

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.Doi Number

Improving the Efficiency of Software-Based

Fault Protection Mechanisms with HUSTLE

N. Ferrante1,2, L. Fanucci1, F. Rossi2, F. Terrosi3, A. Bondavalli2,3
1 Department of Information Engineering, University of Pisa, Pisa, PI, 56122 Italy
2 Resiltech Srl, Pontedera, PI, 56025 Italy
3 Department of Mathematics and Informatics, University of Florence, Florence, FI, 50134 Italy

Corresponding author: N. Ferrante (e-mail: nicola.ferrante@phd.unipi.it).

ABSTRACT To achieve confidence in safety-critical systems, requires among others to meet high

requirements on online testing of computer systems, as dictated by safety standards such as ISO26262,

IEC61508, and CENELEC EN 5012X. Online testing can be performed through the periodic execution of

online SW Test Libraries, which are widely used in safety-related applications as a valuable safety mechanism

to protect against random HW faults. SW Test Libraries introduce a non-negligible overhead on system

performance, exacerbated by the increasing complexity of HW devices. This contrasts with the efforts of

researchers and system designers for developing efficient systems. Reducing this overhead is an important

achievement. We propose here HUSTLE, a Hardware Unit for SW-Test Libraries Efficient execution, which

can be integrated into the chip design with minimum modification to the CPU’s design. HUSTLE contains

an Internal Memory, where the library code is stored, and sends instructions to the CPU, bypassing the

Memory Subsystem. To further improve efficiency, we also propose a scheduling mechanism that allows to

exploit the idle time of the CPU’s execution unit. To show the efficiency gain in supporting the test libraries

execution, we ran some experiments, where a considerable reduction of the overall CPU load was observed.

Finally, remarks regarding the limited impact on the area and power consumption are presented.

INDEX TERMS Error Detection, Functional Testing, On-line Testing, Safety, SW-Test Libraries.

I. INTRODUCTION

Innovations in the field of Very Large-Scale Integration

(VLSI) technologies and the advent of novel computing

platforms have made the automation of complex tasks in

constrained domains a reality [1]-[3]. The great potential of

these innovations has led to an increasing interest in their

adoption in many safety-critical application domains, such as

the automotive, railway, and industry. These systems must

fulfill the integrity requirements [4] set forth by standards

developed by international committees, such as ISO[5],

CENELEC[6], and IEC[7], with the aim of minimizing the

risk of potentially catastrophic failures that damage human

life and health. One of the main challenges in enabling the

use of these technologies in safety-critical systems is the

coexistence of three main characteristics: integrity,

performance, and cost [8]-[10]. The lack of proper levels for

one of these properties may lead to drawbacks that may

prevent their adoption. Such challenges become more

complex in situations in which a reduction in engineering

costs and time-to-market is required. In such cases, valuable

solutions must offer appropriate fault protection and

mitigation mechanisms. Further, such mechanisms are

required to be flexible and do not require heavy modification

of the original design or excessively penalize its performance

when applied in different contexts.

It is a general requirement from functional safety

standards [5]-[7] to enrich the design of an embedded system

with mechanisms (HW or SW or HW/SW) aiming to detect

faults of the HW platform to improve its safe usage.

Fault-tolerance mechanisms can be based on both

hardware (HW) and software (SW), each providing different

levels of protection and targeting different failure modes [9]

-[15]. HW-based techniques are faster but require either

modifications to the original design or higher cost due to

replication [14], [15], whereas SW-based techniques have no

impact on HW cost but incur overheads that significantly

reduce performance [12], [13], [16], [17].

Many SW-based mechanisms and mitigations have been

proposed in the literature [8]-[13], [16], [17], such as

defensive programming techniques, SW diversity, and

purposely designed test routines.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

In this context, SW-Test Libraries (STLs) are widely

considered an effective mechanism to protect against

permanent random HW faults [11], [16], [18]-[22]. STLs are

sets of test routines providing high fault coverage and

allowing compliance with well-established functional safety

standards [23], [24].

To achieve high fault coverage, as required by the safety

standards [5]-[7], STLs need to be scheduled with high

frequency and this can negatively impact the performance of

the embedded SW up to the extreme case to violate its timing

constraints, then leading to a critical safety issue.

The solution proposed in this work is then introduced to

counterbalance this problem enabling the proper usage of

STLs on safety applications which require high computing

resources, and, therefore, have an higher number of HW

resources to be tested [17], [25]. This is the typical case of

many SoCs used in ML applications for automotive where

the embedded application cores (for example cluster of

superscalar processors) are required to provide very high

performance. This implies mainly two aspects: 1) the cores

are not configured in lock-step mode not to lose computing

resources and 2) an STL solution is then necessary to enable

fault detection on the processors, then leading to the above

challenge addressed in this paper.

Our proposal is called HUSTLE, a Hardware Unit for STL

Efficient execution. It allows to i) host STL code in its

internal memory and ii) provide STL instructions to the core

without accessing the Memory Subsystem (MS). This way

HUSTLE allows a reduction of the overhead imposed by the

execution of the STL. Besides the basic mechanism, an

additional benefit is brought by a mechanism that exploits

architectural signals to detect the CPU execution unit’s (from

now on CPU for brevity) idle time and use this time to

efficiently execute STL instructions.

This study provides a detailed description of the

implementation of HUSTLE (extending preliminary

concepts [26]) and offers an extended experimental

campaign that accounts for the impact on the device area and

its power consumption.

The remainder of this paper is organized as follows.

Section II provides the background, Section III describes the

implementation of HUSTLE, Section IV presents the details

of the experimental campaign, Section V discusses the

results, Section VI provides a post-synthesis evaluation of

the impact on device area and power consumption, and

Section VII reviews the related works found in the literature.

Finally, Section VIII concludes this paper.

II. BACKGROUND

Safety-critical systems must achieve stringent

dependability and integrity requirements, imposing

constraints on their design from both hardware and software

viewpoints.

To maintain the target integrity level, it is necessary to

implement protection techniques such as STLs, which must

run periodically to monitor the integrity of the system. The

execution of STL must interleave with the execution of the

functional code (payload).

To determine the execution period of an STL the system

designer has to know the required Fault Tolerant Time

Interval (FTTI) defined as the “minimum time span from the

occurrence of a fault in an item to a possible occurrence of a

hazardous event, if the safety mechanisms are not activated”

[5]. Knowing the FTTI, the system designer must define the

STL execution period such that faults are detected and

handled in a time interval lower than the FTTI. This time

interval is also called the Fault Handling Time Interval

(FHTI), and is composed of two parts: the time necessary to

detect a fault, that is, the Fault Detection Time Interval

(FDTI), and the time necessary to react to the occurrence of

a fault, that is, the Fault Reaction Time Interval (FRTI). In

Fig. 1 illustrates a schematic view of these quantities in

relation to the STL scheduling period.

This continuous interleaving between the payload SW and

STL causes a non-negligible overhead, thereby reducing the

system performance. To offer a simple example, suppose

that there are two tasks: payload taskA, which requires tA time

units to complete, and STL taskSTL, which requires tSTL time

units to complete. To guarantee the correctness of the

system, taskSTL must be run before each execution of taskA.

To precisely define and characterize the overhead incurred

in this execution, we assume that interrupts to be disabled as

serving an interruption cannot be classified as overheads.

Under this assumption, the total time required for one

complete execution of the task set is te = tA + tSTL + to, where

to is the time spent by the hardware to handle asynchronous

events such as cache misses and mispredictions.

In the computation of to we consider the effects of many

HW events, such as mispredictions, pipeline stalls, and cache

misses, which can impact the execution time of the task set.

The overhead introduced by the system scheduler to handle

the execution of multiple tasks is not included in to but is

considered part of tA and tSTL.

Fig. 1 Schematic representation of the FTTI on the upper, and of

the FHTI, decomposed in FDTI and FRTI in the lower part of the

figure.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 2 shows an example of a typical system run. In the ideal

case, to = 0 as shown in the upper part of Fig. 2. However, in

a real execution, owing to asynchronous events such as cache

misses or branch mispredictions, there are times in which the

CPU is idle, as can be seen from the lower part of Fig. 2.

In reality to > 0. In fact, CPUs are likely to be idle, waiting

for instructions from the memory subsystem, for example,

because of instruction cache misses. The amount of overhead

introduced by each cache miss is variable and depends on the

location of the instructions in the memory hierarchy.

Taking as a reference system the one depicted in Fig. 3,

the instruction may be located in the L1 instruction cache, L2

cache, or main memory. The higher the level of the hierarchy

that needs to be traversed, the larger the amount of time

required to retrieve the instruction. Moreover, some

resources are shared between the components of the system;

for example, when two cores need to access the L2 cache at

the same instant, they must compete to communicate with

the L2 cache. Consequently, the overhead for retrieving the

instruction increases.

The problem of retrieving instructions from lower levels

of the memory hierarchy arises both for payload and STL

execution. In this study, we attempted to eliminate or reduce

to. This was performed in two steps. First, we provide a

solution to ensure that no overhead is incurred while

executing the STL. Then, we attempt to reduce the portion

of overhead incurred during payload execution.

III. HUSTLE

In this Section, we provide a detailed description of how

the problem of the overhead on execution due to retrieving

instructions from the memory hierarchy has been addressed

by leveraging HUSTLE. In Section III.A, we address the

problem of reducing the overhead incurred during the

execution of STL code. In Section III.B, we provide a

description of an enhancement that enables HUSTLE to

automatically handle the scheduling of STL tests. In Section

III.C, we describe how, by exploiting an efficient scheduling

mechanism and architectural enhancements to the basic

architecture, we can also reduce the overhead experienced

during payload execution.

We followed two design principles for HUSTLE, which

can be summarized by the following requirements:

1) The solution provided shall not modify the internal

structure of the CPU

2) The solution provided shall not impose constraints on

the STL implementation.

These two design principles allowed us to have the

minimum possible impact on the device area with a low

effort for the integration of HUSTLE in different HW

architectures, while allowing it to be used with different STL

implementations.

A. HUSTLE BASIC ARCHITECTURE

To avoid cache misses during STL execution, we propose

the architecture described in Fig. 4.

HUSTLE was placed between the CPU and the Memory

Subsystem (MS). Internally, it has an Internal Memory (IM)

and a ByPass Logic (BPL). The IM is used to store STL

instructions, whereas the BPL orchestrates the

communication between three elements: the CPU, which

requests instructions from the memory; the MS, which

handles requests from the CPU for functional code; and

HUSTLE’s IM, which handles requests related to STL code.

The BPL is completely transparent to the core because it acts

as a simple switch that does not introduce any delay in

communication between the CPU and MS.

Fig. 2 Scheduling of the two tasks. The white area represents the

execution of taskA, dotted area represents taskSTL, while the black

area the overhead due to hardware-specific events.

Fig. 3 Block Diagram representing a generic system composed by

N CPUs, with private instruction and data L1 caches. A shared L2

Cache, a main memory and DMA devices.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This implementation provides a fast and independent

channel to send STL code to the core as it relieves the

Memory Subsystem (MS) from handling STL instructions,

as depicted in Fig. 5, and fulfills our requirements because it

is placed outside the core and does not impose any constraint

on the design of the STL code.

Indeed, since the proposed architecture is intended to be

used in Safety Critical systems, it is fundamental to consider

potential hazards impacting on systems’ security introduced

by HUSTLE. Surely, if an attacker were able to access the

IM, and manipulate its content arbitrarily, this would cause

severe security threats. Fortunately, traditional solutions for

tackling this kind of issue are applicable to HUSTLE, since

it is not different from any other memory area of the system.

Thus, one option to secure the IM could be leveraging the

CPU memory protection unit, marking this area as non-

writeable. Moreover, in high-criticality applications, another

solution is to implement the IM as a ROM memory, which

cannot be programmed at runtime. Finally considering also

the possibility that an attacker can gain physical access to the

system, and compromise the IM by breaking the boot process

and ROM programming procedure, additional mechanisms

to authenticate the content of the IM, based for instance on

Hashed Message Authentication Codes (HMAC) can be

implemented in the HUSTLE logic, hardcoding a secure key

within it, making unfeasible for an attacker to arbitrarily

modify the content of HUSTLE IM.

To describe the behavior of HUSTLE during system

operation, a Finite State Machine (FSM), represented in Fig.

6 is provided. It can be observed that it is composed of three

states:

OFF: In this state, HUSTLE is disabled, and the BPL is

completely transparent: the request and response signals

between the CPU and MS pass unmodified through

HUSTLE.

IDLE: In this state, HUSTLE forwards requests and

responses related to the functional code from the CPU to the

MS and vice versa. (this state corresponds to the execution

of the payload code)

OPERATIONAL: In this state, the BPL handles requests

and responses related to non-functional code from the CPU

to the IM and vice versa. (this state corresponds to the

execution of the STL code)

This automaton has 2 input signals to drive transitions:

enable: If enable is asserted HUSTLE goes into the IDLE

state becoming active.

is_stl_code: If the is_stl_code signal is asserted when

HUSTLE is in the IDLE state, HUSTLE transitions into the

OPERATIONAL state. The BPL generates this signal by

checking the address of the instructions requested by the core

during the execution. In this basic architecture, in order to be

able to periodically execute the STL, the system designer

must allocate an HW timer or rely on the system scheduler.

Very often, in order to meet the system scheduling

constraints (on the payload SW), the STL cannot be executed

all at once, but the execution needs to be split into several

parts. Moreover, some of the tests included in an STL cannot

be interrupted, therefore careful scheduling of the STL

‘pieces’ has to be defined. Having defined such system-level

scheduling, HUSTLE's role is to respond to CPU requests for

the STL code whenever the scheduler decides to execute

parts of the STL. We refer to this method of using HUSTLE

as Passive mode.

B. HUSTLE’S ENHANCED ARCHITECTURE

HUSTLE allows also a completely different system

organization: while in Passive mode the system and the

scheduler have visibility of Payload tasks and of the STL task

(which resides in the HUSTLE memory) a new ‘Active

Fig. 4 HUSTLE’s Block schema

Fig. 5 Comparison of two executions: one without HUSTLE in the

upper and one with HUSTLE in the lower part of the figure.

Fig. 6 Finite State Machine showing the states and the

transitions of HUSTLE module. The arrows are labeled with

signals that enable the firing the state transitions.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mode’ is possible whereby the entire management and

scheduling of the STL is performed within HUSTLE and the

system becomes unaware of the existence of an STL. In this

mode, HUSTLE manages the scheduling of STL pieces by

issuing interrupt requests to the CPU. This is achieved, as

shown in Fig. 7, by adding two further elements: Interrupt

Generation Logic (IGL) and Test Scheduling Logic (TSL).

The Interrupt Generation Logic (IGL), which features an

internal timer, needs to be configured by the system designer

in accordance with the required execution period of the STL.

The Test Scheduling Logic (TSL) is designed and

implemented to automatically handle the selection of the

next STL fragment to execute. In particular, when the IGL

timer expires, the IGL generates an interrupt request

asserting a dedicated signal that is routed to the CPU

interrupt controller (IRQ). When the core handles the

interrupt request and jumps to the STL code, HUSTLE

provides instructions to the CPU and the BPL asks the TSL

the address of the next portion of the STL to run. When using

this execution mode, the system designer only needs to

provide an Interrupt Service Routine (ISR) to handle the

interrupt generated by HUSTLE and jump to the entry point

of the STL, then HUSTLE will then automatically handle the

execution, providing the core with the appropriate

instructions.

Thus, with this enhanced architecture, we have made the

execution of STL almost transparent to the rest of the system,

providing a mechanism that autonomously handles its

execution.

We want to highlight that when using the Active

configuration, it is important to carefully handle interrupt

generation and prioritization to maintain the schedulability

of the task set. In the presence of such interrupts, tasks can

be considered aperiodic by the scheduler. However,

consolidated solutions exist in the state-of-the-art for the

scheduling of aperiodic tasks [27]-[29] hence, we argue that

it is feasible to schedule a payload task set given that a proper

analysis is performed. In this study, we did not elaborate on

such aspects further.

C. HUSTLE EFFICIENT SCHEDULING

The HUSTLE’s enhanced architecture allows to alleviate

the overhead due to cache misses or memory access during

the execution of the payload SW by keeping the CPU busy

executing some carefully selected fragments of the STL code

during the time the CPU would otherwise wait for payload

instructions to be retrieved from the MS. If we can provide

STL instructions to the CPU sufficiently fast, without

interfering with the MS, while retrieving the payload

instructions, we can optimize the usage of the CPU. Consider

the situation represented in Fig. 8, where a cache miss occurs

during the execution of taskA. The CPU handles the cache

miss, leaving the core idle for some time and incrementing

the overall execution time. By exploiting this time executing

a portion of the STL, we can avoid this overhead.

To enable this mechanism, we routed the cache miss

signal to HUSTLE’s IGL, slightly modifying the IGL to

generate an interrupt request when a cache miss occurs.

This improved HUSTLE architecture generates interrupts

according to two different modes:

Periodic: The interrupt is generated periodically by using

the internal timer.

Cache Miss Driven: The interrupt is generated in

correspondence of a cache miss.

It is important to note that a possible issue that may arise

when using this mechanism is the unpredictable length of the

cache miss resolution time. Indeed, cache misses require a

different amount of time to be resolved depending on the

miss occurring in the L1 or L2 cache. This may impact the

benefits provided by this scheduling mechanism. STL

fragments longer than the cache miss resolution time would

allow the processor to be kept busy all the time, whereas STL

fragments that are shorter than the cache miss resolution time

imply some idle cycle for the processor, but would leave the

execution time of the payload untouched.

Indeed, in an application when most cache misses happen

in the high-level cache our mechanism offers partial benefits,

However, considering complex payload SW that cannot

Fig. 7 Enhanced HUSTLE Architecture, the Test Selection Logic

(TSL) is connected to the BPL. The IGL generates interrupt

requests to the CPU with an IRQ signal.

Fig. 8 Comparison of the execution with the HUSTLE enhanced

architecture, upper, and HUSTLE efficient scheduling, lower part of

the figure.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

entirely fit into the cache memory, it is not rare that the code

needs to be retrieved directly from the DRAM, causing

relatively long idle times due to misses in the last level of

cache.

In the experimental campaign described in Section IV, we

demonstrated that it is possible to execute relevant portions

of the STL code without impairing the payload response

time.

D. HUSTLE INTEGRATION

To validate HUSTLE, its enhanced architecture, and its

mechanism to efficiently exploit the idle time of the CPU to

execute STL instructions, we integrated our solution into a

complete System on Chip (SoC). We selected the Rocket

Chip[30], made available by the Chipyard framework [31].

The framework provides facilities for building a

customizable SoC, including the possibility of choosing

between different RISC-V [32] CPUs architectures. In this

work, we selected as the target CPU architecture the Berkley

Out-of-Order Machine (BOOM) Core [33]-[35] a

superscalar, highly configurable out-of-order application-

level CPU.

HUSTLE was placed between the BoomCore and the L1

Instruction Cache, as shown in Fig. 9. The IM size was

configured to 32KB which was enough to host the STLs used

in our experimental campaign.

We selected the SmallBOOM implementation of

BoomCore, a single pipelined core, TABLE I reports some

of the main parameters of this implementation.

To configure the behavior of HUSTLE at runtime, such as

enabling or disabling the module, selecting the execution

mode, and other functionalities described hereafter, we

added some Control and Status Registers (CSR) to the core:

HUSTLE_CTRL: Provides basic control functionalities,

such as enable/disable, execution mode selection, and

interrupt generation configuration selection.

HUSTLE_BASE_ADDRESS: Used to set the address of the

entry point of the STL.

HUSTLE_TEST_PERIOD: Used to set the period in clock

cycles for the execution of STL fragments when HUSTLE is

used in Active mode with the Periodic interrupt generation

configuration.

The addition of these CSRs slightly increased the size of

the register file. However, this simple solution is not the only

possible solution; other solutions exist, such as memory-

mapped registers, which are less intrusive in core design. The

rationale behind this design choice is dictated exclusively by

the simplicity of its implementation within the Chipyard

Framework.

IV. EXPERIMENTAL CAMPAIGN

In this section, we list the technical details of our

experimental campaign. In our experimental campaign, the

aim was to assess the performance benefit obtained using

HUSTLE by comparing a solution without HUSTLE with

one with it (in both Periodic and Cache Miss-Driven

Scheduling). We performed such an evaluation on the target

architectures described in Section IV.A while executing the

test suite described in Section IV.B. Section IV.C describes

the experimental setup. Finally, the evaluation metrics are

defined in Section IV.D.

Fig. 9 Rocket Chip Architecture used in the experimental campaign.

The HUSTLE module is integrated between the BOOMCore and the

L1 ICache. A system bus is used to connect the L2 Cache and the

Core. The L2 Cache is connected to the Main Memory using a

Memory Bus.

TABLE I
BOOM CORE CONFIGURATION

Core width 1

Fetch width (Bytes) 8

ICache size (KB) 16

DCache size (KB) 16

L2 Cache size (KB) 128

Boom Core Configuration Parameters. In this table only a restricted
set of parameters is reported. The complete list of parameters can be

found in [35]

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

A. TARGET SYSTEM ARCHITECTURE

The experimental campaign was executed using three

different configurations of the system architecture. These

three architectures were chosen to allow us to observe the

effect that an increase in the cache miss resolution time may

have on the execution, and how this impacts the benefits

provided by HUSTLE. To this extent, we modified the

configuration of the rocket-chip to introduce interference at

two different points of the MS, the L2 Cache, and the Main

Memory.

The first architecture was a single-core architecture, from

now on, SingleCore. In this architecture, the core is the only

device that sends requests to the MS.

The second architecture has two identical CPUs, we will

refer to this architecture in the next sections as DualCore. Its

purpose is to allow the investigation of the effect that the

contention may have in systems with an MS shared between

multiple users, such as, CPUs and DMA devices. This

architecture allows observation of the effect of contention on

the L2 Cache caused by the simultaneous requests of the two

cores to the MS.

Finally, the third architecture has a slower Main Memory.

To this extent, we reduced the MemoryBus frequency from

1000 to 500 MHz. We refer to this architecture as the

SlowMem architecture.

 TABLE II reports the details of the three configurations used

in the experimental campaign.

B. TARGET SOFTWARE

The SW stack used for the execution of the tests is

composed of:

• A payload SW, composed of three tasks, namely

taskA, taskB, and taskC, and an idle task. The idle

task is executed after the three tasks when the

core waits for the expiration of the scheduling

period.

The three tasks execute the same code; however,

the code of each task was placed in a different

memory region. The SW executed by the three

tasks is an enhanced version of the fillCache SW

used in [26], which was enhanced to fill the L2

Cache.

It executes a sequence of heterogeneous

instructions, such as arithmetic operations

(integer and floating-point), and memory

accesses. These instructions are sequentially

placed in memory. The fillCache SW allows the

MS to be stressed, generating a large number of

cache misses, both in the L1 Instruction Cache

and L2 Cache. This was chosen to reproduce a

worst-case execution scenario for application

cores.

• A minimal OS, composed of a boot sequence that

performs startup operations and initialization of

the rocket chip, a set of routines used to configure

HUSTLE and handle interrupt requests, and a

cyclic executive scheduler that executes a fixed

number of iterations. The number of iterations is

configurable at compilation time.

• Three different STL implementations. Each STL

is composed of several STL fragments,

implemented in assembly code, that stimulate

different modules of the CPU. STL fragments are

sets of test routines executed sequentially. The

STL is provided with a scheduling API

implemented in C to allow the user to select and

execute the desired STL fragment. The three

STLs contain the same test routines but differ in

how they are grouped within different STL

fragments.

C. SETTING OF THE EXPERIMENTS

Hereafter, we provide a detailed description of the settings

used in the experimental campaign. The experiments were

performed first to understand how many STL instructions

can be executed while a cache miss is resolved and then to

compare the overhead reduction observed for the three

reference architectures.

To understand how many STL instructions can be

executed while a cache miss is resolved, we use the HUSTLE

configuration driven by cache misses, as described in Section

III.C. We focus on a specific cache miss and then vary the

size of the executed STL fragment. This phase of the

experimental campaign was performed only on the

SingleCore architecture, as the validity of the results can be

easily extended to other architectures.

We executed the three tasks by measuring the time

necessary to resolve each cache miss that occurred. The

Cache Miss Resolution time is computed as the difference

between the time when the cache miss occurs and the time

when the L1 cache makes the instruction available to the

Instruction Fetch Unit of the CPU. We then select a cache

miss that requires a sufficiently long time to be resolved. We

then exploit HUSTLE: when the selected cache miss occurs,

TABLE II
ROCKET-CHIP ARCHITECTURES

 Architecture

 SingleCore DualCore SlowMem

CPU Frequency 1.6 GHz 1.6 GHz 1.6 GHz

Number of CPUs 1 2 1

MemoryBus Frequency 1000MHz 1000MHz 500MHz

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

we issue an interrupt request to inject a sequence of

instructions during the cache miss resolution time.

In particular, we selected the 88th cache miss with a

resolution time of 320 cycles and repeated the test with an

increasing number of instructions, from 50 to 300 in steps of

50, measuring 1) the number of additional instructions

executed and 2) the number of additional clock cycles

necessary to complete the execution. The parameter settings

for these experiments are reported in TABLE III.

In the main experiment, we evaluated different combinations

of HUSTLE configurations by executing the test SW suite

described in Section IV.B on the different HW architectures

presented in Section IV.A. The test performed in this phase

aimed to evaluate the HUSTLE execution modes for the STL

described in Section III. Before entering into the details of

the setting of the experiments, we need to define two

fundamental parameters: the Safety Period and the STL

Scheduling Mode.

Safety Period (SP): SP denotes the STL scheduling period.

To evaluate the impact of this parameter, we selected two

SP: 10ms, and 1ms. Recall that SP is not a free parameter

that can be chosen arbitrarily but needs to be derived through

an accurate safety analysis and is strongly application

dependent. Here, the SP values were selected considering the

reasonable application requirements for state-of-the-art

automotive applications.

Note that SP is the time interval in which the STL must be

entirely executed to guarantee its nominal protection level.

The fragments composing the STL can then be executed all

at once in a single invocation or split into many parts whose

execution is spread throughout the SP.

STL Scheduling Mode (SM): To explore the different

possibilities enabled by HUSTLE to schedule STL, we chose

the following scheduling modes:

• Standard (STD): the STL is executed

periodically, without using HUSTLE.

• HUSTLE_Periodic (HP): HUSTLE is in Active

execution mode, in Periodic Configuration, and

• HUSTLE_Cache_Miss_Driven (HCM): HUSTLE

is in Active execution mode in the Cache-Miss-

Driven configuration.

Note that in STD, the C API provided by the STL is used

for the selection of STL Tests to execute, whereas in HP and

HCM this is accomplished by HUSTLE’s TSL.

TABLE IV reports the parameter settings for this phase of

the experimental campaign. Note that in the DualCore

configuration, the first core executes the payload SW,

whereas the second one executes a workload composed of a

single task which perform continuously read operations, to

ensure that L2 cache interference between the two cores is

properly activated.

Finally, we provide a comparison of HUSTLE with an

alternative approach, that is using a larger instruction cache.

In this experiment we modified the SingleCore architecture,

by removing HUSTLE and increasing the IC size to 32KB

and 64KB.

The experiments were executed with an RTL simulator of

the Rocket Chip. Each simulation lasts for 10ms of simulated

time, after which a timeout expired and stopped the

simulation. The configuration of the SoC is the default

configuration provided in the Chipyard Framework.

Synopsys VCS was used to compile the RTL.

D. EVALUATION METRICS

HUSTLE was evaluated by executing a test suite and

observing how CPU utilization was affected by the usage of

different execution modes in different execution scenarios.

The results obtained from these experiments were compared

with an execution with standard STL scheduling (without

HUSTLE).

Hereafter, we report the definition of the metrics used

during our experimental campaign:

Response Time Increase (∆RT): This metric is used in the

TABLE III

PARAMETERS SETTINGS FOR THE FIRST PHASE OF EXPERIMENTAL

CAMPAIGN

Average number of Instructions Per Task

Execution

2584

Selected cache miss resolution time 320 clock
cycles

Number of STL instructions injected [50, 300]

Step of 50

TABLE IV

MAIN EXPERIMENT PARAMETERS SETTINGS

Payload Scheduling Period 0.043ms

Average number of Instructions Per Task
Execution 2584

Safety Period

1ms,

10ms

STL Fragment Size (number of instructions)

STL_1: 850,

STL_2: 85,

STL_3: 50

Number of STL Fragments

STL_1: 40

STL_2: 400
STL_3: 680

C API Size (average number of Instructions) 1614

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

first phase of the experimental campaign and is computed as

the difference between the time t necessary to execute the

workload, and time spent to execute the same workload plus

the STL code (tSTL). Thus ∆RT = tSTL - t.

CPU Load (U): This metric is used in the main

experiment, and it is computed as the time t spent by the CPU

in executing its workload, that is, the task set, OS, and STL,

divided by the total execution time tTOT. Thus U = t/tTOT.

V. RESULTS

In this section, we discuss the results of our experimental

campaign.

A. STL EXECUTION DURING A CACHE MISS

The results obtained are reported in Fig. 10 and highlight

that if a cache miss takes enough time to be resolved, a

considerable number of instructions can be executed while

the core is waiting for instruction retrieval from the main

memory. The figure shows that, in a cache miss resolution

time of 320 clock cycles, a stream of up to 200 instructions

can be injected and executed without any increase in the

response time.

Consider that 20 instructions are needed by the ISR to

handle the interrupt request, and additional clock cycles are

wasted because of the pipeline flush that occurs when an

interrupt request is served and after the return from the ISR.

However, a large part of the cache miss resolution time can

be profitably used for the STL code. This is a remarkable

result showing that exploiting HUSTLE cache miss-driven

configuration allows the execution of significant fragments

of the STL code without any increase in the response time of

the payload SW.

B. MAIN EXPERIMENT

The main experimental campaign has the objective of

observing the impact on the CPU Load of using different

Scheduling Modes provided by HUSTLE in combination

with different Safety Periods, comparing the results with an

execution without HUSTLE.

SingleCore

The results of the simulation campaign for the SingleCore

architecture are reported in TABLE V. We can see that the

CPU Load (U) always decreases when HUSTLE is used, this

is expected since, when using HUSTLE, the overhead of the

C API is removed and the STL Test scheduling does not

require additional instructions, since it is accomplished

automatically by HUSTLE. Moreover, instruction retrieval

from HUSTLE’s Internal Memory does not suffer from

cache misses. We can see that by changing the SP, the CPU

Load increases significantly when using the STD scheduling

mode. Additionally, increasing the FS may lead to the

impossibility of scheduling the task set together with the

STL. Conversely, this problem never arises when HUSTLE

is enabled.

With a 1ms SP, the STD scheduling strategy can still be

used with the default configuration, but does not support a

reduced Fragment Size. HUSTLE allows to save more than

4% of the CPU Load in the default fragment size and allows

to run easily shorter fragments. The lowest values of CPU

load are concentrated in the row corresponding to the HCM

scheduling mode.

Note that when the Fragment Size decreases, the CPU load

increases in the STD and HP scheduling modes, whereas it

remains essentially constant in the HCM scheduling mode; in

particular, with a 1ms SP and a Fragment Size of 50

instructions, a decrease in CPU Load is observed. This is

expected because smaller Fragments of the STL are more

likely to fit the execution during the time span when payload

instructions are fetched from the MS.

Because we do not perform any selection of the cache

misses, some overhead is expected owing to some cache

misses with a fast resolution time (observed in the order of

20 clock cycles for L1 cache misses that hit L2 cache).

Fig. 10 Results of the first phase of the experimental campaign,

the line represents the response time increase varying the number

of STL instructions injected.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

Number of STL Instructions Injected

R
es

p
o

n
se

 T
im

e
In

cr
ea

se

(c
lk

 c
y
cl

es
)

Response Time Increase

TABLE V
CPU LOAD (U) ON SINGLECORE ARCHITECTURE

Baseline

85.67%

SP 10ms 1ms

Fragment

Size 850 85 50 850 85 50

STD 86.35% 90.39% 93.44% 92.33% OL OL

HP 85.87% 86.18% 86.36% 88.26% 90.58% 92.13%

HCM 85.89% 85.89% 85.92% 88.01% 88.02% 87.90%

Measurements of CPU load (U) from the test campaign performed on

the SingleCore architecture, OL means, OverLoad, i.e., the CPU load
is above 100%.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

DualCore

The results of the simulation for the DualCore architecture

are presented in TABLE VI. We can notice that the

contention on the L2 Cache, caused by the addition of one

core, brings a substantial degradation of the system

performance, which can already be observed in the baseline

execution, where an increase in the CPU load of 5.69% is

observed. Nevertheless, the results of the experiments were

consistent with those observed in the previous case. Only the

contention on the L2 Cache experienced in this architecture

results in one additional case in which the CPU is

overloaded.

Moreover, focusing on the results for an SP of 10ms, in the

experiment with a Fragment Size of 850 instructions, the

HCM configuration showed slightly worse results than the HP

configuration. Analyzing the simulation results, we found

that this fluctuation is due to the effects of L2 cache

contention, causing an increase in the execution time, mostly

concentrated on OS routines; however, the CPU load is still

lower than in the STD scheduling mode. With SP of 1ms the

HCM shows a decreasing CPU load for a smaller fragment

size.

SlowMem

The results of the simulation for the SlowMem architecture

are presented in TABLE VII. In this architecture, the

performance degradation was the most significant of the

experimental campaign. The number of cases where CPU

overload occurred increased to 7 out of 18. Here, we can

observe that when the SP is 1ms, standard scheduling always

fails, whereas when using HUSTLE, we are still able to

maintain some margin.

In this architecture, the HCM configuration shows a

decreasing CPU load at a lower fragment size for both the SP

cases. This may depend on the fact that, in this configuration,

cache misses take, on average, more time to be resolved. This

allows to fit in this time larger portions of the STL fragment

execution. In Fig. 11, the average cache miss resolution time

is reported for the three architectures. This was measured on

the baseline execution, that is, that with only the payload SW

in execution.

Consistently with the experiments performed when the

cache miss resolution time is higher, HUSTLE with cache

miss-driven scheduling combined with a small STL

Fragment Size is more beneficial.

C. COMPARISON WITH LARGER CACHE SIZE

An additional study compares HUSTLE with different

CPU implementations with an increased L1 instruction cache

size (32KB and 64KB). This is done to consider the potential

benefit of using the resources of the HUSTLE internal

memory to increase the L1 cache size instead of having it as

part of additional HW adopted for HUSTLE. In this context

TABLE VI

CPU LOAD (U) ON DUALCORE ARCHITECTURE

Baseline
91.36%

SP 10ms 1ms

Fragment
Size 850 85 50 850 85 50

STD 92.08% 96.05% 99.15% 98.00% OL OL

HP 91.56% 91.90% 92.10% 94.04% 96.31% OL

HCM 91.63% 91.65% 91.74% 93.63% 93.52% 93.47%

Measurements of CPU load (U) from the test campaign performed on the

DualCore architecture, OL means, OverLoad, i.e., the CPU load is

above 100%.

TABLE VII

CPU LOAD (U) ON SLOWMEM ARCHITECTURE

Baseline

96.19%

SP 10ms 1ms

Fragment
Size 850 85 50 850 85 50

STD 96.94% OL OL OL OL OL

HP 96.43% 96.64% 96.93% 98.76% OL OL

HCM 96.44% 96.34% 96.33% 98.44% 98.12% 97.71%

Measurements of CPU load (U) from the test campaign performed on

the SlowMem architecture, OL means, OverLoad, i.e., the CPU load is

above 100%.

Fig. 11 Average cache miss resolution time in the different

architectures.

0

20

40

60

80

100

120

140

160

SingleCore DualCore SlowMem

Architecture

C
ac

h
e

M
is

s
R

es
o
lu

ti
o
n
 T

im
e

(c
lk

 c
y
cl

es
)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

we executed the STL with the STD scheduling mode. The

results of the experiments are reported in TABLE VIII. As

can be noted. Increasing the IC size reduces the baseline

execution time. However, this HW configuration performs

better than HUSTLE just in one experiment, the one with

largest cache (64KB), and FS of 850 instructions. This

happens because of a reduction of the baseline execution

time. However, when reducing the FS or decreasing the SP,

HUSTLE performs better in every other experiment. This is

expected since, differently from cache memory, the IM

provides an independent channel, which hosts the STL code

without replacing it.

VI. POST-SYNTHESYS ASSESSMENT

In addition to evaluating the performance benefits of

HUSTLE through the experimental campaign described

above, we also evaluated its impact in terms of overhead on

the chip area and power consumption.

To assess the overhead on HW area, we synthesized the two

variants of the Small CPU implementation, with and without

HUSTLE, on FPGA using Xilinx Vivado 2022.2. The target

device selected is the UltraScale+ MPSoC, in particular the

xczu7ev device. The selected target clock frequency is

100MHz.

The overhead on power consumption was evaluated using

vector-less power analysis, by varying the input toggle rates.

The analysis was performed using the Power Report tool,

integrated into Xilinx Vivado 2022.2. The measurements of

power consumption are taken in four different situations: 1)

when the CPU is not equipped with HUSTLE, 2) when the

CPU is equipped with HUSTLE and the module is in OFF

state, 3) when the CPU is equipped with HUSTLE and the

module is in IDLE state, and 4) when the CPU is equipped

with HUSTLE and the module is in OPERATIONAL state,

by setting the signals shown in Fig. 6 accordingly.

The metrics used for this post-synthesis evaluation are as

follows:

Resource Usage (RU): The Resource Usage (RU) is

computed as the percentage of HW resources available in the

FPGA that have been used to synthesize the chip.

Power Overhead (PO): The Power Overhead (PO) is

computed as the overhead due to the addition of HUSTLE

on the power consumption of the synthesized chip. We

define P as the power consumption of the chip without

HUSTLE, and Ph as the Power consumption of the chip

implementation integrating HUSTLE; thus, PO = 1 - (P / Ph).

A. HW RESOURCE USAGE

By analyzing the synthesis results, we found that the

relative increase in BoomTile’s resource usage owing to the

integration of the HUSTLE mechanism was relatively low,

as shown in Fig. 12. Indeed, the HUSTLE module increases

the number of LUTs and FF by less than 1%, whereas DSP

and LUTRAM have not increased. The highest increase is of

2.5% in the BRAMs usage, which rises from 3.53% to 6%.

This is expected since the HUSTLE module is equipped with

an internal memory of 32KB, and the L1 instruction and data

cache have both 16KB size.

Fig. 12 Measured FPGA resource usage. The blue columns are

used for values measured in a CPU implementation without

HUSTLE and the orange column for one with HUSTLE.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

LUT LUTRAM FF BRAM DSP

R
es

o
u

rc
e

U
sa

g
e

 (
%

)

Small SmallwHUSTLE

TABLE VIII
CPU LOAD (U) COMPARISON OF HUSTLE WITH A SOLUTION WITH INCREASING IC SIZE ON SINGLECORE ARCHITECTURE

SP 10ms 1ms

FS 850 85 50 850 85 50

SM Configuration Baseline

STD SingleCoreIC16KB 85.67% 86.35% 90.39% 93.44% 92.33% OL OL

STD SingleCoreIC32KB 85.28% 85.90% 89.95% 93.00% 91.84% OL OL

STD SingleCoreIC64KB 84.95% 85.66% 89.55% 92.57% 91.46% OL OL

HP

SingleCore

(IC16KB + HUSTLE 32KB IM) 85.67% 85.87% 86.18% 86.36% 88.26% 90.58% 92.13%

Measurements of CPU load (U) from the test campaign performed on the SingleCore architecture to compare HUSTLE with a CPU with larger IC
size, OL means, OverLoad, i.e., the CPU load is above 100%.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

B. POWER CONSUMPTION

The results of the overhead of HUSTLE on the CPU

power consumption are shown in Fig. 13. It can be noted that

the overhead on power consumption incurred due to the

addition of HUSTLE is around 2% when it is OFF or IDLE.

Indeed, the two corresponding lines in the chart are

overlapped, from a deeper investigation we found that the

most of the power consumption in the these two states is

accountable to the IM, since no clock gating techniques have

been applied, it is always turned on, and consume some

power even when the HUSTLE module is turned OFF.

Instead, when the module is in the OPERATIONAL state,

the overhead increases to around 12%. As it is shown,

increasing the Toggle Rate of the BoomTile input signals

does not seems to have significant impact on the power

consumption neither on the PO. Note that, the portion of time

in which HUSTLE is in the OPERATIONAL state depends

on the Safety Period of the STL, and on the time needed to

execute it. Hence the overall increase in power consumption

it is likely to be lower than the one measured in the

OPERATIONAL state.

VII. RELATED WORKS

Permanent HW fault protection techniques for modern

CPUs can be resumed into three main categories: Built-in

Self-Tests (BIST) [11], Lock-Step[14], and STLs [16]. The

high impact on area and power consumption of the former

two, and their higher design effort, have led to the spreading

of STLs. This widespread use of STLs [16], [23], calls for

provisions to diminish the overhead induced by their

execution. A common approach is to reduce the test

execution time by exploiting test compaction procedures

[36]. However, this does not reduce the overhead caused by

the interleaving of payload SW, and STL. We found only one

study [37] that attempted to achieve this using scheduling

mechanisms. The solution proposed in [37] assumes that

spare CPUs are available and leverages the OS to perform

task migration, while one CPU executes STL test routines.

We did not find any work that exploited idle times in the

CPU by executing fragments of STL code. Using dedicated

HW support to accelerate software operations is a common

approach [38]. On this basis, however, we found only two

works [39], [40] that adopted dedicated HW support for self-

testing by storing STL instructions in dedicated memory. In

these studies, the authors focused on implementing hardware

support that can store test codes and data. In both studies, the

tested CPU transitioned to a test mode that made it

unavailable to the system for the entire duration of the tests.

In [39] the STL was encoded with specific test generation

procedures, and the test mode was entered by means of an

ISR. In [40] the test mode required a core to implement

checkpointing. Differently from [39] and [40] we did not

limit to providing a HW support with dedicated memory, but

also the logic to implement specific scheduling strategies

(periodic and cache miss-driven), without the need for a

dedicated test mode, nor requiring specific HW features to

be available, and without imposing constraints on the STL

implementation. In TABLE IX a comparison of HUSTLE

with state-of-the-art techniques is reported.

VIII. CONCLUSIONS

In this work, we presented HUSTLE, an HW module that

allows efficient execution of STL code. We explained and

detailed the architecture and behavior of HUSTLE and made

experiments to assess to which extent HUSTLE can be used

to execute STL instructions without increasing the response

Fig. 13 Results for Power consumption and PO. The left axis refers

to the column chart whereas the right axis refers to the

superimposed line chart.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90

P
O

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
)

Toggle Rate

Small

HUSTLE

(OFF)

HUSTLE

(IDLE)

HUSTLE

(OPERATIONAL)

PO

(OFF)

PO

(IDLE)

PO

(OPERATIONAL)

TABLE IX

COMPARISON OF HUSTLE WITH OTHER STATE OF THE ART TECHNIQUES
HUSTLE STL Lock-step BIST MHIST

[39]

CASP

[40]

Area overhead Low No 2x Low-Medium Lowc High

Power overhead Low Very Low Medium Very High NA NA

Performance Overhead None-Lowa Low-Mediumb None High Lowd Highd

a Always lower than standard STL.
b Depending on the STL scheduling frequency
c Only memory to store a single test, compression is used to store test code and data
d Requires detaching the CPU from the system during testing

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

time of tasks in payload SW. We also evaluated its benefits

in terms of CPU load reduction in three different chip

architectures using the different STL execution modes

provided by HUSTLE.

From the experiments performed, we observed that the use

of HUSTLE to execute STL always reduced the CPU Load.

The benefits provided by the proposed solution increase

when the scheduling frequency of the STL and average cache

miss resolution time increase.

The experiments also confirmed that, in most cases, the

reduction in CPU utilization can be further improved by

using the proposed cache miss-driven interrupt generation

mechanism to execute STL instruction, instead of periodic

STL scheduling. The benefits of this STL execution mode

are strongly dependent on the choice of cache misses and

their resolution time. Finally, we considered the impact on

the device area and power consumption, showing that

HUSTLE has a low impact on the area (most of which is due

to the IM for storing the STL Test instructions), and a very

limited increase in power consumption, making this solution

applicable to systems with a limited budget for power and

area.

HUSTLE represents an improvement in the state of the art

because it reduces the overhead caused by the interleaving of

STL code and payload SW and provides a way to execute

STL SW without increasing the task response time. This is

achieved with no constraints on the implementation of the

STL fragments and with minimal modification to the CPU

design.

The proposed solution is flexible, since it is not tied to any

specific ISA or CPU architecture. We exploited resources

that are generally available in most of the modern CPU cores,

hence, we argue that HUSTLE is applicable to many others

CPU architectures, which can be used in a large variety of

Safety Critical Systems. Moreover, since the STL size is

tightly coupled to the amount of logic to stimulate, the size

of the IM can be adjusted to fit the needs of the target CPU,

allowing our solution to be scaled according to the system

complexity.

Additionally, even if HUSTLE has been tailored for STLs,

we argue that this kind of mechanism can be applicable to

any other non-functional code, e.g., interrupt handlers,

pieces of drivers and snippets of hypervisor and trusted

firmware code. In general, this mechanism is designed to

reduce the overhead caused by the interleaving of functional

and non-functional code, and to reduce the inactive processor

time. This is done by transforming a periodic task into an

aperiodic one and breaking it down into many smaller pieces.

Indeed, the choice of applying this execution method to STLs

has two main reasons: The first one is that they are an

enabling technology used in many safety-critical

applications, the second one is that they are conceived to be

executed periodically within a well-defined time interval.

Moreover, some features exist that, if available in the CPU

design, can enable further improvements of HUSTLE

performance benefits. Among these features, we include fast

interrupts, to reduce the time for the context switch, and

dedicated interrupt channels, as in vectored interrupt-capable

CPUs, to allow the use of a separate, optimized ISR for the

interrupt requests issued by HUSTLE. Investigating the

details of the application of HUSTLE in such scenarios is

one of our future directions.

Another direction for improvement is to predict the cache

miss resolution time to schedule the execution of STL

fragments that can perfectly fit the available resolution time.

We conjecture that, if the selection of those cache misses in

which to generate interrupts and thus execute STL fragments

is carefully performed, it may be possible to execute the

entire STL without any increase in task response time.

IX. ACKNOWLEDGEMENTS

We would like to thank Luca Maruccio for the invaluable

contributions and support provided during the early stages of

the design and prototyping activities.

REFERENCES
[1] F. Rehm et al., "The Road towards Predictable Automotive High -

Performance Platforms," 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Grenoble, France, 2021, pp. 1915-

1924, doi: 10.23919/DATE51398.2021.9473996.

[2] R. Singh and S. S. Gill, “Edge AI: A survey,” Internet of Things and
Cyber-physical Systems, vol. 3, pp. 71–92, Jan. 2023, doi:

10.1016/j.iotcps.2023.02.004.

[3] A. Lavin et al., “Technology readiness levels for machine learning
systems,” Nature Communications, vol. 13, no. 1, Oct. 2022, doi:

10.1038/s41467-022-33128-9.

[4] A. Avizienis, J. -c. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE

Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.

11–33, Jan. 2004, doi: 10.1109/tdsc.2004.2.

[5] “Road vehicles - Functional Safety”, ISO 26262:2018 2nd edition,

2018

[6] “Railway applications - The specification and demonstration of
Reliability, Availability, Maintainability and Safety (RAMS)”,

CENELEC EN:50129, 2018

[7] “Electronic Functional Safety Package”, IEC EN 61508, 2010
[8] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein and M. Wolf,

"Special Session: Future Automotive Systems Design: Research

Challenges and Opportunities," 2018 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),

Turin, Italy, 2018, pp. 1-7, doi: 10.1109/CODESISSS.2018.8525873

[9] D. P. Siewiorek and R. S. Swarz, “Reliable Computer System Design
and Evaluation, Third Edition (3rd ed.)”, A K Peters/CRC Press, 1998,

doi: 10.1201/9781439863961
[10] B. Littlewood and L. Strigini, "Software Reliability and

Dependability: A Roadmap," in Proceedings of the 22nd International

Conference on Software Engineering (ICSE2000), Limerick, June
2000, pp. 177-188.

[11] E. J. McCluskey, "Built-In Self-Test Techniques" in IEEE Design &

Test of Computers, vol. 2, no. 2, pp. 21-28, April 1985, doi:
10.1109/MDT.1985.294856.

[12] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan and D. I. August,

"SWIFT: software implemented fault tolerance" International

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Symposium on Code Generation and Optimization, San Jose, CA,

USA, 2005, pp. 243-254, doi: 10.1109/CGO.2005.34.

[13] J. H. Wensley et al., "SIFT: Design and analysis of a fault-tolerant
computer for aircraft control," in Proceedings of the IEEE, vol. 66, no.

10, pp. 1240-1255, Oct. 1978, doi: 10.1109/PROC.1978.11114.

[14] X. Iturbe, B. Venu, E. Ozer, J.-L. Poupat, G. Gimenez, and H.-U.
Zurek, “The Arm Triple Core Lock-Step (TCLS) Processor,” ACM

Trans. Comput. Syst., vol. 36, no. 3, pp. 1–30, 2018. DOI:

10.1145/3323917.
[15] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber and C. Fetzer, "HAFT:

hardware-assisted fault tolerance", Proc. 11th Eur. Conf. Comput.

Syst., pp. 1-17, Apr. 2016, doi: 10.1145/2901318.2901339
[16] M. Psarakis, D. Gizopoulos, E. Sanchez and M. Sonza Reorda,

"Microprocessor Software-Based Self-Testing," in IEEE Design &

Test of Computers, vol. 27, no. 3, pp. 4-19, May-June 2010, doi:
10.1109/MDT.2010.5.

[17] N. Hage, R. Gulve, M. Fujita and V. Singh, "On Testing of Superscalar

Processors in Functional Mode for Delay Faults," 2017 30th
International Conference on VLSI Design and 2017 16th International

Conference on Embedded Systems (VLSID), Hyderabad, India, 2017,

pp. 397-402, doi: 10.1109/VLSID.2017.58.
[18] “Software Test Library NXP”. Accessed 27/06/2024. [online]

Available: https://www.nxp.com/design/design-

center/software/functional-safety-software/structural-core-self-test-
scst-library:SCST

[19] “Software Test Library STMicroelectronics”. Accessed 27/06/2024.
[online] Available: https://www.st.com/en/embedded-software/x-

cube-classb.html

[20] “Software Test Library Renesas”. Accessed 27/06/2024. [online]
Available: https://www.renesas.com/en-

eu/products/synergy/software/add-ons.html#read.

[21] “Software Test Library Microchip”. Accessed 27/06/2024. [online]

Available: https://www.microchip.com/en-

us/products/microcontrollers-and-microprocessors/32-bit-mcus/32-

bit-functional-safety/industrial-safety-self-test-library
[22] “Software Test Library ARM”. Accessed 27/06/2024. [online]

Available: https://www.arm.com/products/development-

tools/embedded-and-software/software-test-libraries
[23] F. Pratas, T. Dedes, A. Webber, M. Bemanian and I. Yarom,

"Measuring the effectiveness of ISO26262 compliant self test library,"

2018 19th International Symposium on Quality Electronic Design
(ISQED), Santa Clara, CA, USA, 2018, pp. 156-161, doi:

10.1109/ISQED.2018.8357281.

[24] Y. K. Malaiya, Naixin Li, J. Bieman, R. Karcich and B. Skibbe, "The
relationship between test coverage and reliability," Proceedings of

1994 IEEE International Symposium on Software Reliability

Engineering, Monterey, CA, USA, 1994, pp. 186-195, doi:
10.1109/ISSRE.1994.341373.

[25] E. F. Weglarz, K. K. Saluja and T. M. Mak, "Testing of hard faults in

simultaneous multi-threaded processors" Proceedings. 10th IEEE
International On-Line Testing Symposium, Funchal, Portugal, 2004,

pp. 95-100, doi: 10.1109/OLT.2004.1319665.

[26] N. Ferrante, F. Terrosi, L. Maruccio, F. Rossi, L. Fanucci, and A.

Bondavalli, “HUSTLE: A Hardware Unit for Self-test-Libraries

Efficient Execution”, in Applications in Electronics Pervading
Industry, Environment and Society, 2024, pp. 392–398. doi:

10.1007/978-3-031-48121-5_56

[27] B. Sprunt, L. Sha, and J. Lehoczky, ‘Aperiodic task scheduling for
Hard-Real-Time systems’, Real-Time Systems, vol. 1, no. 1, pp. 27–

60, Jun. 1989.

[28] T.-H. Lin and W. Tarng, “Scheduling periodic and aperiodic tasks in
hard real-time computing systems”, in Proceedings of the 1991 ACM

SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, San Diego, California, USA, 1991, pp. 31–38.
[29] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic

priority systems”, Real-Time Systems, vol. 10, no. 2, pp. 179–210,

Mar. 1996.
[30] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C.

Celio et al., “The Rocket Chip Generator”, EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,
4, 6-2. Apr 2016.

[31] “Chipyard’s documentation”. Accessed 27/6/2024. [Online]

https://chipyard.readthedocs.io/en/stable/
[32] A. Waterman et al., “The RISC-V instruction set manual”, Volume I:

User-Level ISA’, 2014.

[33] “BOOM Core”. Accessed 27/06/2024. [Online] Available:
https://boom-core.org/

[34] C. Celio, D. A. Patterson, and K. Asanović, “The Berkeley Out-of-
Order Machine (BOOM): An Industry-Competitive, Synthesizable,

Parameterized RISC-V Processor”, Jun. 2015.

[35] “RISCV-BOOM’s documentation”. Accessed 27/06/2024. [Online]
Available: https://docs.boom-core.org/en/latest/

[36] M. Gaudesi, I. Pomeranz, M. S. Reorda and G. Squillero, "New

Techniques to Reduce the Execution Time of Functional Test

Programs," in IEEE Transactions on Computers, vol. 66, no. 7, pp.

1268-1273, 1 July 2017, doi: 10.1109/TC.2016.2643663

[37] Y. Li, O. Mutlu, and S. Mitra, ‘Operating system scheduling for
efficient online self-test in robust systems’, in Proceedings of the 2009

International Conference on Computer-Aided Design, San Jose,

California, 2009, pp. 201–208.
[38] W. J. Dally, Y. Turakhia, and S. Han, ‘Domain-specific hardware

accelerators’, Commun. ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020.

[39] P. Bernardi, L. M. Ciganda, E. Sanchez and M. S. Reorda, "MIHST:
A Hardware Technique for Embedded Microprocessor Functional On-

Line Self-Test," in IEEE Transactions on Computers, vol. 63, no. 11,

pp. 2760-2771, Nov. 2014, doi: 10.1109/TC.2013.165.
[40] Y. Li, S. Makar and S. Mitra, "CASP: Concurrent Autonomous Chip

Self-Test Using Stored Test Patterns," 2008 Design, Automation and

Test in Europe, Munich, Germany, 2008, pp. 885-890, doi:
10.1145/1403375.1403590.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

NICOLA FERRANTE received the B.S.

degree in computer engineering from

University of Pisa, in 2019, and, in 2021, the

M.S. degree in computer engineering from
University of Pisa.

He is currently pursuing the Ph.D. degree in

Information Engineering at University of
Pisa. From 2021, he works as researcher in

Resiltech SRL.

His research interests include the
development of efficient SW-based fault

protection mechanisms, fault models for aging-related faults in critical

systems, and fault detection systems that exploit artificial intelligence
algorithms.

Mr. Ferrante is a member of ISO/TC 22/SC 32/WG 8 and WG13 and has

participated in the development of the ISO PAS 8926 – Functional Safety -
Reuse of Pre-existing Software.

LUCA FANUCCI Luca Fanucci (Fellow,

IEEE) received the Laurea and Ph.D. degrees

in electronic engineering from the University
of Pisa, in 1992 and 1996, respectively. From

1992 to 1996, he was with the European Space

Agency—ESTEC, Noordwijk, The
Netherlands, as a Research Fellow. From 1996

to 2004, he was a Senior Researcher with the
Italian National Research Council in Pisa. He

is currently a Professor in microelectronics

with the University of Pisa. He is the coauthor
of more than 500 journal articles and

conference papers and a co-inventor of more than 40 patents. His research

interests include several aspects of design technologies for integrated
circuits and electronic systems, with particular emphasis on system-level

design, hardware/software co-design, and sensor conditioning and data

fusion. His main applications areas are in the field of wireless
communications, low-power multimedia, automotive, healthcare, ambient

assisted living, and technical aids for independent living. He is a member of

the editorial board of Technology and Disability (IOS Press). He is a fellow
of DATE. He served in several technical programme committees for

international conferences. He was the Program Chair of DSD 2008 and

DATE 2014 and the General Chair of DATE 2016 and HIPEAC
2020.(Based on document published on 30 March 2023).

FRANCESCO ROSSI took his Master

degree in Electronic Engineering with

110/110 cum Laude at University of Pisa
(Pisa, Italy) in 2002 and his PhD degree

in Information Engineering at

Department of Information Engineering
of University of Pisa (Pisa, Italy) in 2007

with curriculum “Micro and

nanoelectronic technologies, devices and
systems”. In the years 2004-2007 he

published 16 papers in international

journals and conference proceedings mainly focusing on algorithms and
VLSI architectures for telecom applications. From 2007 to 2010 he worked

in Renesas Electronics as Senior LSI designer for Automotive

microcontrollers for safety-relevant applications. Since 2011 he is the
Automotive Safety Solution Manager in Resiltech, and in these years, he

acted as safety manager in projects for Tier1 companies and supported

OEM, Tier2 and component provider in implementing a number of project
compliant with ISO26262. As safety expert he is joining ISO WG8 and

WG13 activities.

FRANCESCO TERROSI received his

master’s degree in computer science
(curriculum “Resilient and secure cyber-

physical systems”) from the University of

Florence, Italy, in 2020. He is currently a
PhD student at the same university. His

research activities are mostly centered on

safety-critical systems, with a focus on their
properties such as safety, fault tolerance

and, more in general, dependability of such

systems and their hardware components.
His other research interests include Machine Learning, from the theoretical

aspects to their application in safety-critical systems, and hence all the

aspects related to safety assurance of such components.

ANDREA BONDAVALLI Andrea

Bondavalli (Senior Member, IEEE) is

currently a Full Professor in computer
science with the University of Florence.

Previously, he has been a Researcher and a

Senior Researcher of the Italian National
Research Council, working at the CNUCE

Institute in Pisa. In particular, he has been

involved in safety, security, fault tolerance,
evaluation of attributes, such as reliability,

availability, and performability. His
scientific activities have originated more

than 220 papers appeared in international

journals and conferences. He supports as an Expert of the European
Commission in the selection and evaluation of project proposals and

regularly consults companies in the application field. His research interest

includes the dependability and resilience of critical systems and
infrastructures. He participates to (and has been chairing) the program

committee in several international conferences, such as IEEE FTCS, IEEE

SRDS, EDCC, IEEE HASE, IEEE ISORC, IEEE ISADS, IEEE DSN, and
SAFECOMP.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3434718

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

