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ABSTRACT To achieve confidence in safety-critical systems, requires among others to meet high 

requirements on online testing of computer systems, as dictated by safety standards such as ISO26262, 

IEC61508, and CENELEC EN 5012X. Online testing can be performed through the periodic execution of 

online SW Test Libraries, which are widely used in safety-related applications as a valuable safety mechanism 

to protect against random HW faults. SW Test Libraries introduce a non-negligible overhead on system 

performance, exacerbated by the increasing complexity of HW devices. This contrasts with the efforts of 

researchers and system designers for developing efficient systems. Reducing this overhead is an important 

achievement. We propose here HUSTLE, a Hardware Unit for SW-Test Libraries Efficient execution, which 

can be integrated into the chip design with minimum modification to the CPU’s design. HUSTLE contains 

an Internal Memory, where the library code is stored, and sends instructions to the CPU, bypassing the 

Memory Subsystem. To further improve efficiency, we also propose a scheduling mechanism that allows to 

exploit the idle time of the CPU’s execution unit. To show the efficiency gain in supporting the test libraries 

execution, we ran some experiments, where a considerable reduction of the overall CPU load was observed. 

Finally, remarks regarding the limited impact on the area and power consumption are presented. 

INDEX TERMS Error Detection, Functional Testing, On-line Testing, Safety, SW-Test Libraries. 

I. INTRODUCTION 

Innovations in the field of Very Large-Scale Integration 

(VLSI) technologies and the advent of novel computing 

platforms have made the automation of complex tasks in 

constrained domains a reality [1]-[3]. The great potential of 

these innovations has led to an increasing interest in their 

adoption in many safety-critical application domains, such as 

the automotive, railway, and industry. These systems must 

fulfill the integrity requirements [4] set forth by standards 

developed by international committees, such as ISO[5], 

CENELEC[6], and IEC[7], with the aim of minimizing the 

risk of potentially catastrophic failures that damage human 

life and health. One of the main challenges in enabling the 

use of these technologies in safety-critical systems is the 

coexistence of three main characteristics: integrity, 

performance, and cost [8]-[10]. The lack of proper levels for 

one of these properties may lead to drawbacks that may 

prevent their adoption. Such challenges become more 

complex in situations in which a reduction in engineering 

costs and time-to-market is required. In such cases, valuable 

solutions must offer appropriate fault protection and 

mitigation mechanisms. Further, such mechanisms are 

required to be flexible and do not require heavy modification 

of the original design or excessively penalize its performance 

when applied in different contexts. 

 

It is a general requirement from functional safety 

standards  [5]-[7] to enrich the design of an embedded system 

with mechanisms (HW or SW or HW/SW) aiming to detect 

faults of the HW platform to improve its safe usage. 

  

Fault-tolerance mechanisms can be based on both 

hardware (HW) and software (SW), each providing different 

levels of protection and targeting different failure modes [9] 

-[15]. HW-based techniques are faster but require either 

modifications to the original design or higher cost due to 

replication [14], [15], whereas SW-based techniques have no 

impact on HW cost but incur overheads that significantly 

reduce performance [12], [13], [16], [17]. 

  

Many SW-based mechanisms and mitigations have been 

proposed in the literature [8]-[13], [16], [17], such as 

defensive programming techniques, SW diversity, and 

purposely designed test routines. 
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In this context, SW-Test Libraries (STLs) are widely 

considered an effective mechanism to protect against 

permanent random HW faults [11], [16], [18]-[22]. STLs are 

sets of test routines providing high fault coverage and 

allowing compliance with well-established functional safety 

standards [23], [24]. 

 

To achieve high fault coverage, as required by the safety 

standards [5]-[7], STLs need to be scheduled with high 

frequency and this can negatively impact the performance of 

the embedded SW up to the extreme case to violate its timing 

constraints, then leading to a critical safety issue.  

 

The solution proposed in this work is then introduced to 

counterbalance this problem enabling the proper usage of 

STLs on safety applications which require high computing 

resources, and, therefore, have an higher number of HW 

resources to be tested [17], [25]. This is the typical case of 

many SoCs used in ML applications for automotive where 

the embedded application cores (for example cluster of 

superscalar processors) are required to provide very high 

performance. This implies mainly two aspects: 1) the cores 

are not configured in lock-step mode not to lose computing 

resources and 2) an STL solution is then necessary to enable 

fault detection on the processors, then leading to the above 

challenge addressed in this paper. 

 

Our proposal is called HUSTLE, a Hardware Unit for STL 

Efficient execution. It allows to i) host STL code in its 

internal memory and ii) provide STL instructions to the core 

without accessing the Memory Subsystem (MS). This way 

HUSTLE allows a reduction of the overhead imposed by the 

execution of the STL. Besides the basic mechanism, an 

additional benefit is brought by a mechanism that exploits 

architectural signals to detect the CPU execution unit’s (from 

now on CPU for brevity) idle time and use this time to 

efficiently execute STL instructions.  

This study provides a detailed description of the 

implementation of HUSTLE (extending preliminary 

concepts [26]) and offers an extended experimental 

campaign that accounts for the impact on the device area and 

its power consumption. 

The remainder of this paper is organized as follows. 

Section II provides the background, Section III describes the 

implementation of HUSTLE, Section IV presents the details 

of the experimental campaign, Section V discusses the 

results, Section VI provides a post-synthesis evaluation of 

the impact on device area and power consumption, and 

Section VII reviews the related works found in the literature. 

Finally, Section VIII concludes this paper. 

II. BACKGROUND 

Safety-critical systems must achieve stringent 

dependability and integrity requirements, imposing 

constraints on their design from both hardware and software 

viewpoints.  

To maintain the target integrity level, it is necessary to 

implement protection techniques such as STLs, which must 

run periodically to monitor the integrity of the system. The 

execution of STL must interleave with the execution of the 

functional code (payload).  

 

To determine the execution period of an STL the system 

designer has to know the required Fault Tolerant Time 

Interval (FTTI) defined as the “minimum time span from the 

occurrence of a fault in an item to a possible occurrence of a 

hazardous event, if the safety mechanisms are not activated” 

[5]. Knowing the FTTI, the system designer must define the 

STL execution period such that faults are detected and 

handled in a time interval lower than the FTTI. This time 

interval is also called the Fault Handling Time Interval 

(FHTI), and is composed of two parts: the time necessary to 

detect a fault, that is, the Fault Detection Time Interval 

(FDTI), and the time necessary to react to the occurrence of 

a fault, that is, the Fault Reaction Time Interval (FRTI). In 

Fig. 1 illustrates a schematic view of these quantities in 

relation to the STL scheduling period.  

 
 

This continuous interleaving between the payload SW and 

STL causes a non-negligible overhead, thereby reducing the 

system performance. To offer a simple example, suppose 

that there are two tasks: payload taskA, which requires tA time 

units to complete, and STL taskSTL, which requires tSTL time 

units to complete. To guarantee the correctness of the 

system, taskSTL must be run before each execution of taskA. 

To precisely define and characterize the overhead incurred 

in this execution, we assume that interrupts to be disabled as 

serving an interruption cannot be classified as overheads. 

Under this assumption, the total time required for one 

complete execution of the task set is te = tA + tSTL + to, where 

to is the time spent by the hardware to handle asynchronous 

events such as cache misses and mispredictions.  

 

In the computation of to we consider the effects of many 

HW events, such as mispredictions, pipeline stalls, and cache 

misses, which can impact the execution time of the task set. 

The overhead introduced by the system scheduler to handle 

the execution of multiple tasks is not included in to but is 

considered part of tA and tSTL.  

 
Fig. 1 Schematic representation of the FTTI on the upper, and of 

the FHTI, decomposed in FDTI and FRTI in the lower part of the 

figure.  
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Fig. 2 shows an example of a typical system run. In the ideal 

case, to = 0 as shown in the upper part of Fig. 2. However, in 

a real execution, owing to asynchronous events such as cache 

misses or branch mispredictions, there are times in which the 

CPU is idle, as can be seen from the lower part of Fig. 2. 

 

In reality to > 0. In fact, CPUs are likely to be idle, waiting 

for instructions from the memory subsystem, for example, 

because of instruction cache misses. The amount of overhead 

introduced by each cache miss is variable and depends on the 

location of the instructions in the memory hierarchy. 

 
Taking as a reference system the one depicted in Fig. 3, 

the instruction may be located in the L1 instruction cache, L2 

cache, or main memory. The higher the level of the hierarchy 

that needs to be traversed, the larger the amount of time 

required to retrieve the instruction. Moreover, some 

resources are shared between the components of the system; 

for example, when two cores need to access the L2 cache at 

the same instant, they must compete to communicate with 

the L2 cache. Consequently, the overhead for retrieving the 

instruction increases. 

 
The problem of retrieving instructions from lower levels 

of the memory hierarchy arises both for payload and STL 

execution. In this study, we attempted to eliminate or reduce 

to. This was performed in two steps. First, we provide a 

solution to ensure that no overhead is incurred while 

executing the STL. Then, we attempt to reduce the portion 

of overhead incurred during payload execution.  

III. HUSTLE 

In this Section, we provide a detailed description of how 

the problem of the overhead on execution due to retrieving 

instructions from the memory hierarchy has been addressed 

by leveraging HUSTLE. In Section III.A, we address the 

problem of reducing the overhead incurred during the 

execution of STL code. In Section III.B, we provide a 

description of an enhancement that enables HUSTLE to 

automatically handle the scheduling of STL tests. In Section 

III.C, we describe how, by exploiting an efficient scheduling 

mechanism and architectural enhancements to the basic 

architecture, we can also reduce the overhead experienced 

during payload execution. 

 

We followed two design principles for HUSTLE, which 

can be summarized by the following requirements: 

1) The solution provided shall not modify the internal 

structure of the CPU 

2) The solution provided shall not impose constraints on 

the STL implementation. 

These two design principles allowed us to have the 

minimum possible impact on the device area with a low 

effort for the integration of HUSTLE in different HW 

architectures, while allowing it to be used with different STL 

implementations. 

A. HUSTLE BASIC ARCHITECTURE 

To avoid cache misses during STL execution, we propose 

the architecture described in Fig. 4. 

HUSTLE was placed between the CPU and the Memory 

Subsystem (MS). Internally, it has an Internal Memory (IM) 

and a ByPass Logic (BPL). The IM is used to store STL 

instructions, whereas the BPL orchestrates the 

communication between three elements: the CPU, which 

requests instructions from the memory; the MS, which 

handles requests from the CPU for functional code; and 

HUSTLE’s IM, which handles requests related to STL code. 

The BPL is completely transparent to the core because it acts 

as a simple switch that does not introduce any delay in 

communication between the CPU and MS. 

 

 

 
Fig. 2 Scheduling of the two tasks. The white area represents the 

execution of taskA, dotted area represents taskSTL, while the black 

area the overhead due to hardware-specific events.  

 
Fig. 3 Block Diagram representing a generic system composed by 

N CPUs, with private instruction and data L1 caches. A shared L2 

Cache, a main memory and DMA devices.  
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This implementation provides a fast and independent 

channel to send STL code to the core as it relieves the 

Memory Subsystem (MS) from handling STL instructions, 

as depicted in Fig. 5, and fulfills our requirements because it 

is placed outside the core and does not impose any constraint 

on the design of the STL code. 

Indeed, since the proposed architecture is intended to be 

used in Safety Critical systems, it is fundamental to consider 

potential hazards impacting on systems’ security introduced 

by HUSTLE. Surely, if an attacker were able to access the 

IM, and manipulate its content arbitrarily, this would cause 

severe security threats. Fortunately, traditional solutions for 

tackling this kind of issue are applicable to HUSTLE, since 

it is not different from any other memory area of the system. 

Thus, one option to secure the IM could be leveraging the 

CPU memory protection unit, marking this area as non-

writeable. Moreover, in high-criticality applications, another 

solution is to implement the IM as a ROM memory, which 

cannot be programmed at runtime. Finally considering also 

the possibility that an attacker can gain physical access to the 

system, and compromise the IM by breaking the boot process 

and ROM programming procedure, additional mechanisms 

to authenticate the content of the IM, based for instance on 

Hashed Message Authentication Codes (HMAC) can be 

implemented in the HUSTLE logic, hardcoding a secure key 

within it, making unfeasible for an attacker to arbitrarily 

modify the content of HUSTLE IM. 

 

 
To describe the behavior of HUSTLE during system 

operation, a Finite State Machine (FSM), represented in Fig. 

6 is provided. It can be observed that it is composed of three 

states: 

 

OFF: In this state, HUSTLE is disabled, and the BPL is 

completely transparent: the request and response signals 

between the CPU and MS pass unmodified through 

HUSTLE. 

 

IDLE: In this state, HUSTLE forwards requests and 

responses related to the functional code from the CPU to the 

MS and vice versa. (this state corresponds to the execution 

of the payload code) 

 

OPERATIONAL: In this state, the BPL handles requests 

and responses related to non-functional code from the CPU 

to the IM and vice versa. (this state corresponds to the 

execution of the STL code) 

 

 
 

This automaton has 2 input signals to drive transitions: 

 

enable: If enable is asserted HUSTLE goes into the IDLE 

state becoming active.  

is_stl_code: If the is_stl_code signal is asserted when 

HUSTLE is in the IDLE state, HUSTLE transitions into the 

OPERATIONAL state. The BPL generates this signal by 

checking the address of the instructions requested by the core 

during the execution. In this basic architecture, in order to be 

able to periodically execute the STL, the system designer 

must allocate an HW timer or rely on the system scheduler. 

Very often, in order to meet the system scheduling 

constraints (on the payload SW), the STL cannot be executed 

all at once, but the execution needs to be split into several 

parts.  Moreover, some of the tests included in an STL cannot 

be interrupted, therefore careful scheduling of the STL 

‘pieces’ has to be defined. Having defined such system-level 

scheduling, HUSTLE's role is to respond to CPU requests for 

the STL code whenever the scheduler decides to execute 

parts of the STL. We refer to this method of using HUSTLE 

as Passive mode. 

B. HUSTLE’S ENHANCED ARCHITECTURE 

HUSTLE allows also a completely different system 

organization: while in Passive mode the system and the 

scheduler have visibility of Payload tasks and of the STL task 

(which resides in the HUSTLE memory) a new ‘Active 

 

 
Fig. 4 HUSTLE’s Block schema 

 
Fig. 5 Comparison of two executions: one without HUSTLE in the 

upper and one with HUSTLE in the lower part of the figure. 

 

 
Fig. 6 Finite State Machine showing the states and the 

transitions of HUSTLE module. The arrows are labeled with 

signals that enable the firing the state transitions.  
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mode’ is possible whereby the entire management and 

scheduling of the STL is performed within HUSTLE and the 

system becomes unaware of the existence of an STL. In this 

mode, HUSTLE manages the scheduling of STL pieces by 

issuing interrupt requests to the CPU. This is achieved, as 

shown in Fig. 7, by adding two further elements: Interrupt 

Generation Logic (IGL) and Test Scheduling Logic (TSL).  

 

 
 

The Interrupt Generation Logic (IGL), which features an 

internal timer, needs to be configured by the system designer 

in accordance with the required execution period of the STL. 

The Test Scheduling Logic (TSL) is designed and 

implemented to automatically handle the selection of the 

next STL fragment to execute. In particular, when the IGL 

timer expires, the IGL generates an interrupt request 

asserting a dedicated signal that is routed to the CPU 

interrupt controller (IRQ). When the core handles the 

interrupt request and jumps to the STL code, HUSTLE 

provides instructions to the CPU and the BPL asks the TSL 

the address of the next portion of the STL to run. When using 

this execution mode, the system designer only needs to 

provide an Interrupt Service Routine (ISR) to handle the 

interrupt generated by HUSTLE and jump to the entry point 

of the STL, then HUSTLE will then automatically handle the 

execution, providing the core with the appropriate 

instructions.  

Thus, with this enhanced architecture, we have made the 

execution of STL almost transparent to the rest of the system, 

providing a mechanism that autonomously handles its 

execution.  

We want to highlight that when using the Active 

configuration, it is important to carefully handle interrupt 

generation and prioritization to maintain the schedulability 

of the task set. In the presence of such interrupts, tasks can 

be considered aperiodic by the scheduler. However, 

consolidated solutions exist in the state-of-the-art for the 

scheduling of aperiodic tasks [27]-[29] hence, we argue that 

it is feasible to schedule a payload task set given that a proper 

analysis is performed. In this study, we did not elaborate on 

such aspects further. 

 

C. HUSTLE EFFICIENT SCHEDULING  

The HUSTLE’s enhanced architecture allows to alleviate 

the overhead due to cache misses or memory access during 

the execution of the payload SW by keeping the CPU busy 

executing some carefully selected fragments of the STL code 

during the time the CPU would otherwise wait for payload 

instructions to be retrieved from the MS. If we can provide 

STL instructions to the CPU sufficiently fast, without 

interfering with the MS, while retrieving the payload 

instructions, we can optimize the usage of the CPU. Consider 

the situation represented in Fig. 8, where a cache miss occurs 

during the execution of taskA. The CPU handles the cache 

miss, leaving the core idle for some time and incrementing 

the overall execution time. By exploiting this time executing 

a portion of the STL, we can avoid this overhead. 

 
To enable this mechanism, we routed the cache miss 

signal to HUSTLE’s IGL, slightly modifying the IGL to 

generate an interrupt request when a cache miss occurs. 

This improved HUSTLE architecture generates interrupts 

according to two different modes:  

Periodic: The interrupt is generated periodically by using 

the internal timer.  

Cache Miss Driven: The interrupt is generated in 

correspondence of a cache miss.  

 

It is important to note that a possible issue that may arise 

when using this mechanism is the unpredictable length of the 

cache miss resolution time. Indeed, cache misses require a 

different amount of time to be resolved depending on the 

miss occurring in the L1 or L2 cache. This may impact the 

benefits provided by this scheduling mechanism. STL 

fragments longer than the cache miss resolution time would 

allow the processor to be kept busy all the time, whereas STL 

fragments that are shorter than the cache miss resolution time 

imply some idle cycle for the processor, but would leave the 

execution time of the payload untouched.  

 

Indeed, in an application when most cache misses happen 

in the high-level cache our mechanism offers partial benefits, 

However, considering complex payload SW that cannot 

 
Fig. 7 Enhanced HUSTLE Architecture, the Test Selection Logic 

(TSL) is connected to the BPL. The IGL generates interrupt 

requests to the CPU with an IRQ signal. 

 

 

 
Fig. 8 Comparison of the execution with the HUSTLE enhanced 

architecture, upper, and HUSTLE efficient scheduling, lower part of 

the figure. 
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entirely fit into the cache memory, it is not rare that the code 

needs to be retrieved directly from the DRAM, causing 

relatively long idle times due to misses in the last level of 

cache. 

 

In the experimental campaign described in Section IV, we 

demonstrated that it is possible to execute relevant portions 

of the STL code without impairing the payload response 

time. 

D. HUSTLE INTEGRATION 

To validate HUSTLE, its enhanced architecture, and its 

mechanism to efficiently exploit the idle time of the CPU to 

execute STL instructions, we integrated our solution into a 

complete System on Chip (SoC). We selected the Rocket 

Chip[30], made available by the Chipyard framework [31]. 

The framework provides facilities for building a 

customizable SoC, including the possibility of choosing 

between different RISC-V [32] CPUs architectures. In this 

work, we selected as the target CPU architecture the Berkley 

Out-of-Order Machine (BOOM) Core [33]-[35] a 

superscalar, highly configurable out-of-order application-

level CPU.  

 

HUSTLE was placed between the BoomCore and the L1 

Instruction Cache, as shown in Fig. 9. The IM size was 

configured to 32KB which was enough to host the STLs used 

in our experimental campaign. 

 

We selected the SmallBOOM implementation of 

BoomCore, a single pipelined core, TABLE I reports some 

of the main parameters of this implementation. 

 

To configure the behavior of HUSTLE at runtime, such as 

enabling or disabling the module, selecting the execution 

mode, and other functionalities described hereafter, we 

added some Control and Status Registers (CSR) to the core: 

 

HUSTLE_CTRL: Provides basic control functionalities, 

such as enable/disable, execution mode selection, and 

interrupt generation configuration selection. 

 

HUSTLE_BASE_ADDRESS: Used to set the address of the 

entry point of the STL. 

 

HUSTLE_TEST_PERIOD: Used to set the period in clock 

cycles for the execution of STL fragments when HUSTLE is 

used in Active mode with the Periodic interrupt generation 

configuration. 

 

 
 

The addition of these CSRs slightly increased the size of 

the register file. However, this simple solution is not the only 

possible solution; other solutions exist, such as memory-

mapped registers, which are less intrusive in core design. The 

rationale behind this design choice is dictated exclusively by 

the simplicity of its implementation within the Chipyard 

Framework.  

 

 
 

IV. EXPERIMENTAL CAMPAIGN 

In this section, we list the technical details of our 

experimental campaign.  In our experimental campaign, the 

aim was to assess the performance benefit obtained using 

HUSTLE by comparing a solution without HUSTLE with 

one with it (in both Periodic and Cache Miss-Driven 

Scheduling). We performed such an evaluation on the target 

architectures described in Section IV.A while executing the 

test suite described in Section IV.B. Section IV.C describes 

the experimental setup. Finally, the evaluation metrics are 

defined in Section IV.D. 

  
Fig. 9 Rocket Chip Architecture used in the experimental campaign. 

The HUSTLE module is integrated between the BOOMCore and the 

L1 ICache. A system bus is used to connect the L2 Cache and the 

Core. The L2 Cache is connected to the Main Memory using a 

Memory Bus. 

 

 

TABLE I  
BOOM CORE CONFIGURATION 

Core width 1 

Fetch width (Bytes) 8 

ICache size (KB) 16 

DCache size (KB) 16 

L2 Cache size (KB) 128 

Boom Core Configuration Parameters. In this table only a restricted 
set of parameters is reported. The complete list of parameters can be 

found in [35] 
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A. TARGET SYSTEM ARCHITECTURE 

The experimental campaign was executed using three 

different configurations of the system architecture. These 

three architectures were chosen to allow us to observe the 

effect that an increase in the cache miss resolution time may 

have on the execution, and how this impacts the benefits 

provided by HUSTLE. To this extent, we modified the 

configuration of the rocket-chip to introduce interference at 

two different points of the MS, the L2 Cache, and the Main 

Memory. 

 

The first architecture was a single-core architecture, from 

now on, SingleCore. In this architecture, the core is the only 

device that sends requests to the MS. 

  

The second architecture has two identical CPUs, we will 

refer to this architecture in the next sections as DualCore.  Its 

purpose is to allow the investigation of the effect that the 

contention may have in systems with an MS shared between 

multiple users, such as, CPUs and DMA devices. This 

architecture allows observation of the effect of contention on 

the L2 Cache caused by the simultaneous requests of the two 

cores to the MS. 

 

Finally, the third architecture has a slower Main Memory. 

To this extent, we reduced the MemoryBus frequency from 

1000 to 500 MHz. We refer to this architecture as the 

SlowMem architecture. 

 

 TABLE II reports the details of the three configurations used 

in the experimental campaign. 

 

 

B. TARGET SOFTWARE 

The SW stack used for the execution of the tests is 

composed of: 

• A payload SW, composed of three tasks, namely 

taskA, taskB, and taskC, and an idle task. The idle 

task is executed after the three tasks when the 

core waits for the expiration of the scheduling 

period.  

The three tasks execute the same code; however, 

the code of each task was placed in a different 

memory region. The SW executed by the three 

tasks is an enhanced version of the fillCache SW 

used in [26], which was enhanced to fill the L2 

Cache.  

It executes a sequence of heterogeneous 

instructions, such as arithmetic operations 

(integer and floating-point), and memory 

accesses. These instructions are sequentially 

placed in memory. The fillCache SW allows the 

MS to be stressed, generating a large number of 

cache misses, both in the L1 Instruction Cache 

and L2 Cache. This was chosen to reproduce a 

worst-case execution scenario for application 

cores.   

• A minimal OS, composed of a boot sequence that 

performs startup operations and initialization of 

the rocket chip, a set of routines used to configure 

HUSTLE and handle interrupt requests, and a 

cyclic executive scheduler that executes a fixed 

number of iterations. The number of iterations is 

configurable at compilation time. 

• Three different STL implementations. Each STL 

is composed of several STL fragments, 

implemented in assembly code, that stimulate 

different modules of the CPU. STL fragments are 

sets of test routines executed sequentially. The 

STL is provided with a scheduling API 

implemented in C to allow the user to select and 

execute the desired STL fragment. The three 

STLs contain the same test routines but differ in 

how they are grouped within different STL 

fragments. 

C. SETTING OF THE EXPERIMENTS 

Hereafter, we provide a detailed description of the settings 

used in the experimental campaign. The experiments were 

performed first to understand how many STL instructions 

can be executed while a cache miss is resolved and then to 

compare the overhead reduction observed for the three 

reference architectures. 

 

To understand how many STL instructions can be 

executed while a cache miss is resolved, we use the HUSTLE 

configuration driven by cache misses, as described in Section 

III.C. We focus on a specific cache miss and then vary the 

size of the executed STL fragment. This phase of the 

experimental campaign was performed only on the 

SingleCore architecture, as the validity of the results can be 

easily extended to other architectures. 

 

We executed the three tasks by measuring the time 

necessary to resolve each cache miss that occurred. The 

Cache Miss Resolution time is computed as the difference 

between the time when the cache miss occurs and the time 

when the L1 cache makes the instruction available to the 

Instruction Fetch Unit of the CPU. We then select a cache 

miss that requires a sufficiently long time to be resolved. We 

then exploit HUSTLE: when the selected cache miss occurs, 

TABLE II  
ROCKET-CHIP ARCHITECTURES 

 Architecture 

  SingleCore DualCore SlowMem 

CPU Frequency 1.6 GHz 1.6 GHz 1.6 GHz 

Number of CPUs 1 2 1 

MemoryBus Frequency 1000MHz 1000MHz 500MHz 
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we issue an interrupt request to inject a sequence of 

instructions during the cache miss resolution time. 

 

In particular, we selected the 88th cache miss with a 

resolution time of 320 cycles and repeated the test with an 

increasing number of instructions, from 50 to 300 in steps of 

50, measuring 1) the number of additional instructions 

executed and 2) the number of additional clock cycles 

necessary to complete the execution.  The parameter settings 

for these experiments are reported in TABLE III. 

 

 
In the main experiment, we evaluated different combinations 

of HUSTLE configurations by executing the test SW suite 

described in Section IV.B on the different HW architectures 

presented in Section IV.A. The test performed in this phase 

aimed to evaluate the HUSTLE execution modes for the STL 

described in Section III. Before entering into the details of 

the setting of the experiments, we need to define two 

fundamental parameters: the Safety Period and the STL 

Scheduling Mode. 

 

Safety Period (SP): SP denotes the STL scheduling period. 

To evaluate the impact of this parameter, we selected two 

SP: 10ms, and 1ms.  Recall that SP is not a free parameter 

that can be chosen arbitrarily but needs to be derived through 

an accurate safety analysis and is strongly application 

dependent. Here, the SP values were selected considering the 

reasonable application requirements for state-of-the-art 

automotive applications. 

 

Note that SP is the time interval in which the STL must be 

entirely executed to guarantee its nominal protection level. 

The fragments composing the STL can then be executed all 

at once in a single invocation or split into many parts whose 

execution is spread throughout the SP. 

 

STL Scheduling Mode (SM):  To explore the different 

possibilities enabled by HUSTLE to schedule STL, we chose 

the following scheduling modes:  

• Standard (STD): the STL is executed 

periodically, without using HUSTLE.  

• HUSTLE_Periodic (HP): HUSTLE is in Active 

execution mode, in Periodic Configuration, and  

• HUSTLE_Cache_Miss_Driven (HCM): HUSTLE 

is in Active execution mode in the Cache-Miss-

Driven configuration. 

 

Note that in STD, the C API provided by the STL is used 

for the selection of STL Tests to execute, whereas in HP and 

HCM this is accomplished by HUSTLE’s TSL. 

 

TABLE IV reports the parameter settings for this phase of 

the experimental campaign. Note that in the DualCore 

configuration, the first core executes the payload SW, 

whereas the second one executes a workload composed of a 

single task which perform continuously read operations, to 

ensure that L2 cache interference between the two cores is 

properly activated. 

 

Finally, we provide a comparison of HUSTLE with an 

alternative approach, that is using a larger instruction cache. 

In this experiment we modified the SingleCore architecture, 

by removing HUSTLE and increasing the IC size to 32KB 

and 64KB. 

 

The experiments were executed with an RTL simulator of 

the Rocket Chip. Each simulation lasts for 10ms of simulated 

time, after which a timeout expired and stopped the 

simulation. The configuration of the SoC is the default 

configuration provided in the Chipyard Framework. 

Synopsys VCS was used to compile the RTL. 

 

 

D. EVALUATION METRICS 

HUSTLE was evaluated by executing a test suite and 

observing how CPU utilization was affected by the usage of 

different execution modes in different execution scenarios. 

The results obtained from these experiments were compared 

with an execution with standard STL scheduling (without 

HUSTLE).  

 

Hereafter, we report the definition of the metrics used 

during our experimental campaign: 

 

Response Time Increase (∆RT): This metric is used in the 

TABLE III  

PARAMETERS SETTINGS FOR THE FIRST PHASE OF EXPERIMENTAL 

CAMPAIGN  

Average number of Instructions Per Task 

Execution 

2584 

Selected cache miss resolution time 320 clock 
cycles 

Number of STL instructions injected [50, 300] 

Step of 50 

 

TABLE IV  

MAIN EXPERIMENT PARAMETERS SETTINGS 

Payload Scheduling Period 0.043ms 

Average number of Instructions Per Task 
Execution 2584 

Safety Period 

1ms, 

10ms 

STL Fragment Size (number of instructions) 

STL_1: 850, 

STL_2: 85, 

STL_3: 50 

Number of STL Fragments 

STL_1: 40 

STL_2: 400 
STL_3: 680 

C API Size (average number of Instructions) 1614 
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first phase of the experimental campaign and is computed as 

the difference between the time t necessary to execute the 

workload, and time spent to execute the same workload plus 

the STL code (tSTL). Thus ∆RT = tSTL - t. 

 

CPU Load (U): This metric is used in the main 

experiment, and it is computed as the time t spent by the CPU 

in executing its workload, that is, the task set, OS, and STL, 

divided by the total execution time tTOT. Thus U = t/tTOT. 

V. RESULTS 

In this section, we discuss the results of our experimental 

campaign.   

A. STL EXECUTION DURING A CACHE MISS 

The results obtained are reported in Fig. 10 and highlight 

that if a cache miss takes enough time to be resolved, a 

considerable number of instructions can be executed while 

the core is waiting for instruction retrieval from the main 

memory.  The figure shows that, in a cache miss resolution 

time of 320 clock cycles, a stream of up to 200 instructions 

can be injected and executed without any increase in the 

response time.  

 
 

Consider that 20 instructions are needed by the ISR to 

handle the interrupt request, and additional clock cycles are 

wasted because of the pipeline flush that occurs when an 

interrupt request is served and after the return from the ISR. 

However, a large part of the cache miss resolution time can 

be profitably used for the STL code. This is a remarkable 

result showing that exploiting HUSTLE cache miss-driven 

configuration allows the execution of significant fragments 

of the STL code without any increase in the response time of 

the payload SW. 

B. MAIN EXPERIMENT 

The main experimental campaign has the objective of 

observing the impact on the CPU Load of using different 

Scheduling Modes provided by HUSTLE in combination 

with different Safety Periods, comparing the results with an 

execution without HUSTLE. 

 

SingleCore 

The results of the simulation campaign for the SingleCore 

architecture are reported in TABLE V. We can see that the 

CPU Load (U) always decreases when HUSTLE is used, this 

is expected since, when using HUSTLE, the overhead of the 

C API is removed and the STL Test scheduling does not 

require additional instructions, since it is accomplished 

automatically by HUSTLE. Moreover, instruction retrieval 

from HUSTLE’s Internal Memory does not suffer from 

cache misses. We can see that by changing the SP, the CPU 

Load increases significantly when using the STD scheduling 

mode. Additionally, increasing the FS may lead to the 

impossibility of scheduling the task set together with the 

STL. Conversely, this problem never arises when HUSTLE 

is enabled. 

 

With a 1ms SP, the STD scheduling strategy can still be 

used with the default configuration, but does not support a 

reduced Fragment Size. HUSTLE allows to save more than 

4% of the CPU Load in the default fragment size and allows 

to run easily shorter fragments. The lowest values of CPU 

load are concentrated in the row corresponding to the HCM 

scheduling mode. 

 

Note that when the Fragment Size decreases, the CPU load 

increases in the STD and HP scheduling modes, whereas it 

remains essentially constant in the HCM scheduling mode; in 

particular, with a 1ms SP and a Fragment Size of 50 

instructions, a decrease in CPU Load is observed. This is 

expected because smaller Fragments of the STL are more 

likely to fit the execution during the time span when payload 

instructions are fetched from the MS. 

 

Because we do not perform any selection of the cache 

misses, some overhead is expected owing to some cache 

misses with a fast resolution time (observed in the order of 

20 clock cycles for L1 cache misses that hit L2 cache). 

 
 

 

 
Fig. 10 Results of the first phase of the experimental campaign, 

the line represents the response time increase varying the number 

of STL instructions injected. 
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TABLE V 
CPU LOAD (U) ON SINGLECORE ARCHITECTURE 

Baseline 

85.67% 

SP 10ms 1ms 

Fragment 

Size 850 85 50 850 85 50 

STD 86.35% 90.39% 93.44% 92.33% OL OL 

HP 85.87% 86.18% 86.36% 88.26% 90.58% 92.13% 

HCM 85.89% 85.89% 85.92% 88.01% 88.02% 87.90% 

Measurements of CPU load (U) from the test campaign performed on 

the SingleCore architecture, OL means, OverLoad, i.e., the CPU load 
is above 100%. 
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DualCore 

The results of the simulation for the DualCore architecture 

are presented in TABLE VI. We can notice that the 

contention on the L2 Cache, caused by the addition of one 

core, brings a substantial degradation of the system 

performance, which can already be observed in the baseline 

execution, where an increase in the CPU load of 5.69% is 

observed. Nevertheless, the results of the experiments were 

consistent with those observed in the previous case. Only the 

contention on the L2 Cache experienced in this architecture 

results in one additional case in which the CPU is 

overloaded. 

 
Moreover, focusing on the results for an SP of 10ms, in the 

experiment with a Fragment Size of 850 instructions, the 

HCM configuration showed slightly worse results than the HP 

configuration. Analyzing the simulation results, we found 

that this fluctuation is due to the effects of L2 cache 

contention, causing an increase in the execution time, mostly 

concentrated on OS routines; however, the CPU load is still 

lower than in the STD scheduling mode. With SP of 1ms the 

HCM shows a decreasing CPU load for a smaller fragment 

size. 

 
SlowMem 

The results of the simulation for the SlowMem architecture 

are presented in TABLE VII. In this architecture, the 

performance degradation was the most significant of the 

experimental campaign. The number of cases where CPU 

overload occurred increased to 7 out of 18. Here, we can 

observe that when the SP is 1ms, standard scheduling always 

fails, whereas when using HUSTLE, we are still able to 

maintain some margin.  

 
In this architecture, the HCM configuration shows a 

decreasing CPU load at a lower fragment size for both the SP 

cases. This may depend on the fact that, in this configuration, 

cache misses take, on average, more time to be resolved. This 

allows to fit in this time larger portions of the STL fragment 

execution. In  Fig. 11, the average cache miss resolution time 

is reported for the three architectures. This was measured on 

the baseline execution, that is, that with only the payload SW 

in execution.  

 

Consistently with the experiments performed when the 

cache miss resolution time is higher, HUSTLE with cache 

miss-driven scheduling combined with a small STL 

Fragment Size is more beneficial. 

 

C. COMPARISON WITH LARGER CACHE SIZE 

An additional study compares HUSTLE with different 

CPU implementations with an increased L1 instruction cache 

size (32KB and 64KB). This is done to consider the potential 

benefit of using the resources of the HUSTLE internal 

memory to increase the L1 cache size instead of having it as 

part of additional HW adopted for HUSTLE. In this context 

TABLE VI 

CPU LOAD (U) ON DUALCORE ARCHITECTURE 

Baseline 
91.36% 

SP 10ms 1ms 

Fragment 
Size 850 85 50 850 85 50 

STD 92.08% 96.05% 99.15% 98.00% OL OL 

HP 91.56% 91.90% 92.10% 94.04% 96.31% OL 

HCM 91.63% 91.65% 91.74% 93.63% 93.52% 93.47% 

Measurements of CPU load (U) from the test campaign performed on the 

DualCore architecture, OL means, OverLoad, i.e., the CPU load is 

above 100%. 

 

TABLE VII 

CPU LOAD (U) ON SLOWMEM ARCHITECTURE 

 

Baseline 

96.19% 

SP 10ms 1ms 

Fragment 
Size 850 85 50 850 85 50 

STD 96.94% OL OL OL OL OL 

HP 96.43% 96.64% 96.93% 98.76% OL OL 

HCM  96.44% 96.34% 96.33% 98.44% 98.12% 97.71% 

Measurements of CPU load (U) from the test campaign performed on 

the SlowMem architecture, OL means, OverLoad, i.e., the CPU load is 

above 100%. 

 
Fig. 11 Average cache miss resolution time in the different 

architectures.  
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we executed the STL with the STD scheduling mode. The 

results of the experiments are reported in TABLE VIII. As 

can be noted. Increasing the IC size reduces the baseline 

execution time. However, this HW configuration performs 

better than HUSTLE just in one experiment, the one with 

largest cache (64KB), and FS of 850 instructions. This 

happens because of a reduction of the baseline execution 

time. However, when reducing the FS or decreasing the SP, 

HUSTLE performs better in every other experiment. This is 

expected since, differently from cache memory, the IM 

provides an independent channel, which hosts the STL code 

without replacing it. 

 

VI. POST-SYNTHESYS ASSESSMENT 

 

In addition to evaluating the performance benefits of 

HUSTLE through the experimental campaign described 

above, we also evaluated its impact in terms of overhead on 

the chip area and power consumption.  

 

To assess the overhead on HW area, we synthesized the two 

variants of the Small CPU implementation, with and without 

HUSTLE, on FPGA using Xilinx Vivado 2022.2. The target 

device selected is the UltraScale+ MPSoC, in particular the 

xczu7ev device. The selected target clock frequency is 

100MHz.  

 

The overhead on power consumption was evaluated using 

vector-less power analysis, by varying the input toggle rates. 

The analysis was performed using the Power Report tool, 

integrated into Xilinx Vivado 2022.2. The measurements of 

power consumption are taken in four different situations: 1) 

when the CPU is not equipped with HUSTLE, 2) when the 

CPU is equipped with HUSTLE and the module is in OFF 

state, 3) when the CPU is equipped with HUSTLE and the 

module is in  IDLE state, and 4) when the CPU is equipped 

with HUSTLE and the module is in OPERATIONAL state, 

by setting the signals shown in Fig. 6 accordingly. 

 

The metrics used for this post-synthesis evaluation are as 

follows: 

 

Resource Usage (RU): The Resource Usage (RU) is 

computed as the percentage of HW resources available in the 

FPGA that have been used to synthesize the chip. 

 

Power Overhead (PO): The Power Overhead (PO) is 

computed as the overhead due to the addition of HUSTLE 

on the power consumption of the synthesized chip. We 

define P as the power consumption of the chip without 

HUSTLE, and Ph as the Power consumption of the chip 

implementation integrating HUSTLE; thus, PO = 1 - (P / Ph). 

A. HW RESOURCE USAGE 

By analyzing the synthesis results, we found that the 

relative increase in BoomTile’s resource usage owing to the 

integration of the HUSTLE mechanism was relatively low, 

as shown in Fig. 12. Indeed, the HUSTLE module increases 

the number of LUTs and FF by less than 1%, whereas DSP 

and LUTRAM have not increased. The highest increase is of 

2.5% in the BRAMs usage, which rises from 3.53% to 6%. 

This is expected since the HUSTLE module is equipped with 

an internal memory of 32KB, and the L1 instruction and data 

cache have both 16KB size.  

 

 
Fig. 12 Measured FPGA resource usage. The blue columns are 

used for values measured in a CPU implementation without 

HUSTLE and the orange column for one with HUSTLE. 
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TABLE VIII 
CPU LOAD (U) COMPARISON OF HUSTLE WITH A SOLUTION WITH INCREASING IC SIZE ON SINGLECORE ARCHITECTURE 

SP 10ms 1ms 

FS 850 85 50 850 85 50 

SM Configuration Baseline  

STD SingleCoreIC16KB 85.67% 86.35% 90.39% 93.44% 92.33% OL OL 

STD SingleCoreIC32KB 85.28% 85.90% 89.95% 93.00% 91.84% OL OL 

STD SingleCoreIC64KB 84.95% 85.66% 89.55% 92.57% 91.46% OL OL 

HP 

SingleCore 

(IC16KB + HUSTLE 32KB IM) 85.67% 85.87% 86.18% 86.36% 88.26% 90.58% 92.13% 

Measurements of CPU load (U) from the test campaign performed on the SingleCore architecture to compare HUSTLE with a CPU with larger IC 
size, OL means, OverLoad, i.e., the CPU load is above 100%. 
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B. POWER CONSUMPTION 

The results of the overhead of HUSTLE on the CPU 

power consumption are shown in Fig. 13. It can be noted that 

the overhead on power consumption incurred due to the 

addition of HUSTLE is around 2% when it is OFF or IDLE. 

Indeed, the two corresponding lines in the chart are 

overlapped, from a deeper investigation we found that the 

most of the power consumption in the these two states is 

accountable to the IM, since no clock gating techniques have 

been applied, it is always turned on, and consume some 

power even when the HUSTLE module is turned OFF. 

Instead, when the module is in the OPERATIONAL state, 

the overhead increases to around 12%. As it is shown, 

increasing the Toggle Rate of the BoomTile input signals 

does not seems to have significant impact on the power 

consumption neither on the PO. Note that, the portion of time 

in which HUSTLE is in the OPERATIONAL state depends 

on the Safety Period of the STL, and on the time needed to 

execute it. Hence the overall increase in power consumption 

it is likely to be lower than the one measured in the 

OPERATIONAL state. 

 

VII. RELATED WORKS 

 

Permanent HW fault protection techniques for modern 

CPUs can be resumed into three main categories: Built-in 

Self-Tests (BIST) [11], Lock-Step[14], and STLs [16]. The 

high impact on area and power consumption of the former 

two, and their higher design effort, have led to the spreading 

of STLs. This widespread use of STLs [16], [23], calls for 

provisions to diminish the overhead induced by their 

execution. A common approach is to reduce the test 

execution time by exploiting test compaction procedures 

[36]. However, this does not reduce the overhead caused by 

the interleaving of payload SW, and STL. We found only one 

study [37] that attempted to achieve this using scheduling 

mechanisms. The solution proposed in [37] assumes that 

spare CPUs are available and leverages the OS to perform 

task migration, while one CPU executes STL test routines. 

We did not find any work that exploited idle times in the 

CPU by executing fragments of STL code. Using dedicated 

HW support to accelerate software operations is a common 

approach [38]. On this basis, however, we found only two 

works [39], [40] that adopted dedicated HW support for self-

testing by storing STL instructions in dedicated memory. In 

these studies, the authors focused on implementing hardware 

support that can store test codes and data. In both studies, the 

tested CPU transitioned to a test mode that made it 

unavailable to the system for the entire duration of the tests. 

In [39] the STL was encoded with specific test generation 

procedures, and the test mode was entered by means of an 

ISR. In [40] the test mode required a core to implement 

checkpointing. Differently from  [39] and [40] we did not 

limit to providing a HW support with dedicated memory, but 

also the logic to implement specific scheduling strategies 

(periodic and cache miss-driven), without the need for a 

dedicated test mode, nor requiring specific HW features to 

be available, and without imposing constraints on the STL 

implementation. In TABLE IX a comparison of HUSTLE 

with state-of-the-art techniques is reported.  

VIII. CONCLUSIONS 

In this work, we presented HUSTLE, an HW module that 

allows efficient execution of STL code. We explained and 

detailed the architecture and behavior of HUSTLE and made 

experiments to assess to which extent HUSTLE can be used 

to execute STL instructions without increasing the response 

 
Fig. 13 Results for Power consumption and PO. The left axis refers 

to the column chart whereas the right axis refers to the 

superimposed line chart. 
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TABLE IX 

COMPARISON OF HUSTLE WITH OTHER STATE OF THE ART TECHNIQUES  
HUSTLE STL Lock-step BIST MHIST 

[39] 

CASP 

[40] 

Area overhead Low No  2x Low-Medium Lowc High 

Power overhead Low Very Low Medium Very High NA NA 

Performance Overhead None-Lowa Low-Mediumb None High Lowd Highd 

a Always lower than standard STL. 
b Depending on the STL scheduling frequency 
c Only memory to store a single test, compression is used to store test code and data 
d Requires detaching the CPU from the system during testing 
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time of tasks in payload SW. We also evaluated its benefits 

in terms of CPU load reduction in three different chip 

architectures using the different STL execution modes 

provided by HUSTLE.  

From the experiments performed, we observed that the use 

of HUSTLE to execute STL always reduced the CPU Load. 

The benefits provided by the proposed solution increase 

when the scheduling frequency of the STL and average cache 

miss resolution time increase. 

The experiments also confirmed that, in most cases, the 

reduction in CPU utilization can be further improved by 

using the proposed cache miss-driven interrupt generation 

mechanism to execute STL instruction, instead of periodic 

STL scheduling. The benefits of this STL execution mode 

are strongly dependent on the choice of cache misses and 

their resolution time. Finally, we considered the impact on 

the device area and power consumption, showing that 

HUSTLE has a low impact on the area (most of which is due 

to the IM for storing the STL Test instructions), and a very 

limited increase in power consumption, making this solution 

applicable to systems with a limited budget for power and 

area.  

 

HUSTLE represents an improvement in the state of the art 

because it reduces the overhead caused by the interleaving of 

STL code and payload SW and provides a way to execute 

STL SW without increasing the task response time. This is 

achieved with no constraints on the implementation of the 

STL fragments and with minimal modification to the CPU 

design.  

 

The proposed solution is flexible, since it is not tied to any 

specific ISA or CPU architecture. We exploited resources 

that are generally available in most of the modern CPU cores, 

hence, we argue that HUSTLE is applicable to many others 

CPU architectures, which can be used in a large variety of 

Safety Critical Systems. Moreover, since the STL size is 

tightly coupled to the amount of logic to stimulate, the size 

of the IM can be adjusted to fit the needs of the target CPU, 

allowing our solution to be scaled according to the system 

complexity. 

 

Additionally, even if HUSTLE has been tailored for STLs, 

we argue that this kind of mechanism can be applicable to 

any other non-functional code, e.g., interrupt handlers, 

pieces of drivers and snippets of hypervisor and trusted 

firmware code. In general, this mechanism is designed to 

reduce the overhead caused by the interleaving of functional 

and non-functional code, and to reduce the inactive processor 

time. This is done by transforming a periodic task into an 

aperiodic one and breaking it down into many smaller pieces. 

Indeed, the choice of applying this execution method to STLs 

has two main reasons: The first one is that they are an 

enabling technology used in many safety-critical 

applications, the second one is that they are conceived to be 

executed periodically within a well-defined time interval. 

Moreover, some features exist that, if available in the CPU 

design, can enable further improvements of HUSTLE 

performance benefits. Among these features, we include fast 

interrupts, to reduce the time for the context switch, and 

dedicated interrupt channels, as in vectored interrupt-capable 

CPUs, to allow the use of a separate, optimized ISR for the 

interrupt requests issued by HUSTLE. Investigating the 

details of the application of HUSTLE in such scenarios is 

one of our future directions. 

 

Another direction for improvement is to predict the cache 

miss resolution time to schedule the execution of STL 

fragments that can perfectly fit the available resolution time. 

We conjecture that, if the selection of those cache misses in 

which to generate interrupts and thus execute STL fragments 

is carefully performed, it may be possible to execute the 

entire STL without any increase in task response time.  
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