΓ,ξ1 “ HΓ

ξH1
,ξ1 Note that for every γ “ pa1, . . . , anqω P

Γ̃ we have that rξγs “ rpξa1
1 qHΓ,ξ1 , . . . , pξan

n qHΓ,ξ1 s.

Write θ̃ “ β1 ˆ ¨ ¨ ¨ ˆ βn, so that each βi “ θτi for some τi P H. Note that
HΓτi “ HΓτj if and only if βi “ βj . Let γ “ pa1, . . . , anqω P Γ̃, with ai P Γ and
ω P Sn. Then the multiplicity of pβai

i qHΓ in rθ̃γs is the same as the multiplicity
of βHΓ

i in rθ̃s, which is the same as the number of factors equal to βi in θ̃. This
is because β

aj

j lies in the HΓ-orbit of βai

i if and only if HΓτi “ HΓτj (using that
Γ-conjugate factors of θ̃ are equal by Step 1). The latter happens if and only if
βi “ βj .

For pγ, τq P pΓ̃ ˆ Hqθ̃, we have γ “ pa1, . . . , anqω P Γ̃θ̃H and rθ̃γτ s “ rθ̃s. By the
above paragraph the multiplicity of pβaiτ

i qHΓ in rθ̃s “ rθ̃γτ s equals the multiplicity
of βHΓ

i in rθ̃s, that is, the number of factors equal to βi in θ̃. On the other hand
θ̃γτ “ θ̃ if and only if βj “ βaiτ

i whenever ωpiq “ j. Putting these two facts together
we see that if ωpiq “ j, then the number of factors equal to βj in θ̃ is the same as
the number of factors equal to βi in θ̃, as wanted.

Final step. By Step 2 we have that θ̃ “ θm1 ˆ ¨ ¨ ¨ ˆ θmk , where θi “ θσi for some
σi P H and σi and σj define distinct HΓ-cosets whenever i ‰ j. The result then
follows by applying Theorem 2.7 with X Ÿ G “ X ¸ Γθ. Note that the condition
that σi and σj define distinct HΓ-cosets whenever i ‰ j is equivalent to saying that
no θi is X ¸ ΓθH -conjugate to θj if i ‰ j. �

Theorem 3.3. Suppose that KŸG, where K is perfect and K{ZpKq is isomorphic
to a direct product of copies of a non-abelian simple group S. Let Q P SylppKq.
Assume that S satisfies the inductive Galois–McKay condition for p. Then there
exists an NGpQq-invariant subgroup NKpQq Ď M ă K and an NGpQq ˆ H-
equivariant bijection

Ω: Irrp1 pKq Ñ Irrp1 pMq ,

such that for every θ P Irrp1 pKq, we have

pGθH ,K, θqH ěc pNGpMqθH ,M,ΩpθqqH .

Proof. First note that the H-triples relations make sense. By the Frattini argument
G “ KNGpQq. Since NGpQq Ď NGpMq by the assumptions on M , then G “

KNGpMq. Also by the Frattini argument NGpMq “ MNGpQq. Hence NKpMq “

K X NGpMq “ MNKpQq “ M .
Notice that if the theorem is true for Q, then it is true for Qk for any k P K.

This is because Ωkpθq :“ Ωpθqk would be NGpQqk ˆ H-equivariant and by using
Lemma 2.2. Hence we may choose any Sylow p-subgroup of K.

Let X be the universal covering of S, and let π : Xn Ñ K be a covering of K
with Z “ kerpπq Ď ZpXnq. Since S satisfies the inductive Galois–McKay condition
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for p, we have R, N and Ω given by Definition 3.1. We prove the result with respect
to πpRnq “ Q P SylppKq. Write M “ πpNnq Ě NKpQq.

The idea is to prove the theorem with respect to K Ÿ Ĝ “ K ¸ AutpKqQ and
to use Theorem 2.9 to relate G and Ĝ via their conjugation homomorphisms into
AutpKq.

We mimic the proof of Theorem 10.25 in [Nav18]; see there for more details.
Write Γ “ AutpXqR as in Definition 3.1 and Γ̃ “ Γ � Sn. By Theorem 3.2 we have
a Γ̃ ˆ H-equivariant bijection

Ω̃ : Irrp1 pXn
q Ñ Irrp1 pNn

q

such that for every θ̃ P Irrp1 pXnq

pXn
¸ Γ̃θ̃H , Xn, θ̃qH ěc pNn

¸ Γ̃θ̃H , Nn, ϕ̃qH.

Since these are, in particular, central isomorphisms and Z Ď ZpXnq, then θ̃ lies
over 1Z if and only if ϕ̃ lies over 1Z . Let B “ Γ̃Z ď Γ̃. In particular, Ω̃ yields a
bijection that we denote by Ω̃ again,

Ω̃ : Irrp1 pXn
{Zq Ñ Irrp1 pNn

{Zq,

which is B ˆ H-equivariant. By Lemma 2.4

pXn
{Z ¸ Bθ̃H , Xn, θ̃qH ěc pNn

{Z ¸ Bθ̃H , Nn, ϕ̃qH,

for every θ̃ P Irrp1 pXn{Zq and ϕ̃ “ Ω̃pθq.
Note that Xn{Z ˆ B – Ĝ via π and under this isomorphism Nn{Z ¸ B corre-

sponds to M ¸AutpKqQ. Hence we have proven that there exists an AutpKqQ ˆH-
equivariant bijection

Ω: Irrp1 pKq Ñ Irrp1 pMq.

Moreover, by Lemma 2.1

pK ¸ pAutpKqQqθ̃H ,K, θqH ěc pM ¸ pAutpKqQqθ̃H ,M,ΩpθqqH,

whenever θ P Irrp1 pKq.
To finish the proof apply Theorem 2.9 as in the end of the proof of Theorem

10.25 of [Nav18]. Let ε : G Ñ AutpKq and ε̂ : Ĝ Ñ AutpKq be the corresponding
conjugation homomorphisms. Let θ P Irrp1 pKq, and let V “ εpGθHq. The same
arguments as in the proof of Theorem 10.25 of [Nav18] show that if V̂ :“ ε̂´1pV q,
then ε´1pεpNV̂ pMqqq “ NGθH

pMq “ NGpMqθH . �

The above result will be key in the reduction theorem carried out in Section 4.
Below we write the exact form in which it will be later applied, in which K (in
Theorem 3.3) need no longer be perfect.

Corollary 3.4. Suppose that K Ÿ G, where K{ZpKq is isomorphic to a direct
product of copies of a non-abelian simple group S, and let Q P SylppKq. Assume
that S satisfies the inductive Galois–McKay condition for p. If pG,ZpKq, νqH is
an H-triple, then there exist an NGpQq-invariant subgroup NKpQq Ď M ă K and
an NGpQq ˆ H-equivariant bijection

Ω: Irrp1 pK|νHq Ñ Irrp1 pM |νHq ,
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and for every θ P Irrp1 pK|νHq

pGθH ,K, θqH ěc pHϕH ,M, ϕqH ,

where ϕ “ Ωpθq and H “ MNGpQq. In particular, there are character-degree-
ratio preserving H-equivariant bijections

τ̂θ : IrrpG|θHq Ñ IrrpH|ϕH
q ,

satisfying τ̂θh “ τ̂θ and τ̂θσ “ τ̂θ for every h P H and σ P H.

Proof. Write K1 “ K 1 and Z “ ZpKq. Hence K “ K1Z is the central product of
K1 and Z, and K1 is perfect. Also Q1 :“ Q X K1 P SylppK1q. Let M1 and Ω1 be
given by Theorem 3.3 applied with respect to K1 Ÿ G. Note that ZXK1 “ ZXM1.
Let ν1 “ νZXK1 P IrrpZ XK1q, θ1 P Irrp1 pK1|νσ1 q and ϕ1 “ Ω1pθ1q. By Theorem 3.3

pGθH
1
,K1, θ1qH ěc pNGpM1qθH

1
,M1, ϕ1qH.

In particular, this implies that ϕ1 lies over νσ1 and thus Ω1 maps Irrp1 pK1|νH1 q onto
Irrp1 pM1|νH1 q. Write M “ M1Z, which is the central product of M1 and Z. Clearly
M is NGpQq-invariant as NGpQq Ď NGpQ1q. The desired bijection Ω can be
obtained via Ω1 using the dot product of characters as follows (we refer the reader
to the discussion preceding Theorem 2.8 for more details). Let θ P Irrp1 pK|νHq lie
over νσ. Then θ “ θ1 ¨ νσ for some θ1 P Irrp1 pK1|νσ1 q. Define Ωpθq :“ Ω1pθ1q ¨ νσ “

ϕ1 ¨ νσ P IrrpM |νσq. Hence

Ω: Irrp1 pK|νHq Ñ Irrp1 pM |νHq

is an NGpQq ˆH-equivariant bijection with the desired properties. Write ϕ “ Ωpθq

and recall
pGθH

1
,K1, θ1qH ěc pNGpM1qθH

1
,M1, ϕ1qH .

Note that NGpM1q “ H “ MNGpQq, by the Frattini argument, as Q Ď M Ÿ

NGpM1q “ M1NGpQ1q. By Theorem 2.8

pGθH ,K, θqH ěc pHϕH ,M, ϕqH .

For each θ, denote by τ̂θ the bijection provided by Corollary 1.11. In particular,

τ̂θ : IrrpG|θHq Ñ IrrpH|ϕH
q

is H-equivariant and preserves ratios of character degrees. The claims on τ̂θh and
τ̂θσ in the final part of the statement follow from the comments after Lemma 2.2
and Lemma 2.3. �

4. The reduction

The following key result is due to F. Ladisch. It is based on work by A. Turull.
This is an H-triple version of the well-known fact that a character triple pG,N, θq

can be replaced by an isomorphic one pG1, N1, θ1q with N1 Ď ZpG1q, in such a way
that the character properties of G over θ are the same as the character properties
of G1 over θ1. If we wish to control fields of values of characters above θ, this is
no longer true. Still we can somehow replace the original H-triple by another one
with convenient properties.
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Theorem 4.1 (Ladisch). Suppose that pG,Z, λqH is an H-triple. Then there
exists another H-triple pG1, Z1, λ1qH such that:

(a) There is an onto homomorphism κ1 : G1 Ñ G{Z with kernel Z1.
(b) For every Z Ď X ď G, there is an H-equivariant bijection ψ ÞÑ ψ1

from IrrpX|λHq Ñ IrrpX1|λH
1 q, where κ1pX1q{Z “ X{Z, preserving ratios

of character degrees; more precisely, if ψ and ψ1 correspond under the
above bijection, then ψp1q{λp1q “ ψ1p1q{λ1p1q. Furthermore, if g1 P G1,
g “ κpg1q and ψ P IrrpX|λHq, then

pψg
q1 “ pψ1q

g1 .

In particular, pG1qλ1 is mapped to Gλ via κ1.
(c) There is a normal cyclic subgroup C of G1 with C Ď Z1, and a faithful

ν P IrrpCq such that νZ1 “ λ1 P IrrpZ1q.
(d) pG1, C, νqH is an H-triple.
(e) If U “ pG1qλ1 and V “ pG1qν, then U “ Z1V and C “ Z1 X V . Also

V “ CG1pCq and C Ď ZpV q.

Proof. Let n “ |G|, and let Hn ď GalpQpξnq{Qq, where ξn is a primitive nth root
of unity as in Section 1. Notice that Hn acts on the characters of any subgroup
(or quotient) of G. Let F “ QpξnqHn , so that Hn “ GalpQpξnq{Fq. The fact that
pG,Z, λqH is an H-triple means that λ is semi-invariant in G over F in the sense
of [Lad16] (see p. 47, second paragraph). Apply Theorem A and Corollary B of
[Lad16]. The conjugation part in (b), which we shall later need, is not mentioned
in Corollary B of [Lad16], but in Theorem 7.12(7) of [Tur09]. �

What follows is essentially a deep result by A. Turull concerning Clifford theory
and action of H over Glauberman correspondents.

Theorem 4.2 (Turull). Suppose that G is a finite p-solvable group. Suppose that
K is a normal p1-subgroup of G, and that Q is a p-subgroup such that KQ Ÿ G.
Let D “ CKpQq. Let C be a normal subgroup of G such that C Ď ZpKQq. Let
ν P IrrpCq and assume that pG,C, νqH is an H-triple. Let Δ “ Irrp1 pKQ|νHq, and
let Δ1 “ Irrp1 pDQ|νHq. Then there is an H-equivariant bijection

f :
ď

τPΔ
IrrpG|τ q Ñ

ď

τ 1PΔ1

IrrpNGpQq|τ 1
q .

Proof. Write C “ Cp1 ˆCp and ν “ νp1 ˆ νp, where νp1 P IrrpCp1 q and νp1 P IrrpCpq.
Notice that Cp1 Ď D and Cp Ď Q by hypothesis.

Write IrrQpKq for the Q-invariant irreducible characters of K, and for each
θ P IrrQpKq, let θ̂ P IrrpDq be its Glauberman correspondent.

By Theorem 3.2 of [Tur13], for each θ P IrrQpKq there is an H-equivariant
bijection

fθ : IrrpG|θHq X IrrpG|νHp q Ñ IrrpNGpQq|θ̂Hq X IrrpNGpQq|νHp q

satisfying a list of conditions. We can take fθσ “ fθ for every σ P H and fθx “ fθ
for every x P NGpQq.

We define now fpχq for χ P
Ť

τPΔ IrrpG|τ q. Suppose that χ lies over some τ P Δ.
We have that τC “ τ p1qνσ for some σ P H, by using that C Ď ZpKQq. Also,
τK “ θ P IrrQpKq since τ p1q has p1-degree and |KQ : K| is a power of p. Note that
θ lies over νσp1 . Define fpχq :“ fθpχq P IrrpNGpQq|θ̂Hq X IrrpNGpQq|νHp q.
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Note that f is well-defined. First, any other constituent of χKQ is τx for some
x P NGpQq and fθx “ fθ. By Theorem 3.2(1) of [Tur13] fθpχq lies over θ̂σ, hence
over νσp1 . In order to see that f is well-defined we need that fθpχq lies also over νσp
and this in principle is not guaranteed by Theorem 3.2 of [Tur13] but by Theorem
10.1 of [Tur17]. Hence fθpχq lies over νσ, and consequently over some τ 1 P Δ1.

The map f is clearly surjective as every element in
Ť

τ 1PΔ1 IrrpNGpQq|τ 1q lies in
IrrpNGpQq|μq X IrrpNGpQq|νσp q for some σ P H and μ P IrrpD|νHp1 q. Again using
that fθx “ fθ for every x P NGpQq and every θ P IrrQpKq one can check that f is
injective.

Finally f is H-equivariant as every fθ is H-equivariant. �

In contrast to the proof of the reduction theorem for the McKay conjecture in
[IMN07], we cannot work with characters of p1-degree. We have to work instead
with characters of relative p1-degree. Those are defined as follows. For N Ÿ G and
θ P IrrpNq, we say that χ P IrrpG|θq has relative p1-degree with respect to N (or
to θ) if the ratio χp1q{θp1q is not divisible by p. We denote by Irrrelp1 pG|θq the set of
irreducible relative p1-degree characters with respect to N . The following are easy
properties of relative p1-degree characters.

Lemma 4.3. Suppose that N Ÿ G and θ P IrrpNq. Let P P SylppGq.

(a) If χ P Irrrelp1 pG|θq, then χN has some P -invariant irreducible constituent
and any two of them are NGpP q-conjugate. These P -invariant con-
stituents extend to NP .

(b) Suppose that N Ď MŸ G, and let χ P IrrpG|ηq, where η P IrrpM |θq. Then
χ P Irrrelp1 pG|θq if and only if χ P Irrrelp1 pG|ηq and η P Irrrelp1 pM |θq.

Proof. We can write χPN “ a1δ1 ` ¨ ¨ ¨ ` akδk, where δi P IrrpPNq lies over some
G-conjugate of θ. In particular, δip1q{θp1q is an integer. Since χp1q{θp1q is not
divisible by p, it follows that there is some i such that p does not divide δip1q{θp1q.
Since this number divides |PN : N |, it follows that pδiqN “ η P IrrpNq is P -
invariant. Suppose that ηg is another P -invariant irreducible constituent. Then
P, P g Ď Gηg , and by Sylow theory, we have that ηg and η are NGpP q-conjugate.
In particular, ηg “ ηh for some h P NGpP q, then ηh also extends to pPNqh “ PN .
The second part easily follows using that χp1q{θp1q “ pχp1q{ηp1qqpηp1q{θp1qq. �

Let Z Ÿ G and λ P IrrpZq. We will denote by Irrrelp1 pG|λHq the subset of relative
p1-degree characters of IrrpG|λHq (with respect to Z). Recall that whenever X ď G
contains GλH , the induction of characters defines an H-equivariant bijection

IrrpX|λH
q Ñ IrrpG|λH

q .

We are finally ready to prove the main result of this note.

Theorem 4.4. Let Z Ÿ G, P P SylppGq and λ P IrrpZq be P -invariant. Write
H “ NGpP qZ. Assume that every simple group involved in G{Z satisfies the
inductive Galois–McKay condition for p. Then there exists an H-equivariant
bijection between Irrrelp1 pG|λHq and Irrrelp1 pH|λHq.

Proof. We argue by induction on |G : Z|. We also may assume that H ă G;
otherwise the statement trivially holds.
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Step 1. We may assume that G “ GλH . In particular Gλ Ÿ G, G “ GλH and
Z ă Gλ.

Induction of characters defines H-equivariant bijections IrrpGλH |λHq Ñ

IrrpG|λHq and IrrpHλH |λHq Ñ IrrpH|λHq. Since P Ď Gλ, relative p1-degree charac-
ters are mapped onto relative p1-degree characters. Hence we may assume G “ GλH .
In particular pG,Z, λqH and pH,Z, λqH are H-triples, and Gλ Ÿ G. Using the Frat-
tini argument we have that G “ GλH. If Gλ “ Z, then G “ H contradicts our
first assumption.

Step 2. We may assume that G has a normal cyclic subgroup C contained in Z
and a faithful character ν P IrrpCq such that νZ “ λ and pG,C, νqH is an H-
character triple. In particular, Gλ “ GνZ and Gν XZ “ C. Moreover Gν Ÿ G and
C Ď ZpGνq.

By Theorem 4.1 there exist an H-character triple pG1, Z1, λ1qH, a group epi-
morphism κ1 : G1 Ñ G{Z with kernel Z1 and H-equivariant character bijections
Irrp1 pG|λHq Ñ Irrp1 pG1|λH

1 q and Irrp1 pH|λHq Ñ Irrp1 pH1|λH
1 q, where κ1pH1q “ H

with Z1 Ď H1. These bijections also commute with group conjugation as in The-
orem 4.1(b). Let Z1 Ď pPZq1 ď pG1qλ1 be such that κ1ppPZq1q “ PZ and let
P1 P SylpppPZq1q. Then P1 P SylppG1q, pPZq1 “ P1Z1 and also H1 “ NG1pP1qZ1
by the Frattini argument. By Theorem 4.1, all the requirements of the claim are
satisfied in G1. Since |G : Z| “ |G1 : Z1|, it is no loss if we work in G1 instead of
in G.

Step 3. If H Ď X ă G, then there exists an H-equivariant bijection between
Irrrelp1 pX|λHq and Irrrelp1 pH|λHq.

This follows by induction since |X : Z| ă |G : Z|.

Step 4. Let L{Z be a chief factor of G with L Ď Gλ. Then G “ LH. In other
words, LP Ÿ G.

Recall that H “ NGpP qZ. Define Θ0 to be a complete set of representatives of
the orbits of NGpP q ˆH on the P -invariant characters in Irrrelp1 pL|λHq. By Lemma
4.3 every relative p1-degree character of G with respect to Z lies over a unique
NGpP q-orbit of P -invariant characters of relative p1-degree of L with respect to Z.
Since pG,Z, λqH is an H-triple, one can easily check that

Irrrelp1 pG|λH
q “

9
ď

θPΘ0

Irrrelp1 pG|θHq

is a disjoint union. Similarly

Irrrelp1 pLH|λH
q “

9
ď

θPΘ0

Irrrelp1 pLH|θHq.

Since Z ă L, then |G : L| ă |G : Z|, and by induction we have H-equivariant
bijections Irrrelp1 pG|θHq Ñ Irrrelp1 pLH|θHq whenever θ P Θ0. This defines an H-
equivariant bijection

Irrrelp1 pG|λH
q Ñ Irrrelp1 pLH|λH

q .

If LH ă G, then by Step 3, we are done. The latter claim of the step follows
immediately since NG{LpPL{Lq “ NGpP qL{L by the Frattini argument.

Step 5. We may assume L{Z is not a p-group.
Notice that, by Step 4, G “ LH, where H “ NGpP qZ. If L{Z is a p-group, then

H “ G, contradicting a previous assumption.
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Step 6. Write Pν “ P X Gν and K “ L X Gν . Then H Ď NGpPνq ă G, KPν Ÿ G
and PZ “ PνZ.

Since pG,C, νqH is an H-triple, recall that Gν Ÿ G. Then K “ LXGν Ÿ G. Note
that pLP qν “ KPν . Using that ZP {Z is a Sylow p-subgroup of Gλ{Z, that Pν is a
Sylow p-subgroup of Gν , and that Gλ “ GνZ with Gν X Z “ C, we conclude that
ZPν “ ZP . By Dedekind’s lemma ZP X Gν “ CPν . A similar argument can be
used to show that LP X Gν “ KPν . (Note that L “ KZ with K X Z “ C and
work with Q “ Pν X K P SylppKq.)

Recall that LP Ÿ G, and hence KPν “ LP X Gν Ÿ G. Also CPν “ Cp1 ˆ Pν ,
since C is central in Gν . Since Z normalizes CPν , it follows that Z normalizes Pν .
Notice that if Pν Ÿ G, then ZP Ÿ G (because ZPν “ ZP ), a contradiction. Hence
H Ď NGpPνq ă G.

Step 7. Let Y ď Gν be such that KY,LY Ÿ G. Then

Irrrelp1 pG|λH
q “

ď

θPΔY

Irrrelp1 pG|θLY
q “

ď

θPΔY

Irrrelp1 pG|θq ,

where ΔY “ Irrp1 pKY |νHq. Whenever H Ď X ď G and Y Ď X, we also have that

Irrrelp1 pX|λH
q “

ď

θ1PΔ1
Y

Irrrelp1 pX|θLY XX
q “

ď

θ1PΔ1
Y

Irrrelp1 pX|θq ,

where Δ1
Y “ Irrp1 pKY X X|νHq.

First note that LY “ pKY qZ and KY XZ “ C. Moreover pLY qνσ “ KY , when-
ever σ P H. Note that induction of characters defines a bijection IrrpKY |νσq Ñ

IrrpLY |λσq for every σ P H. Let χ P Irrrelp1 pG|λHq. Let μ P IrrpLY q be under χ

and over λσ for some σ P H. By Lemma 4.3(a) μ P Irrrelp1 pLY |λσq and χp1q{μp1q

is a p1-number. Let θ P IrrpKY q be under μ and over νσ. Then θLY “ μ. Also
μp1q{λp1q “ θp1q{νp1q “ θp1q is a p1-number. The other inclusion is shown similarly.
If H Ď X ď G and Y Ď X, we can use the same argument to show that

Irrrelp1 pX|λH
q “

ď

θ1PΔ1
Y

Irrrelp1 pX|pθ1
q
LY XX

q “

ď

θ1PΔ1
Y

Irrrelp1 pX|θ1
q

where Δ1
Y “ Irrp1 ppLY X Xqν |νHq. Notice that in X we still have X “ XλH,

Xλ “ XνZ and the rest of the conditions with respect to the normal subgroups
LY X X “ pL X XqY and KY X X “ pK X XqY . We have intentionally omitted
the dependence of Δ1

Y on X in the notation, but this shall not lead to confusion as
the subgroup X will be clear when applied in this step.

Step 8. We may assume L{Z is not a p1-group.
If L{Z is a p1-group, we see that G is p-solvable and K{C is a p1-group. Since

C Ď ZpKq, write K “ Cp ˆ Kp1 , where Kp1 is a normal p-complement of K. Write
Pν “ P XGν and X “ NGpPνq. By Step 6, H Ď X ă G. By Step 7, taking Y “ Pν

we have
Irrrelp1 pG|λH

q “

ď

θPΔ
Irrrelp1 pG|θq “

ď

θPΔ
IrrpG|θq,

where Δ “ ΔY and we are using that LPν “ LP and |G : LP | is a p1-number. Also
by Step 7, since Y “ Pν Ď X we have

Irrrelp1 pX|λH
q “

ď

θ1PΔ1

IrrpX|θ1
q ,
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where Δ1 “ Δ1
Y . Just note that pLY X Xqν “ KPν X NGν

pPνq “ NKpPνqPν “

DPν , where D “ CKp1 pPνq “ NKp1 pPνq. Hence Δ “ Irrp1 pKp1Pν |νHq and Δ1 “

Irrp1 pDPν |νHq. By Theorem 4.2, there is an H-equivariant bijection

f :
ď

θPΔ
IrrpG|θq Ñ

ď

θ1PΔ1

IrrpX|θ1
q .

By applying Step 3 we are done in this case.

Final step. By Step 5 and Step 8, we may assume that L{Z is a direct product
of non-abelian simple groups of order divisible by p isomorphic to some S. Since
K{C – L{Z and C Ď ZpKq by Step 2, we have C “ ZpKq. Let Q “ P X K P

SylppKq. Thus NGpP q Ď NGpQq. Furthermore, since K{C and Z{C are normal
subgroups of G{C with K X Z “ C, we have that Z normalizes CQ “ Cp1 ˆ Q.
Thus Z normalizes Q. (Note that NGpQq ă G because NKpQq ă K.) Hence
|NGpQq : Z| ă |G : Z|.

Since S satisfies the inductive Galois–McKay condition, by Corollary 3.4 there
exist an NGpQq-stable subgroup NKpQq Ď M ă K and an NGpQq ˆH-equivariant
bijection

Ω: Irrp1 pK|νHq Ñ Irrp1 pM |νHq

such that, for every θ P Irrp1 pK|νHq, there is a character-degree-ratio preserving
H-equivariant bijection

τ̂θ : IrrpG|θHq Ñ IrrpMNGpQq|ϕH
q ,

where ϕ “ Ωpθq. Write U “ MNGpQq and notice that H Ď U ă G and UXK “ M .
Moreover, τ̂θu “ τ̂θ and τ̂θσ “ τ̂θ for every θ P Irrp1 pKq, u P U and σ P H.

By Step 3, there is an H-equivariant bijection

Irrrelp1 pU |λH
q Ñ Irrrelp1 pH|λH

q .

Hence, we only need to construct an H-equivariant bijection

F : Irrrelp1 pG|λH
q Ñ Irrrelp1 pU |λH

q .

By Step 7 we have

Irrrelp1 pG|λH
q “

ď

θPΔ
Irrrelp1 pG|θq and Irrrelp1 pU |λH

q “
ď

θ1PΔ1

Irrrelp1 pU |θ1
q ,

where Δ “ Irrp1 pK|νHq and Δ1 “ Irrp1 pM |νHq. We can define F as follows. If
χ P Irrrelp1 pG|λHq, then χ P Irrrelp1 pG|θq for some θ P Irrp1 pK|νσq and σ P H. Such θ is
determined up to U -conjugacy. Define F pχq “ τ̂θpχq P IrrpU |ϕq, where ϕ “ Ωpθq P

Irrp1 pM |νσq. (This latter fact follows from the fact that χ and τ̂θpχq lie over the
same character of ZpKq “ C by the H-triples relations in Corollary 3.4.)

Now, F is well-defined since τ̂θ “ τ̂θu for every u P U . Suppose that χ, χ1 P

Irrrelp1 pG|λHq have the same image ξ under F . If θ, θ1 P IrrpKq lie under χ and χ1,
respectively, then they must be NGpQq-conjugate because Ω is NGpQq-equivariant
and Ωpθq and Ωpθ1q lie under ξ. Hence injectivity also follows from the fact that
τ̂θ “ τ̂θu for every u P U . F is clearly surjective, and the proof is finished. �

Theorem A follows from Theorem 4.4 by taking Z “ 1.
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