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a b s t r a c t

Let Λ be the collection of all probability distributions for (X, X̃), where X is a fixed
random vector and X̃ ranges over all possible knockoff copies of X (in the sense of Candes
et al. (2018)). Three topics are developed in this paper: (i) A new characterization of Λ
is proved; (ii) A certain subclass of Λ, defined in terms of copulas, is introduced; (iii)
The (meaningful) special case where the components of X are conditionally independent
is treated in depth. In real problems, after observing X = x, each of points (i)–(ii)–(iii)
may be useful to generate a value x̃ for X̃ conditionally on X = x.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The availability of massive data along with new scientific problems have reshaped statistical thinking and data analysis.
igh-dimensionality has significantly challenged the boundaries of traditional statistical theory, in particular in the
egression framework. Variable selection methods are fundamental to discover meaningful relationships between an
utcome and all the measured covariates.
A new approach to regression problems, hereafter referred to as the knockoff procedure (KP), has been recently

ntroduced by Barber and Candes; see Barber and Candes (2015), Barber et al. (2020), Bates et al. (2021), Candes et al.
2018), Sesia et al. (2019). KP aims to control the false discovery rate among all the variables included in the model.
ndeed, KP is relevant for at least two reasons. Firstly, there are not many variable selection methods able to control the
alse discovery rate with finite-sample guarantees, mainly when the number p of covariates far exceeds the sample size
n. Secondly, KP makes assumptions that are substantially different from those commonly encountered in a regression set
up.

∗ Corresponding author.
E-mail address: fabrizio.leisen@gmail.com (F. Leisen).
ttps://doi.org/10.1016/j.jspi.2022.07.006
378-3758/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jspi.2022.07.006
http://www.elsevier.com/locate/jspi
http://www.elsevier.com/locate/jspi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2022.07.006&domain=pdf
mailto:fabrizio.leisen@gmail.com
https://doi.org/10.1016/j.jspi.2022.07.006


P. Berti, E. Dreassi, F. Leisen et al. Journal of Statistical Planning and Inference 223 (2023) 1–14

˜

Let Xi and Y be real random variables, where i = 1, . . . , p for some integer p ≥ 2. Here, the Xi should be regarded as
covariates and Y as the response variable. Letting

X = (X1, . . . , Xp),

one of the main features of KP is to model the probability distribution of X rather than the conditional distribution of Y
given X . Quoting from Candes et al. (2018, p. 554):

The usual set-up for inference in conditional models is to assume a strong parametric model for the response conditional
on the covariates, such as a homoscedastic linear model, but to assume as little as possible about, or even to condition on,
the covariates. We do the exact opposite by assuming that we know everything about the covariate distribution but nothing
about the conditional distribution Y |X1, . . . , Xp. Hence, we merely shift the burden of knowledge. Our philosophy is, therefore,
to model X, not Y , whereas, classically, Y (given X) is modeled and X is not.

Real situations where to model X is more appropriate than to model Y |X are actually common. An effective example,
in a genetic framework, is in Barber et al. (2020, Sect. 1).

As highlighted, the main target of KP is variable selection, taking the false discovery rate under control. We refer
to Barber and Candes (2015), Barber et al. (2020), Bates et al. (2021), Candes et al. (2018), Sesia et al. (2019) for a
description of KP and a discussion of its statistical behavior. In this paper, we deal with knockoff random variables, possibly
the basic ingredient of KP.

1.1. Two related problems

From now on, the probability distribution of any random element U is denoted by L(U) and the coordinates of a point
x ∈ Rn are indicated by x1, . . . , xn. Moreover, we let

I =
{
1, . . . , p

}
.

For x ∈ R2p and S ⊂ I , define fS(x) ∈ R2p by swapping xi with xp+i for each i ∈ S and leaving all other coordinates
fixed. Then, fS : R2p

→ R2p is a permutation. For instance, for p = 2, one obtains fS(x) = (x3, x2, x1, x4) if S = {1},
fS(x) = (x1, x4, x3, x2) if S = {2} and fS(x) = (x3, x4, x1, x2) if S = {1, 2}. Let

F =
{
fS : S ⊂ I

}
where f∅ is the identity map on R2p.

A knockoff copy of X , or merely a knockoff, is a p-variate random variable X̃ = (̃X1, . . . , X̃p) such that

• f (X, X̃) ∼ (X, X̃) for every f ∈ F;
• X̃ ⊥⊥ Y | X .

The condition X̃ ⊥⊥ Y | X is automatically true if X̃ = g(X) for some measurable function g . More generally, such a
condition is guaranteed whenever X̃ is constructed ‘‘without looking’’ at Y . This is exactly the case of this paper. Hence,
the condition X̃ ⊥⊥ Y | X is neglected.

We also note that a knockoff trivially exists. It suffices to let X̃ = X . This trivial knockoff, however, is not useful in
practice. Roughly speaking, for KP to work nicely, X̃ should be ‘‘as independent of X as possible’’.

Let Λ denote the collection of all knockoff distributions, namely

Λ =
{
L(X, X̃) : X̃ a knockoff copy of X

}
.

For KP to apply, a knockoff copy X̃ of X is required. Accordingly, the following two problems arise:

(i) How to build a knockoff X̃ ?
(ii) Is it possible to characterize Λ ?

Questions (i) and (ii) are connected. A characterization of Λ, if effective, should suggest how to obtain X̃ . Anyhow, both
(i) and (ii) have been answered.

As to (i), a first construction of X̃ is Algorithm 1 of Candes et al. (2018, p. 563). Even if nice, however, this construction
is not computationally efficient except from some special cases. See Bates et al. (2021, Sect. 2.2), Candes et al. (2018,
Sect. 7.2.1 ), Sesia et al. (2019, p. 6).

As to (ii), a characterization of Λ is in Bates et al. (2021, Theo. 1). Such a characterization, based on conditional
distributions, is effective. In fact, exploiting it and the Metropolis algorithm, some further (efficient) constructions of
X have been singled out.
2
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1.2. Our contribution

This paper is about problems (i)-(ii). Three distinct issues are discussed.

• In Section 2, a new characterization of Λ is proved. Such a characterization is based on invariance arguments and
provides a simple description of Λ. However, the characterization seems to have a theoretical content only. Apart
from a few special cases, in fact, it does not help to build a knockoff in practice.
• In Section 3, a certain (proper) subclass Λ0 ⊂ Λ is introduced. The elements of Λ0 admit a simple and explicit

representation in terms of copulas. In particular, to work with Λ0 is straightforward when L(X) corresponds to an
Archimedean copula. Furthermore, if L(X, X̃) ∈ Λ0, the conditional distribution L(̃X | X) can be written in closed
form. Therefore, after observing X = x, a value x̃ for X̃ can be drawn from L(̃X | X = x) directly. This is quite
different from the usual methods for obtaining x̃; see e.g. Barber and Candes (2015), Barber et al. (2020), Bates et al.
(2021), Candes et al. (2018), Sesia et al. (2019).
• In Section 4, we focus on the case where X1, . . . , Xp are conditionally independent, in the sense that

P
(
X1 ∈ A1, . . . , Xp ∈ Ap

)
= E

{ p∏
i=1

P(Xi ∈ Ai | Z)
}

(1)

for some random element Z and all Borel sets A1, . . . , Ap ⊂ R. This section includes our main results. Indeed, under
(1), to build a reasonable knockoff X̃ is straightforward. In addition, with a suitable choice of Z , to realize condition (1)
is quite simple in practice. It suffices to regard Z as a random parameter, equipped with a prior distribution, and to
implement a sort of Bayesian procedure. For instance, to obtain a knockoff X̃ such that cov(Xi, X̃i) = 0 for each i ∈ I
is very easy; see Examples 16–18 for details. From the statistician’s point of view, the advantage is twofold. Firstly,
condition (1) is easy to be realized and able to describe a number of real situations. Secondly, if X is modeled by
(1), to build X̃ is straightforward. In particular, as in Section 3, the conditional distribution L(̃X | X) can be usually
written in closed form.

To close the paper, in Section 5, the results mentioned above are translated into practical algorithms. This section,
written with applications in mind, aims to show how such results can be exploited in real problems.

1.3. Further notation

In the sequel,

X̃ = (̃X1, . . . , X̃p)

is any p-variate random variable (defined on the same probability space as X). Moreover, Bn is the Borel σ -field on Rn

and mn the Lebesgue measure on Bn.
As in Berti et al. (2022, Sect. 4), we denote by S(a, b) the symmetric α-stable law with parameters a and b, where a ∈ R,

b > 0 and α ∈ (0, 2]. This means that S(a, b) is the probability distribution of a+ b1/αL where L is a real random variable
with characteristic function

E
{
exp(i t L)

}
= exp

(
−
|t|α

2

)
for all t ∈ R.

Note that S(a, b) = N (a, b) if α = 2 and S(a, b) = C(a, b) if α = 1, where C(a, b) is the Cauchy distribution with density
f (x) = 2 b

π
1

b2+4 (x−a)2
(the standard Cauchy distribution corresponds to a = 0 and b = 2).

Finally, for any measures µ and ν (defined on the same σ -field) we write µ ≪ ν to mean that µ is absolutely
ontinuous with respect to ν, that is, µ(A) = 0 whenever A is measurable and ν(A) = 0.

2. A characterization of Λ

Let P be the collection of F-invariant probabilities, namely, those probability measures λ on B2p satisfying

λ ◦ f −1 = λ for all f ∈ F .

We begin by noting that λ ∈ P if and only if

λ =

∑
f∈F π ◦ f −1

2p (2)

for some probability measure π on B2p. In fact, if λ ∈ P , condition (2) trivially holds with π = λ (since card (F) = 2p).
Conversely, if g ∈ F and λ meets (2) for some π , then

λ ◦ g−1 =

∑
f∈F π ◦ f −1 ◦ g−1

2p =

∑
f∈F π ◦ (g ◦ f )−1

2p = λ

here the last equality is because F is a group under composition.
The above characterization of P has the following consequence.
3
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Theorem 1. λ ∈ Λ if and only if condition (2) holds for some probability measure π on B2p such that

1
2p

∑
f∈F

π
{
x ∈ R2p

: f (x) ∈ A× Rp}
= P(X ∈ A) (3)

for each A ∈ Bp.

Proof. If λ ∈ Λ, conditions (2)–(3) trivially hold with π = λ. Conversely, under (2)–(3), one obtains

λ(A× Rp) =

∑
f∈F π ◦ f −1(A× Rp)

2p = P(X ∈ A) for all A ∈ Bp.

Hence, up to enlarging the probability space where X is defined, there exists a p-variate random variable X̃ such that
L(X, X̃) = λ. Since λ ∈ P (because of condition (2)) X̃ is a knockoff copy of X , namely, λ ∈ Λ. □

From the theoretical point view, Theorem 1 provides a simple and clear description of Λ. Unfortunately, however,
to select a probability π satisfying condition (3) is very hard. Thus, in most cases, Theorem 1 is not practically useful.
Nevertheless, it may give some indications.

Example 2 (X Has a Density with Respect to a Product Measure). Let

ν = ν1 × · · · × νp

be a product measure on Bp, where each νi is a σ -finite measure on B1. For instance, νi = m1 for all i ∈ I . Or else, νi = m1
for some i and νj = counting measure (on a countable subset of R) for some j. And so on. In this example, we assume
(X)≪ ν. Hence, X has a density h with respect to ν, namely

P(X ∈ A) =
∫
A
h dν for all A ∈ Bp.

Fix a probability measure π on B2p satisfying condition (3) and define λ through condition (2). Then, Theorem 1 implies
∈ Λ. In addition, since the measure ν × ν is F-invariant, one obtains λ ≪ ν × ν provided π ≪ ν × ν. Precisely, if
≪ ν × ν and g is a density of π with respect to ν × ν, then

q =

∑
f∈F g ◦ f

2p

is a density of λ with respect to ν × ν. This formula is practically useful. In fact, since λ ∈ Λ, there is a knockoff X̃ such
hat L(X, X̃) = λ. Hence, after observing X = x, a value x̃ for such X̃ can be drawn from the conditional density

q(x, x̃)
h(x)

=

∑
f∈F g

[
f (x, x̃)

]
2ph(x)

where x, x̃ ∈ Rp.

Obviously, to make this example concrete, one needs a probability measure π satisfying condition (3) and π ≪ ν× ν.
As noted above, to find π is usually hard. However, a probability π with the required properties is in Example 9.

We close this section by determining those π which satisfy Eq. (2) for a given λ ∈ P .

Theorem 3. Fix λ ∈ P and any probability measure π on B2p. The following statements are equivalent:

(a) Condition (2) holds, namely, λ =
∑

f∈F π◦f−1

2p ;
(b) π admits a density with respect to λ, say q, and∑

f∈F

q
[
f (x)

]
= 2p for λ-almost all x ∈ R2p

;

(c) π = λ on G, where G =
{
A ∈ B2p : f −1(A) = A for all f ∈ F

}
.

The proof of Theorem 3 is postponed to the final Appendix.
As an application of Theorem 3, in the next example, λ is a well known knockoff distribution and we look for a

probability π satisfying Eq. (2) with respect to λ.

Example 4. Suppose X ∼ N (0,Σ) and take a diagonal matrix D such that

G =
(

Σ Σ − D
)

Σ − D Σ

4
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is semidefinite positive. If (X, X̃) ∼ N (0,G), then X̃ is a knockoff copy of X; see e.g. Candes et al. (2018, p. 559). Fix G as
above and define λ = N (0,G). Define also

q(x) = 2p φ(x)∑
g∈F φ[g(x)]

for all x ∈ R2p,

where φ is any strictly positive Borel function on R2p. Since F is a group,

2−p
∑
f∈F

q
[
f (x)

]
=

∑
f∈F

φ[f (x)]∑
g∈F φ[g ◦ f (x)]

=

∑
f∈F φ[f (x)]∑
g∈F φ[g(x)]

= 1.

Since card (F) = 2p and λ ∈ P ,∫
q(x) λ(dx) =

∑
f∈F

∫
φ(x)∑

g∈F φ[g(x)]
λ(dx)

=

∑
f∈F

∫
φ[f (x)]∑

g∈F φ[g(x)]
λ(dx) =

∫ ∑
f∈F φ[f (x)]∑
g∈F φ[g(x)]

λ(dx) = 1.

Therefore, thanks to Theorem 3,

π (dx) = q(x) λ(dx)

is a probability measure on B2p satisfying Eq. (2).

3. Constructing knockoffs via copulas

In this section, F and Fi are the distribution functions of X and Xi, respectively. Moreover, for any distribution function
G on Rn, we write λG to denote the probability measure on Bn induced by G.

A n-copula, or merely a copula, is a distribution function on Rn with uniform (on the interval (0, 1)) univariate
marginals. By Sklar’s theorem, for any distribution function G on Rn there is a n-copula C such that

G(x) = C
[
G1(x1), . . . ,Gn(xn)

]
for all x ∈ Rn,

where G1, . . . ,Gn are the univariate marginals of G.
Let us fix a p-copula C such that

F (x) = C
[
F1(x1), . . . , Fp(xp)

]
for all x ∈ Rp.

Note that C is unique whenever F1, . . . , Fp are continuous. Note also that, since F is known, C can be regarded to be known
as well.

In order to manufacture a knockoff, a naive idea is to let

H(x) = C
[
D1
(
F1(x1), F1(xp+1)

)
, . . . ,Dp

(
Fp(xp), Fp(x2p)

)]
(4)

for all x ∈ R2p, where D1, . . . ,Dp are any 2-copulas. Such an H is a possible candidate to be the distribution function of
(X, X̃) for some knockoff copy X̃ of X .

Unfortunately, H may fail to be a distribution function on R2p. However λH ∈ Λ, more or less by definition, whenever
H is a distribution function and D1, . . . ,Dp are symmetric (i.e., Di(u2, u1) = Di(u1, u2) for all u ∈ [0, 1]2 and i ∈ I).

Theorem 5. Suppose that H is a distribution function on R2p. Then,

λH
{
x ∈ R2p

: f (x) ∈ A× Rp}
= P(X ∈ A) (5)

for all f ∈ F and A ∈ Bp. In particular, λH satisfies condition (3) (namely, (3) holds if π = λH ). Moreover, λH ∈ Λ whenever
D1, . . . ,Dp are symmetric.

Proof. To prove condition (5), just note that

lim
xp+1,...,x2p→∞

H
[
f (x)

]
= F (x1, . . . , xp) for all f ∈ F and x ∈ R2p.

Moreover, if D1, . . . ,Dp are symmetric, then

H
[
f (x)

]
= H(x) for all f ∈ F and x ∈ R2p.

Hence, λ ∈ P and Theorem 1 implies λ ∈ Λ. □
H H

5
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For Theorem 5 to work, the obvious drawback is how to choose D1, . . . ,Dp in such a way that H is a distribution
function. However, when this drawback can be overcome, an explicit expression for L(X, X̃) is available where X̃ is a
knockoff copy of X . Hence, the conditional distribution of X̃ given X can be written in closed form.

As an example, suppose that H is a distribution function and C,D1, . . . ,Dp, F1, . . . , Fp are all absolutely continuous
with respect to the Lebesgue measure of appropriate dimension. Then, H is absolutely continuous with respect to the
Lebesgue measure of dimension 2p. Moreover, if X̃ is such that L(X, X̃) = λH , the conditional density of X̃ given X = x
can be written as

p(̃x | x) =
1

ϕ
[
F1(x1), . . . , Fp(xp)

] ∏p
i=1 fi(xi)

·
∂2pH

∂xp . . . ∂x1∂̃xp . . . ∂̃x1
(x, x̃)

where x, x̃ ∈ Rp and ϕ and fi are the densities of C and Fi, respectively. This formula will be used in Section 5.
We next discuss the choice of D1, . . . ,Dp. As already noted, not every choice is admissible.

Example 6 (H May Fail to Be a Distribution Function). Let p = 2 and C(u) = (u1 + u2 − 1)+ for u ∈ [0, 1]2. Then, with
1 = C , one obtains

lim
x4→∞

H(x) = C
[
D1
(
F1(x1), F1(x3)

)
, D2

(
F2(x2), 1

)]
= C

[
D1
(
F1(x1), F1(x3)

)
, F2(x2)

]
=

(
F2(x2)+

(
F1(x1)+ F1(x3)− 1

)+
− 1

)+
=
(
F1(x1)+ F1(x3)+ F2(x2)− 2

)+
.

Therefore, limx4→∞ H(x) is not a distribution function on R3, so that H is not a distribution function on R4.

Let

Λ0 =
{
λ ∈ Λ : the distribution function of λ admits representation (4)

}
.

Despite Example 6, a possible question is whether Λ0 = Λ.

Example 7 (Λ0 Is a Proper Subset Of Λ). Let U = (U1, . . . ,U2p) and V = (V1, . . . , V2p) be any random variables. Then,
L(U) = L(V ) provided:

L(U) ∈ Λ0, L(V ) ∈ Λ0, and L(Ui,Up+i) = L(Vi, Vp+i) for each i ∈ I.

After noting this fact, take U and V exchangeable and such that

L(U) ̸= L(V ) but L(U1, . . . ,Up) = L(V1, . . . , Vp).

Suppose also that X ∼ (U1, . . . ,Up). Since U is exchangeable, L(U) ∈ P . By Theorem 1 and X ∼ (U1, . . . ,Up), one obtains
L(U) ∈ Λ. Similarly, L(V ) ∈ Λ. Hence, at least one between L(U) and L(V ) belongs to Λ \ Λ0. In fact, L(U) ̸= L(V ) but
L(Ui,Uj) = L(Vi, Vj) for all i ̸= j (because of exchangeability).

We next give conditions for H to be a distribution function.

Theorem 8. H is a distribution function on R2p whenever

(j) Di is of class C2 for each i ∈ I;
(jj) C has a density ϕ with respect to mp;
(jjj) ϕ is of class Cp and, at each point u ∈ [0, 1]2p, one obtains

∂p

∂u2p . . . ∂up+1
ϕ

[
D1(u1, up+1), . . . ,Dp(up, u2p)

] p∏
i=1

∂

∂ui
Di(ui, up+i) ≥ 0.

Under such conditions, one also obtains λH ≪ m2p whenever L(Xi)≪ m1 for each i ∈ I .

Condition (jjj) is a technical constraint, required to guarantee the existence and positivity of the partial derivatives of H ,
nd has no heuristic interpretation (known to us). We also recall that L(Xi)≪ m1 means that the probability distribution

of Xi is absolutely continuous with respect to the Lebesgue measure m1.
The proof of Theorem 8 is deferred to Appendix. Here, we give three final examples.

Example 9 (Asymmetric Copulas). Suppose that H is a distribution function on R2p. If Di is not symmetric for some i ∈ I ,
as we assume, then usually λ /∈ Λ. However, Theorem 5 implies that λ satisfies condition (3). Therefore, Theorem 1
H H

6
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yields

λ :=

∑
f∈F λH ◦ f −1

2p ∈ Λ.

Furthermore, the distribution function of λ, say G, can be written explicitly as

G(x) =

∑
f∈F H

[
f (x)

]
2p for all x ∈ R2p.

Suppose now that C,D1, . . . ,Dp satisfy conditions (j)-(jj)-(jjj) and L(Xi) ≪ m1 for each i ∈ I . Then, not only H is a
distribution function, but λH ≪ m2p. Hence, one can let π = λH in Example 2.

Example 10 (An Open Problem). In principle, a knockoff X̃ should be ‘‘as independent of X as possible’’. Thus, it is tempting
to let

Di(u) = u1 u2 for all u ∈ [0, 1]2 and i ∈ I.

In this case, D1, . . . ,Dp are symmetric and, for all i ∈ I and x ∈ R2p,

lim
xj→∞, j∈Ji

H(x) = Fi(xi) Fi(xp+i) where Ji = {1, . . . , 2p} \ {i, p+ i}.

Therefore, if H is a distribution function and (X, X̃) ∼ λH , then

X̃ is a knockoff copy of X and X̃i is independent of Xi for each i ∈ I.

Thus, a (natural) question is: If each Di is the independence copula, under what conditions H is a distribution function ? Some
partial answers are available. For instance, H is a distribution function if C admits a smooth density ϕ (with respect to
mp) such that

∂p

∂u2p . . . ∂up+1
ϕ

(
u1up+1, . . . , upu2p

) p∏
i=1

up+i ≥ 0.

Or else, H is a distribution function if C is Archimedean with a suitable generator ψ (just let ψi(x) = exp(−x) in
condition (6) of Example 11). To our knowledge, however, a general answer to the above question is still unknown.

Example 11 (Archimedean Copulas). An Archimedean generator is a continuous and strictly decreasing function ψ :

[0,∞)→ (0, 1] such that ψ(0) = 1 and limx→∞ ψ(x) = 0. By convention, we let ψ(∞) = 0 and ψ−1(0) = ∞.
Suppose C is Archimedean with generator ψ , that is,

C(u) = ψ
( p∑

i=1

ψ−1(ui)
)

for all u ∈ [0, 1]p.

Suppose also that ψ has derivatives up to order 2p on (0,∞) and

(−1)k ψ (k)
≥ 0 for k = 1, . . . , 2p,

where ψ (k) denotes the kth derivative of ψ . In view of McNeil and Neslehova (2009, Cor. 2.1), the latter condition implies
that

C∗(u) = ψ
( 2p∑

i=1

ψ−1(ui)
)
, u ∈ [0, 1]2p,

is a 2p-copula. Therefore, H is a distribution function on R2p as far as D1, . . . ,Dp are Archimedean with the same generator
as C . In this case, in fact,

H(x) = ψ
{ p∑

i=1

ψ−1
(
Di
(
Fi(xi), Fi(xp+i)

))}
= ψ

{ p∑
i=1

ψ−1(Fi(xi))+
p∑

i=1

ψ−1(Fi(xp+i))
}

= C∗
{
F1(x1), . . . , Fp(xp), F1(xp+1), . . . , Fp(x2p)

}
for all x ∈ R2p.

In addition, since D , . . . ,D are symmetric, one also obtains λ ∈ Λ.
1 p H

7
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More generally, suppose that Di is Archimedean with generator ψi for each i ∈ I . Then, H is a distribution function and
H ∈ Λ provided

(−1)k ψ (k)
i ≥ 0 and (−1)k−1

(
ψ−1 ◦ ψi

)(k)
≥ 0 (6)

for all i ∈ I and k = 1, . . . , 2p; see Okhrin et al. (2013, p. 190) and Savu and Trede (2010, p. 297). If all the generators
ψ,ψ1, . . . , ψp belong to the same parametric family, such us the Gumbel or the Clayton, condition (6) reduces to a simple
restriction on the parameters; see Embrechts et al. (2003).

A last general remark is that the idea underlying Theorems 5 and 8 could be realized, possibly in a better way, involving
special types of copulas. For instance, a possibility could be using pair copulas; see e.g. Aas et al. (2009).

4. Conditional independence

To build a (reasonable) knockoff is not hard if X is conditionally independent given some random element Z . We begin
by making this claim precise.

Theorem 12. Suppose that, for some random element Z, one obtains

P
(
X1 ∈ A1, . . . , Xp ∈ Ap

)
= E

{ p∏
i=1

P(Xi ∈ Ai | Z)
}

(7)

for all A1, . . . , Ap ∈ B1. Let λ be the (only) probability measure on B2p such that

λ(A1 × · · · × A2p) = E

{ p∏
i=1

P(Xi ∈ Ai | Z)
p∏

i=1

P(Xi ∈ Ap+i | Z)

}
whenever Ai ∈ B1 for all i = 1, . . . , 2p. Then, λ ∈ Λ.

Proof. For all A1, . . . , A2p ∈ B1, define

λ0(A1 × · · · × A2p) = E

{ p∏
i=1

P(Xi ∈ Ai | Z)
p∏

i=1

P(Xi ∈ Ap+i | Z)

}
.

Such a λ0, defined on

R =
{
A1 × · · · × A2p : Ai ∈ B1, i = 1, . . . , 2p

}
,

uniquely extends to a probability measure λ on B2p. By definition,

λ ◦ f −1(A) = λ0 ◦ f −1(A) = λ0(A) = λ(A)

whenever f ∈ F and A ∈ R. Hence, λ ∈ P . Finally, if Ai = R for i > p, condition (7) yields

λ(A1 × · · · × Ap × Rp) = E
{ p∏

i=1

P(Xi ∈ Ai | Z)
}
= P

(
X1 ∈ A1, . . . , Xp ∈ Ap

)
.

Therefore, λ ∈ Λ. □

In real problems, to take advantage of Theorem 12, one needs to select a random element Z satisfying condition (7).
As an extreme example, suppose Z = X . Then, condition (7) holds and P(Xi ∈ Ai | X) = 1Ai (Xi) a.s. Therefore,

λ(A1 × · · · × A2p) = E

{ p∏
i=1

1Ai (Xi)
p∏

i=1

1Ap+i (Xi)

}
= P

(
X1 ∈ A1 ∩ Ap+1, . . . , Xp ∈ Ap ∩ A2p

)
.

Such a λ is precisely the probability distribution of the trivial knockoff (X, X) (namely, X̃ = X). Thus, as it could be guessed,
Z = X is not a good choice. We now consider some better choices.

Example 13 (Stable Laws). Let U = (U1, . . . ,Up) and Z = (Z1, . . . , Zp) be p-variate random variables, with U independent
of Z and U1, . . . ,Up independent among them. Then, condition (7) holds whenever
X = U + Z .

8
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As an example, fix α ∈ (0, 2] and suppose Ui ∼ S(ai, bi) for all i. According to Section 1.3, this means that Ui has a
ymmetric α-stable distribution with parameters ai ∈ R and bi > 0. For A ∈ B1, write S(a, b)(A) to denote the value
attached to A by the probability measure S(a, b). In this notation, since Ui + c ∼ S(ai + c, bi) for all c ∈ R, one obtains

P(X1 ∈ A1, . . . , Xp ∈ Ap | Z) =
p∏

i=1

S(ai + Zi, bi)(Ai) a.s.

Hence, Theorem 12 implies λ ∈ Λ where

λ(A1 × · · · × A2p) = E

{ p∏
i=1

S(ai + Zi, bi)(Ai)
p∏

i=1

S(ai + Zi, bi)(Ap+i)

}
.

Example 14 (Normal Distributions). As a special case of Example 13 (with α = 2) suppose X ∼ N (µ,Σ). Let D be a
diagonal matrix such that Σ − D is semidefinite positive and dii ≥ 0 for all i, where dii is the ith diagonal element of D.
Then, one can take U ∼ N (0,D) and Z ∼ N (µ,Σ − D). The conditional distribution of X given Z is N (Z,D). Since D is
diagonal, X1, . . . , Xp are conditionally independent, given Z , with Xi ∼ N (Zi, dii). Define

λ(A1 × · · · × A2p) = E

{ p∏
i=1

N (Zi, dii)(Ai)
p∏

i=1

N (Zi, dii)(Ap+i)

}
.

Then, by Theorem 12, there is a knockoff copy X̃ of X such that (X, X̃) ∼ λ. Finally, it is easily seen that

λ = N (µ∗,G) where µ∗ =

(
µ

µ

)
and G =

(
Σ Σ − D

Σ − D Σ

)
.

A concrete example (suggested by an anonymous referee) is the so called ‘‘equicorrelated’’ Gaussian distribution,
namely, σii = b and σij = a for all i and all j ̸= i, where 0 < a < b are fixed constants. In this case, it suffices to
take dii ∈ (0, b− a) for all i.

The probability λ obtained in Example 14 is already known to be an element of Λ; see e.g. Candes et al. (2018, p. 559).
Instead, in the next example, Theorem 12 yields a new knockoff distribution.

Example 15 (Mixtures of Normal Distributions). Let

X = ZU

where Z is a random p×p diagonal matrix and U a p-dimensional column vector. Suppose U ∼ N (0, I) and Z independent
of U . Then, the probability distribution of X can be written as

P(X ∈ A) = E
{
N (0, ZZ)(A)

}
for all A ∈ Bp.

Probability distributions of this type play a role in various frameworks. For instance, they arise as the limit laws in the
CLT for exchangeable random variables; see e.g. Berti et al. (2004, Sect. 3). In any case, since ZZ is diagonal, X1, . . . , Xp are
conditionally independent given Z with Xi ∼ N (0, Z2

ii ). Hence, Theorem 12 implies λ ∈ Λ where

λ(A1 × · · · × A2p) = E

{ p∏
i=1

N (0, Z2
ii )(Ai)

p∏
i=1

N (0, Z2
ii )(Ap+i)

}
.

A further example, where conditional independence is exploited to obtain a knockoff, is in Bates et al. (2020).
In applications, to assign L(X) is one of the main statistician’s tasks. Hence, a reasonable strategy is to model X so

as to realize conditional independence, with respect to some latent variable Z , and then to obtain a knockoff X̃ via
Theorem 12. As already noted, the advantage is twofold. On one hand, conditional independence is easy to be realized
and able to describe various real situations. On the other hand, to build X̃ is straightforward whenever X is conditionally
independent. In the rest of this section, the statistician is assumed to adopt this strategy. Thus, he/she decides to model
X as conditionally independent with respect to some Z . Note that, in this framework, L(X) is regarded as a statistician’s
choice (and not as an external constraint to be satisfied). The next example is fundamental.

Example 16 (Parametric Constructions of Knockoffs). Suppose X is modeled as

P
(
X1 ∈ A1, . . . , Xp ∈ Ap

)
=

∫
Θ

p∏
Qi(Ai, θ ) γ (dθ ),
i=1

9
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where Q1(·, θ ), . . . ,Qp(·, θ ) are probabilities on B1, indexed by some parameter θ ∈ Θ , and γ is a mixing probability on
Θ . As an example, one could take

Qi(·, θ ) = N (µi, σ
2
i ) and θ = (µ1, . . . , µp, σ

2
1 , . . . , σ

2
p ).

In this case, γ would be a probability measure on Θ = Rp
× (0,∞)p.

More generally, fix a σ -finite measure νi on B1 and suppose Qi(·, θ ) has a density fi(·, θ ) with respect to νi, namely

Qi(A, θ ) =
∫
A
fi(t, θ ) νi(dt) for all i ∈ I, A ∈ B1 and θ ∈ Θ.

Define λ to be the probability measure on B2p with density q with respect to ν × ν, where ν = ν1 × · · · × νp and

q(y) = q(y1, . . . , y2p) =
∫
Θ

p∏
i=1

fi(yi, θ )
p∏

i=1

fi(yp+i, θ ) γ (dθ ) for all y ∈ R2p.

Then, λ ∈ Λ because of Theorem 12. Therefore, after observing X = x, a value x̃ for the knockoff X̃ can be drawn from
the conditional density

q(x, x̃)
h(x)

,

here x, x̃ ∈ Rp and h(x) =
∫
Θ

∏p
i=1 fi(xi, θ ) γ (dθ ) is the marginal density of X .

Example 16 is general enough to cover a wide range of real situations.
We now briefly discuss the choice of γ . It may be helpful to recall that, once Q1(·, θ ), . . . ,Qp(·, θ ) have been selected,

o choose γ is equivalent to choose the probability distribution of X .

xample 17 (Choice of γ ). It is tempting to regard the mixing measure γ as a prior distribution. Even if not mandatory,
his interpretation is helpful. Hence, in the sequel, γ is referred to as the prior. Let Qi(·, θ ), fi(·, θ ) and λ ∈ Λ be as in
xample 16. Two (distinct) criterions to select γ are as follows.
Roughly speaking, γ tunes the dependence between X and X̃ , where X̃ is such that L(X, X̃) = λ. Define in fact

Q (·, θ ) = Q1(·, θ )× · · · × Qp(·, θ ).

Then, Q (·, θ ) is a probability measure on Bp and

P(X ∈ A, X̃ ∈ B)− P(X ∈ A) P (̃X ∈ B) = (8)

=

∫
Θ

Q (A, θ )Q (B, θ ) γ (dθ )−
∫
Θ

Q (A, θ ) γ (dθ )
∫
Θ

Q (B, θ ) γ (dθ )

or all A, B ∈ Bp. Thus, a first criterion is to choose γ so as to make (8) small for some A and B. This is just a rough and
aive indication, difficult to realize in practice, but it may be potentially useful.
To state the second criterion, denote by hγ the marginal density of X when the prior is γ , namely

hγ (x) =
∫
Θ

p∏
i=1

fi(xi, θ ) γ (dθ ) for all x ∈ Rp.

uppose now that X = x is observed. Then, hγ can be seen as the integrated likelihood of x with respect to the prior
. From a Bayesian point of view, it is desirable that hγ (x) is high. Therefore, a second criterion is to choose γ so as to
aximize the map γ ↦→ hγ (x). For instance, the choice between two conflicting priors γ1 and γ2 could be seen as a model
election problem. Accordingly, we could choose between γ1 and γ2 based on the Bayes factor hγ1 (x)/hγ2 (x). A practical
dvantage is that we can profit on the broad literature on Bayes factors and related topics.

Another useful feature of Example 16 is highlighted in the next example.

xample 18 (Uncorrelated Knockoffs). Under some assumptions on Qi(·, θ ), one obtains

cov(Xi, X̃i) = 0 for all i ∈ I and all priors γ .

ix in fact i ∈ I and suppose the mean of Qi(·, θ ) exists and does not depend on θ , say∫
t Qi(dt, θ ) = ai for some ai ∈ R and all θ ∈ Θ.
R

10
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Then, independently of γ , Fubini’s theorem yields

cov(Xi, X̃i) =
∫
Θ

a2i dγ −
(∫

Θ

ai dγ
)2

= a2i − a2i = 0.

or instance, cov(Xi, X̃i) = 0 provided Qi(·, θ ) = N (0, σ 2
i (θ )) for all θ .

We conclude our discussion of Example 16 with a practical example.

xample 19 (Conditionally Independent Poisson Data). Let θ = (θ1, . . . , θp) and Qi(·, θ ) a Poisson distribution with
arameter θi. We consider two different choices of the prior γ .
First, let γ = γ1×· · ·×γp where each γi is a Gamma distribution with parameters ai and bi. In this case, since θ1, . . . , θp

re independent under γ , the calculations are straightforward:

q(y1, . . . , y2p) =
p∏

i=1

∫
∞

0

(
θ
yi
i

yi!
e−θi

θ
yi+p
i

yi+p!
e−θi

)
baii
Γ (ai)

θ
ai−1
i e−biθidθi

=

p∏
i=1

1
yi!yi+p!

baii
Γ (ai)

Γ (ai + yi + yi+p)
(bi + 2)ai+yi+yi+p

.

Similarly,

h(y1, . . . , yp) =
p∏

i=1

1
yi!

baii
Γ (ai)

Γ (ai + yi)
(bi + 1)ai+yi

.

Therefore, after observing X = x, a value x̃ for the knockoff X̃ can be drawn from the conditional density

q(x, x̃)
h(x)

=

p∏
i=1

1
x̃i!
Γ (ai + xi + x̃i)
Γ (ai + xi)

(bi + 1)ai+xi

(bi + 2)ai+xi+x̃i
.

Second, let γ be a Dirichlet distribution with parameters a1, . . . , ap. Denote by

S =

{
θ ∈ Rp

: θi ≥ 0 for all i and
p∑

i=1

θi = 1

}
the p-dimensional simplex, and by

m(n1, . . . , np) =
∫
S
θ
n1
1 . . . θ

np
p γ (dθ )

the mixed moment of γ of order (n1, . . . , np). Explicit formulae for m(n1, . . . , np) are available; see e.g. Kotz et al. (2000),
page 488, equation (49.7). Since γ (S) = 1, one obtains

q(y1, . . . , y2p) =
∫
S
exp

(
−2

p∑
i=1

θi

) p∏
i=1

θ
yi+yi+p
i

p∏
i=1

1
yi!yi+p!

γ (dθ )

= e−2 m(y1 + yp+1, . . . , yp + y2p)
p∏

i=1

1
yi!yi+p!

.

Similarly,

h(y1, . . . , yp) = e−1 m(y1, . . . , yp)
p∏

i=1

1
yi!
.

Hence, the conditional density of X̃ given X = x can be written as

q(x, x̃)
h(x)

= e−1
m(x1 + x̃1, . . . , xp + x̃p)

m(x1, . . . , xp)

p∏
i=1

1
x̃i!
.

5. Sampling strategies

In Sections 3 and 4, exploiting copulas and conditional independence, two general methods for constructing knockoffs
have been introduced. In this section, having applications in mind, such methods are translated into practical algorithms.
11
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Two classical MCMC algorithms, the Metropolis–Hastings sampler and the Gibbs sampler via data augmentation, are
proposed. Obviously, our proposals are not the only possible ones. The literature on MCMC is huge (see e.g. Brooks et al.,
2011) and some better sampling strategies could be available. The only goal of this section is to point out that the material
of Sections 3–4 can be easily used in applied settings.

We denote by x = (x1, . . . , xp) and x̃ = (̃x1, . . . , x̃p) two points of Rp. Here, x should be regarded as the observed value
of X and x̃ as the value to be sampled of the knockoff X̃ .

5.1. A Metropolis–Hastings approach to copula knockoffs

In the notation of Section 3, we assume that C,D1, . . . ,Dp, F1, . . . , Fp are all absolutely continuous with respect to the
Lebesgue measure of appropriate dimension. Algorithm 1 provides a strategy to sample x̃ via the copula construction of
Section 3.

Algorithm 1 Copula knockoffs: general algorithm
1. Choose the distribution functions F1, . . . , Fp on R, a p-copula C and a family of 2-copulas D1, . . . ,Dp in such a way
that

H(x, x̃) = C
[
D1
(
F1(x1), F1 (̃x1)

)
, . . . ,Dp

(
Fp(xp), Fp (̃xp)

)]
is a distribution function on R2p

2. Sample x̃ from the conditional density

p(̃x | x) =
1

ϕ
[
F1(x1), . . . , Fp(xp)

] ∏p
i=1 fi(xi)

·
∂2pH

∂xp . . . ∂x1∂̃xp . . . ∂̃x1
(x, x̃)

where ϕ and fi are the densities of C and Fi, respectively

Sampling from p(̃x | x) may be not straightforward. However, since

p(̃x | x) ∝
∂2pH

∂xp . . . ∂x1∂̃xp . . . ∂̃x1
(x, x̃),

a Metropolis–Hastings sampler is available. One such sampler is provided by Algorithm 2.

Algorithm 2 Metropolis–Hastings sampler

1. Choose the initial value x̃(0)
2. Choose the proposal distribution K (·|x) (usually a Markov Kernel)
for j← 1 to M do

3. Sample y from the proposal K (·|̃x(j−1))
4. Compute the acceptance probability

α(̃x(j−1), y) = min
{
1,

p(y | x)
p(̃x(j−1) | x)

K (̃x(j−1)|y)
K (y|̃x(j−1))

}
= min

⎧⎨⎩1,
∂2pH

∂xp...∂x1 ∂̃xp...∂̃x1
(x, y)

∂2pH
∂xp...∂x1 ∂̃xp...∂̃x1

(x, x̃(j−1))

K (̃x(j−1)|y)
K (y|̃x(j−1))

⎫⎬⎭
5. Set x̃(j) = y with probability α(̃x(j−1), y) and x̃(j) = x̃(j−1) with probability 1− α(̃x(j−1), y)

end for
6. Return the sample x̃(j), j = 1, . . . ,M

5.2. A data augmentation approach to conditional independence knockoffs

We now outline how to sample knockoffs via the conditional independence strategy proposed in Example 16. The main
teps of the procedure are summarized by Algorithm 3.

Step 4 of Algorithm 3 could be difficult since the numerator and denominator of the conditional density q(x, x̃)/h(x)
are often not in closed form. Hence, q(x, x̃)/h(x) may be not explicit and computational methods come to the fore. The
Metropolis–Hastings could be problematic since we have to evaluate integrals in the acceptance rate. This can be time
consuming. An alternative approach is a Data Augmentation strategy where both x̃ and θ are sampled at the same time.
12
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Algorithm 3 Conditional independence knockoffs: general algorithm
1. Choose a density fi(·, θ ), with respect to some reference measure νi, for Xi, i = 1, . . . , p
2. Choose a mixing probability γ (dθ )
3. Compute

q(x, x̃) =
∫
Θ

p∏
i=1

fi(xi, θ )
p∏

i=1

fi (̃xi, θ ) γ (dθ ) and h(x) =
∫
Θ

p∏
i=1

fi(xi, θ ) γ (dθ )

4. Sample x̃ from the conditional density q(x, x̃)/h(x)

Suppose Θ is an open subset of Rk for some k, and γ has a density with respect to Lebesgue measure on Θ , say
(dθ ) = p(θ ) dθ . Then,

q(x, x̃)
h(x)

=

∫
Θ

q̄(x, x̃, θ )
h(x)

dθ where q̄(x, x̃, θ ) = p(θ )
p∏

i=1

fi(xi, θ )
p∏

i=1

fi (̃xi, θ ).

This is quite convenient since it makes easier to implement a Gibbs sampler on the augmented space with θ . The full
conditional distributions are straightforward by noting that

q̄(x, x̃, θ )
h(x)

∝ p(θ )
p∏

i=1

fi(xi, θ )
p∏

i=1

fi (̃xi, θ ).

Algorithm 4 provides a Gibbs sampler for q̄(x, x̃, θ ).

Algorithm 4 Data Augmentation sampler

1. Choose the initial value θ (0)
for j← 1 to M do

for i← 1 to p do
2. Sample x̃(j)i | θ

(j−1)
∼ fi(·, θ (j−1))

end for
3. Sample θ (j) from the posterior of θ given x, x̃(j)

end for
4. Return the sample (̃x(j), θ (j)), j = 1, . . . ,M

It should be noted that Algorithms 2 and 4 provide a sample x̃(1), . . . , x̃(M) of knockoffs rather than a single realization.
his could be helpful when taking into account the uncertainty intrinsic in the simulation procedure. Note also that, at
ach step j, Algorithm 4 requires to sample from the posterior of θ given x, x̃(j). In some cases, this could not be an easy

step. However, it is straightforward in several scenarios, such as conjugate models.
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Appendix

Proof of Theorem 3. First note that, since F is a group under composition,∑
f∈F

g ◦ f −1 =
∑
f∈F

g ◦ f for any real function g on R2p.

‘‘(a)⇒ (b)’’. Since F contains the identity map, condition (a) implies π ≤ 2pλ. Hence, π has a density q with respect
o λ. Since λ ∈ P , condition (a) also implies∫

A
2p dλ = 2p λ(A) =

∑
f∈F

π ◦ f −1(A) =
∑
f∈F

∫
f−1(A)

q dλ

=

∑
f∈F

∫
A
q ◦ f −1 dλ =

∫
A

(∑
f∈F

q ◦ f
)
dλ for each A ∈ B2p.
13
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‘‘(b)⇒ (c)’’. If A ∈ G, then A = f −1(A) for all f ∈ F , so that

π (A) = π
(
f −1(A)

)
=

∫
f−1(A)

q dλ =
∫
A
q ◦ f −1 dλ for all f ∈ F .

ence, condition (b) implies

2p π (A) =
∑
f∈F

∫
A
q ◦ f −1 dλ =

∫
A

(∑
f∈F

q ◦ f
)
dλ = 2p λ(A).

‘‘(c)⇒ (a)’’. For each x ∈ R2p, define

µx =

∑
f∈F δf (x)

2p

here δf (x) denotes the unit mass at the point f (x). Then,

λ(A) =

∑
f∈F λ ◦ f −1(A)

2p =

∫
µx(A) λ(dx)

=

∫
µx(A)π (dx) =

∑
f∈F π ◦ f −1(A)

2p for all A ∈ B2p

here the first equality follows from λ ∈ P and the third is because π = λ on G and the map x ↦→ µx(A) is
-measurable. □

roof of Theorem 8. We first recall a known fact. Let Φ : [0, 1]n → [0, 1] be a function such that Φ(u) = 0, if ui = 0 for
ome i, and Φ(u) = ui if uj = 1 for all j ̸= i. Then, Φ is an n-copula and λΦ ≪ mn provided ∂nΦ

∂un...∂u1
≥ 0 on [0, 1]n.

After noting this fact, define

C∗(u) = C
[
D1(u1, up+1), . . . ,Dp(up, u2p)

]
=

∫ D1(u1,up+1)

0
. . .

∫ Dp(up,u2p)

0
ϕ(t1, . . . , tp) dt1 . . . dtp for each u ∈ [0, 1]2p.

Let n = 2p and Φ = C∗. By the result mentioned above, C∗ is a 2p-copula and λC∗ ≪ m2p provided

∂2pC∗

∂u2p . . . ∂u1
≥ 0 everywhere on [0, 1]2p. (9)

n this case, since C∗ is a copula, H is a distribution function. Since λC∗ ≪ m2p, one also obtains λH ≪ m2p whenever
(Xi)≪ m1 for each i ∈ I . Therefore, it suffices to prove condition (9). In turn, (9) follows from condition (jjj) after noting
hat

∂2pC∗

∂u2p . . . ∂u1
=

∂p

∂u2p . . . ∂up+1

∂pC∗

∂up . . . ∂u1

=
∂p

∂u2p . . . ∂up+1
ϕ

[
D1(u1, up+1), . . . ,Dp(up, u2p)

] p∏
i=1

∂

∂ui
Di(ui, up+i). □
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