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Abstract: The present work deals with the modeling of the response to neutrons of heteronuclear
diatomic liquids, with special interest in the case of hydrogen deuteride (HD), as a possible candidate
for the moderation process required in the production of cold neutrons. Preliminary evaluations
of the model giving the neutron double differential cross section of a heteronuclear vibrating rotor
were performed in the recent past by using, as a first approximation, the ideal gas law for the
center-of-mass translational dynamics. Here, the state-of-the-art methodology (based on the use of
quantum simulations of the velocity autocorrelation function) for predicting the neutron response of
moderately quantum fluids (like molecular hydrogen and deuterium at low temperatures) is applied
to the heteronuclear form of this molecular liquid. The unavailability of the double differential
cross section experimental data on liquid HD still compels us to test the calculations only at an
integral level, i.e., against the only available measurements of the total neutron cross section of
HD. Despite the well-tested and parameter-free computational approach, which includes proper
consideration of the quantum effects, the present findings on HD indicate the evident need for more
accurate measurements of its total cross section in extended ranges of incident energy, as well as of
an experimental determination of the double differential cross section of this mild quantum liquid.
For further applicative purposes, a very useful by-product of this study is the determination of the
self diffusion coefficient D of the HD in the liquid phase.

Keywords: neutron cross sections; liquid hydrogen; cold neutron sources

1. Introduction

Liquid hydrogen and its isotopic forms are among the most renowned cryogenic
fluids and, in the specific application to neutron techniques, are the most important low-
temperature moderating materials used to realize cold (0.1–10 meV) [1] neutron sources.
In recent years, quite an effort has been devoted to deeply refine the ability to predict
the neutron scattering properties of these diatomic fluids and build up reliable databases
collecting their double differential cross section (DDCS) in as wide kinematic ranges as
possible. As far as hydrogen (H2) and deuterium (D2) are concerned, significant progress
was possible some years ago when crucial experimental work was dedicated to accurate
measurements of the total scattering cross section σs of para-H2 [2] and, at the same time,
quantum calculation methods have been employed, in place of classical computations
of the translational dynamics, in the DDCS algorithms for these low-mass molecules
undergoing nonnegligible quantum delocalization effects [3,4]. More recently, the latter
approach, which gives the unique opportunity to get rid of adjustable parameters in
DDCS evaluations, has been successfully adopted in moderator design and nuclear data
processing codes [5,6] implemented at the European Spallation Source (ESS, Sweden).
Recent experiments aimed at a better assessment of the coherent scattering properties of D2,
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and providing absolute scale determinations of its DDCS by inelastic neutron scattering [7],
will also help further refinement of the scattering libraries for D2. Therefore, concerning
the homonuclear representatives of the hydrogen family, we can be rather satisfied with
the present computational and predicting capabilities, now permitting well-grounded and
safe applications to forthcoming and existing neutron sources.

Nonetheless, another member among the hydrogen liquids, namely hydrogen deu-
teride (HD), has not received the same attention as its homonuclear partners in recent
years, either from a scientific point of view or in applications, although some of its midway
properties between H2 and D2 might also be conveniently exploited in neutron moderation
processes, as explored in previous moderator experimental studies [8,9]. For instance,
at the same (manageable) low temperatures of liquid H2 and D2 (∼20 K), HD provides
stronger scattering than D2 and lower absorption than H2, while its molecular mass does
not critically decrease the moderation efficiency, as shown by the successful use of an
even heavier liquid, like D2, for cold neutron production. Also, mixtures of H2 and D2
(partly combining themselves in the form of HD molecules) could be envisaged. Indeed, it
has been suggested that adding a small percentage of H2 to liquid D2 might improve the
moderation efficiency in the case of small moderator volumes [10,11].

Nevertheless, when exploring the literature about experimental, theoretical and sim-
ulation work on liquid HD and, in particular, its neutron scattering properties, one is
compelled to face an unexpected lack of published results, with the only exception being
Ref. [9] which, however, requires a rather detailed inquiry about various unreported in-
strumental parameters needed for an accurate modeling of the experimental conditions. It
is also quite surprising that the neutron response of HD, which belongs to an important
class of systems anyway, has, for decades, escaped a detailed treatment like those elegantly
devised, in the mid 1960s, on homonuclear diatomic molecules by Young and Koppel
(YK) [12] and by Sears [13], or on other linear molecules by Lurie [14]. Indeed, only much
later, the neutron cross section of HD has been briefly taken into consideration in the
analysis of solid state data [15], and further years passed before a formal description of
the heteronuclear diatomic case was tackled in studying the behavior of HD in the cages
of clathrate hydrates [16,17]. However, like the papers by Sears [13] and by Lurie [14],
these last works also deal with the scattering of cold and thermal neutrons from a low-
temperature sample, therefore vibrations are not excited and the developed formalism is
rightly limited to the specific case under consideration, where rotations alone are excited
and only zero-point vibrational effects must be retained.

In order to extend the applicability of the model to the higher incident energies
involved in moderation at neutron sources as well, we therefore found it important to
provide a more general treatment of heteronuclear diatomic fluids, including harmonic
vibrations, as formalized for the homonuclear case in Refs. [12,18], and as we performed in
Refs. [3,4,19,20], and overcoming the use of vibrational Debye–Waller factors [15]. Here, we
summarize the formalism for the DDCS of a heteronuclear (harmonically) vibrating rotor,
and use it in connection with quantum calculations of the translational dynamics, following
the same methodology described in Refs. [3,4]. The agreement of the present computational
results for HD with the only available total cross section experimental data, collected by
Seiffert in the 1970s [21,22], is only found to be very good by including systematic errors
and by considering impurities. Future efforts regarding liquid HD should therefore be
devoted to new neutron scattering experiments, taking advantage of the much higher
performance of the instrumentation available nowadays.

2. Materials and Methods

Before summarizing the basic formalism, it is useful to recall under which hypotheses
the adopted modeling of the DDCS holds [12,18,19]: (i) molecules are considered to be
free vibrating rotors, i.e., the translational center of mass (CM) dynamics is assumed to
be completely decoupled from the intramolecular motions; (ii) rotations are treated as
independent of vibrations; and (iii) anharmonicity effects are neglected. The first hypothesis
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corresponds to consider an isotropic interaction among the molecules, with negligible
orientational correlations. Assumptions (i) to (iii) are known to be very well satisfied
for hydrogen, even in the (low pressure) solid phase [23]. However, since the centers of
mass and charge do not coincide in the heteronuclear case, the full validity of hypothesis
(i) for HD also can only be verified a posteriori. Moreover, for the case of low temperature
liquids, an additional assumption is that all the molecules in the system initially (that is,
before interaction with neutrons) lie in their ground vibrational state. Finally, only the case
of unpolarized neutrons is considered here.

The above general assumptions for the treatment of the neutron cross sections of
diatomic low temperature fluids are further accompanied by the important simplifications
introduced by the heteronuclear nature of the molecule, which allows us to consider its
nuclei as distinguishable particles. The absence of symmetry requirements for the total
molecular wave function implies that there is no coupling between the total molecular
spin and the rotational state of the molecule. Therefore, one can refer to the so-called
“uncorrelated spin” case [19], where quantum-statistical averages involving nuclear and
neutron spin variables can be carried out separately from those related to position variables.

In the mentioned hypotheses and conditions, the basic starting formulas leading to the
double differential (per unit solid angle and exchanged frequency interval) cross section
are those gathered in Equation (7) of Ref. [19] which, by omitting the superscript uncorr, we
rewrite as:

d2σ

dΩdω
=

k1

k0
Sn(Q, ω) =

k1

k0

1
2π

∫ +∞

−∞
dt e−iωtFn(Q, t) = (1)

=
k1

k0

1
2π

∫ +∞

−∞
dt e−iωt[u(Q)Fd(Q, t) + v(Q, t)Fs(Q, t)],

where k0 and k1 are the incident and scattered neutron wavevectors, and Sn(Q, ω) is
the total dynamic structure factor provided by neutron scattering, i.e., the time Fourier
transform of Fn(Q, t), which is the neutron weighted combination of the distinct and self
intermediate scattering functions Fd(Q, t) and Fs(Q, t), respectively. For molecular fluids,
the latter are to be identified with the CM functions defined by

Fd(Q, t) =
1
N

N

∑
i=1

N

∑
j=1(j ̸=i)

〈
e−iQ·Ri(0)eiQ·Rj(t)

〉
(2)

Fs(Q, t) =
1
N

N

∑
i=1

〈
e−iQ·Ri(0)eiQ·Ri(t)

〉
(3)

which provide the total CM intermediate scattering function F(Q, t) = Fd(Q, t) + Fs(Q, t).
In the above equations, N is the total number of molecules, Ri(0) is the CM position of
the ith molecule in the (arbitrarily chosen) time origin, and Rj(t) is the CM position of a
different molecule at a subsequent time t. The angle brackets denote the quantum canonical
ensemble average. The isotropy of the fluid actually makes these functions depend only on
the modulus Q of the exchanged wavevector Q = k0 − k1. Furthermore, in the last member
of Equation (1) the functions u(Q) and v(Q, t) play the role of inter- and intramolecular
form factors weighting, respectively, the distinct and self CM dynamics. In analogy with the
monatomic case, purely coherent scattering characterizes u(Q), that is, only the so-called
coherent part of the neutron cross section of the scattering unit probes the interparticle
translational dynamics. As a consequence, u(Q) exclusively contains the coherent scattering
lengths of the various nuclei present in the molecule, and is independent of time. Differently,
the intramolecular form factor is a function of time, and generally depends on both the
coherent and incoherent nuclear scattering lengths. Explicit expressions for the form factors
of a heteronuclear diatomic molecule at a low temperature are derived in Appendix A for
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direct implementation in computing code. There, the various parameters relevant to HD
are also given.

The neutron DDCS is then obtained by inserting Equations (A14) and (A17) into
Equation (1). Before discussing reasonable modelings of the CM translational dynamics,
we wish to point out a few basic facts that are significant for the comparison of calculations
with the (possibly available) neutron experimental spectra.

The first point regards what is actually accessed by experiments. It is well known
that conventional neutron spectroscopy provides the Fourier transforms of space and
time correlation functions. In Equations (2) and (3), we introduced the time autocorre-
lation of the space Fourier transform of the microscopic density, i.e., the total intermedi-
ate scattering function F(Q, t), separated into its distinct and self parts. The latter were
used in particular to describe the neutron version of the molecular scattering function
as Fn(Q, t) = u(Q)Fd(Q, t) + v(Q, t)Fs(Q, t). Such a separation of the total Fn(Q, t), in-
herited from the formalism used to describe neutron scattering from monatomic fluids,
i.e., b2

cohFd(Q, t) + (b2
coh + b2

inc)Fs(Q, t), has the merit of highlighting the relationship be-
tween the coherent scattering and the distinct dynamics. This also holds true for molecular
liquids, since we saw that u(Q) only contains the coherent scattering lengths of the con-
stituent atoms. However, despite its conceptual significance, the mentioned separation
has no feedback from reality, since neutrons provide a different combination and can only
be the probe of “true” correlation functions, such as F(Q, t) and Fs(Q, t), differently from
Fd(Q, t). This means that the self and distinct contributions to the total dynamics cannot
be disentangled in a neutron measurement on a totally coherent sample. Conversely, it
is incoherent scattering that provides an (as remarkable as exclusive) pathway to the self
dynamics. In other words, the output of a neutron experiment on a monatomic sample with
nonzero coherent and incoherent scattering lengths is actually b2

cohF(Q, t) + b2
incFs(Q, t),

the molecular version of which is

Fn(Q, t) = u(Q)F(Q, t) + [v(Q, t)− u(Q)]Fs(Q, t). (4)

The second thing worth recalling concerns the spectral properties and the general
features of the resulting DDCS. By completing the switching to Fourier (Q, ω) space,
Equation (4) becomes

Sn(Q, ω) =
1

2π

{
u(Q)

∫ +∞

−∞
dt e−iωtF(Q, t) +

+
∫ +∞

−∞
dt e−iωt[v(Q, t)− u(Q)]Fs(Q, t)

}
= (5)

= u(Q)[S(Q, ω)− Ss(Q, ω)] +

[
1

2π

∫ +∞

−∞
dt e−iωtv(Q, t)Fs(Q, t)

]
.

The first term is, therefore, related to distinct CM dynamic structure factor we are interested
in when studying the translational collective dynamics of the system. Concerning the self
properties, it is seen instead that the dependence of v(Q, t) on time prevents one from
expressing the second term as directly proportional to the self dynamic structure factor
Ss(Q, ω). However, Equation (A14) shows that time enters v(Q, t) only in exponential
form; therefore, it is possible to write ∫ +∞

−∞
dt e−iωtv(Q, t)Fs(Q, t) =

= ∑
J0 J1v0v1

∫ +∞

−∞
dt e−i(ω−ωJ0 J1−ωv0v1 )tF (Q; J0 J1v0v1)Fs(Q, t) (6)
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where the explicit expression for F (Q; J0 J1v0v1) in the low temperature case is given in
Equation (A13) of Appendix A. In Equation (6), the rotational (ωJ0 J1 ) and vibrational (ωv0v1 )
transition frequencies, involving the initial (subscript 0) and final (subscript 1) quantum
numbers, are seen to determine the time dependence of v(Q, t). In the special case of a low
temperature sample, all molecules are assumed to lie initially in the vibrational ground state
(v0 = 0); therefore, it is possible to write ωv0v1 = v1ωv, with ωv indicating the frequency
of the harmonic oscillator of reduced mass µ = m1m2

M12
, with m1 and m2 the mass of the two

(different) atoms in the molecule and M12 = m1 + m2.
Consequently, the DDCS finally reads

d2σ

dΩdω
=

k1

k0
Sn(Q, ω) =

k1

k0

{
u(Q)[S(Q, ω)− Ss(Q, ω)] + (7)

+ ∑
J0 J1v1

F (Q; J0 J10v1)Ss(Q, ω − ωJ0 J1 − v1ωv)

}
.

Equation (7) shows that the single-molecule contribution to the DDCS corresponds
to a comb of lines centered at the frequencies of the possible rotovibrational transitions.
These spectral components are therefore either central or shifted replicas of the lineshape
describing the CM Ss(Q, ω), with amplitudes ruled by the involved quantum numbers,
the initial state probabilities and the nuclear scattering lengths.

Calculations of the DDCS, of course, require a modeling of both S(Q, ω) and Ss(Q, ω).
It is worth recalling that a comparison with the experiment is only possible if the model
lineshapes obey the detailed balance principle. Therefore, if classical (i.e., symmetric)
models are used for the dynamic structure factors, these must be duly asymmetrised via
multiplication by the factor h̄ω

kBT [n(ω) + 1] = h̄ω
kBT [1 − exp(− h̄ω

kBT )]
−1 prior to their inclusion

in Equation (7), where n(ω) is the Bose factor [24], with kB and h̄ indicating the Boltzmann
and Planck constants, respectively. Moreover, the finite energy resolution of the spectro-
scopic data needs to be taken into account by performing comparisons with calculations
only after these have been properly broadened by the experimental resolution function.

As mentioned, the present work focuses on HD. It is well known that the low mass
(between 2 and 6 a.m.u.) and relatively low temperatures (e.g., around 20 K) of molecular
hydrogen and its isotopes in the liquid phase make the de Broglie thermal wavelength [25]
Λ = h/

√
2πMkBT reach values of the order of the molecular size, while remaining inferior

to the average intermolecular distance [26]. Therefore, the quantum delocalization of
individual particles affects the static and dynamic CM properties of these systems with
respect to classical behavior, while indistinguishability can still be assumed to play a
negligible role, thus justifying the use of Boltzmann statistics.

These overall assumptions are commonly summarized by saying that hydrogens are
moderate quantum fluids, if compared to the paradigmatic case of helium. From a practical
point of view, such a mild quantum nature has been the rationale behind the undiscouraged
development of simulation algorithms still based on the possibility of defining trajectories
in the phase space, but aimed at capturing the nonclassical effects of particle delocalization,
at least on the simplest time correlation functions relevant to fluid dynamics. In this
respect, several positive results were gathered in recent decades about the effectiveness
of Centroid Molecular Dynamics (CMD) [27–29] and Ring Polymer Molecular Dynamics
(RPMD) [30–32] simulation methods for the prediction of the CM velocity autocorrelation
function (VAF) of the hydrogen homonuclear liquids. Among these confirmations, in the
present context, the good performance of RPMD or CMD VAF calculations in estimating
the total scattering neutron cross section of both H2 [3] and D2 [4] is of special relevance.
In particular, the above algorithms were used to obtain quantum compliant evaluations
of the VAF, which, combined with the Gaussian Approximation (GA) [33,34], are able to
provide, at present, the most reliable determination of the CM Ss(Q, ω) of the mentioned
homonuclear liquids. A summary of the GA for Ss(Q, ω) is provided in Appendix B.
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Concerning the total dynamics, unfortunately no analogous way exists to derive accu-
rate quantum-compliant CM S(Q, ω) from RPMD simulations. Indeed, such semiclassical
techniques do not properly capture the quantum character of the system when dealing
with nonlinear-operator time correlation functions like F(Q, t), as shown in recent years by
experimental determinations of the total dynamics of liquid D2 [7]. However, as we have
shown in the case of D2 DDCS calculations [4], a simple, yet effective, solution is to use the
Sköld approximation [35], which provides the total S(Q, ω) as a suitable modification of its
self part alone, namely:

S(Q, ω) ≈ S(Q)Ss

(
Q√
S(Q)

, ω

)
, (8)

where S(Q) is the CM static structure factor. In the absence of experimental values of S(Q),
a valid alternative is to resort to simulations of this quantity, which is also a by-product of
the Path Integral (PI) RPMD calculations.

For the reasons explained above, we therefore performed a PI RPMD simulation for
the case of HD at a temperature T = 17 K (rather close to the HD triple point temperature
Ttr = 16.60 K) and number density n = 24.37 nm−3. Note that pVT data are not available
for HD, with the only tabulated values being those on the (n, T) liquid–vapor coexistence
curve reported in Ref. [36]. The chosen temperature is the one where the experimental total
cross section data for HD are available [22]. The open source molecular dynamics code, i-PI
v2.0 [37], was used for the RPMD simulations.

The simulations were carried out using a Trotter number (number of beads on each
polymer) P = 64, timestep of 1 fs, and with a system of N = 512 polymers interacting
through the Silvera–Goldman potential [38], which is the state-of-the-art interaction model
for the hydrogen liquids. The system of polymers was equilibrated in the NVT ensemble
for 50 ps using the white noise Langevin thermostat option “pile_g” of the software and
with the coefficient τ = 10 fs. The VAF was calculated in the NVE ensemble up to a
maximum time lag of 2.5 ps. For the calculations of S(Q), the same equilibrium procedure
was followed; however, the number of polymers was set to N = 4096. The pair distribution
function g(r) was obtained through the TRAVIS code [39,40] using the trajectory files of the
simulations, and then used to compute S(Q). Together with the canonical VAF, it was then
possible to implement both the GA and the Sköld approximation in the neutron scattering
law summarized in Equation (7).

3. Results

The results of the PI RPMD simulation of HD are reported in Figure 1, where both
S(Q) and the canonical VAF (see Appendix B) are displayed. The latter shows the expected
behavior for a dense liquid, with a negative minimum witnessing the rattling motion of
the tagged molecule within the temporary cage formed by its neighbors. In Appendix B,
we show how an accurate estimate of the self diffusion coefficient D can be obtained from
the simulated VAF, finding the value D = 3.2 ×10−3 nm2 ps−1 for HD at the mentioned
thermodynamic state. This is a significant outcome of this work, given the lack of literature
values for D.

Specific calculations of the form factors of HD and of Equation (7) within the GA and
Sköld approximations were performed by using the molecular parameters and neutron
scattering lengths listed in Table A1 of Appendix A.

In Figure 2, we show the general features of the inter- and intramolecular form
factors, u(Q) and v(Q, 0), as a function of the exchanged wavevector Q. The various
terms contributing, respectively, to Equation (A17) and, at t = 0, to Equation (A12),
are also displayed separately. Note that while u(Q) does not depend on the incident
energy, v(Q, 0) may vary with E0 because, in practical implementations of the summation
of Equation (A12), the number of rotovibrational transitions grows with incident energy.
The example of Figure 2 refers, in particular, to an incident energy E0 = 80 meV. As evident
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from Figure 2, the intramolecular form factor of HD overwhelms the intermolecular one,
as expected. 
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Figure 1. (a): Static structure factor obtained from the PI RPMD calculation for HD at T = 17 K and
n = 24.37 nm−3. (b): Simulated canonical VAF (see Appendix B) at the mentioned thermodynamic
state of HD. 
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Figure 2. (a): Intermolecular form factor u(Q) (pink curve) according to Equation (A17) for HD at
17 K. (b): Intramolecular form factor v(Q, 0) (pink curve) from Equation (A12) calculated at t = 0
and E0 = 80 meV, for HD at the same temperature as in (a). In both panels, the three different terms of
the quoted equations are also plotted: the contribution due to H is the dashed cyan curve, the one
due to D is the green dotted curve, and the cross HD term is the red chain curve; their sum provides
the pink curves.

Examples of the DDCS spectra according to Equation (7) for E0 = 80 meV are shown
in Figure 3 at three selected Q values. The typical asymmetry of the spectra of quantum
systems, as well as the J0 = 0 → J1 = 1 rotational line at about E = h̄ω = 11 meV, can
be better appreciated with a growing Q. Instead, due to the rather low temperature, the
detailed balance strongly depletes the anti-Stokes line J0 = 1 → J1 = 0, which is present
despite the low population (the J0 = 1 level of HD at 17 K corresponds to a 0.16% occupa-
tion probability), but not appreciable on the scale of the figure. The example value chosen
for E0 allows to span a reasonable exchanged-energy range, and is a plausible choice if one
were interested in performing a DDCS measurement on liquid HD, similarly to what was
performed in Ref. [7] for liquid D2. Of course, as mentioned in Section 2, before compari-
son with any (forthcoming) experimental DDCS result, the spectra of Figure 3 should be
convoluted with the energy resolution function of the used instrument.

It is worth stating, finally, that the total DDCS of Figure 3, i.e., including the distinct
dynamics, differs negligibly, at all Q values and at all incident energies, from its self
component alone (not shown in the figure), as predictable from the very small values of
u(Q) of Figure 2. This simply means that HD is a “true” predominantly incoherent scatterer
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at all incident energies, even more than para-H2. Indeed, the absence of spin correlations
in HD does not introduce different scattering cross sections according to the parity of
the levels involved in the transitions and the spin statistics of the nuclei in the molecule.
Conversely, in para-H2, if E0 is insufficient to excite the first rotational line J0 = 0 → J1 = 1,
then only the even–even J0 = 0 → J1 = 0 transition contributes, and spin correlations
can be found [19] to weight such kinds of transitions only by the coherent cross section.
Therefore, at some incident energies (E0 < 14.7 meV), para-H2 behaves coherently and the
distinct dynamics plays a role. In HD, this is never the case, and the huge incoherent cross
section of H dominates the scattering behavior independently of E0.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-15 -10 -5 0 5 10 15

0

10

20

30

40

-20 -10 0 10 20

0

2

4

6

8

-30 -20 -10 0 10 20 30

0

0.5

1

1.5

2

2.5

3

E [meV] 

D
D

C
S

 [
ba

rn
/m

eV
] Q = 0.5 Å−1 Q = 1.5 Å−1 Q = 1.0 Å−1 (a) (b) (c) 

Figure 3. Calculated double differential cross section of HD at an incident neutron energy E0 = 80 meV
and at three example Q values, for T = 17 K. In panels (b,c), the J0 = 0 → J1 = 1 rotational line at
E ≃ 11 meV starts to be appreciable compared to the elastic one. The progressive broadening and
increasing detailed-balance asymmetry of the lines can also be observed as Q grows.

In order to make a comparison with the experimental total cross section possible,
the DDCS of HD was calculated at T = 17 K as a function of scattering angle θ and
exchanged energy E = h̄ω at various values of the incident energy E0 ranging between 1
and 85 meV. At such energies, only rotations are excited and the main contribution to the
spectra comes from the elastic J0 = 0 → J1 = 0 line and the mentioned J0 = 0 → J1 = 1
Stokes transition (when excited).

Double integration of the DDCS over the exchanged energy and solid angle, accord-
ing to:

σs =
∫

Ω
dΩ

∫ ω0

−∞
dω

d2σ

dΩdω
, (9)

provides the total scattering cross section σs shown in Figure 4, in comparison with Seiffert’s
data [21], from which the known absorption cross section σa(E0) [41] has been subtracted: in
formulas, σ

expt.
s = σexpt. − σa. The effect of the neglect of the distinct part in the calculation

of σs is observed to be very small (compare the blue circles with the red stars in Figure 4),
and slightly appreciable only at very low E0 values.

Unexpectedly, agreement between the data and calculations is not as good as the one
found for normal H2 and D2 [4,20]. In Ref. [21], the author reports an average systematic
error of ±8.1% and an average statistical error of 2.8% for HD. Figure 5 shows the possible
effect of shifting Seiffert’s data upwards by the systematic error (empty circles), while
statistical uncertainties are taken into account by the corresponding error bars. By doing so,
a good agreement is recovered at all energies (given that the experimental data points are
rather scattered), except in the low-energy range 1 < E0 < 20 meV, a disagreement which
is worth investigating and discussing.
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Figure 4. Dependence on the incident energy E0 of the total neutron scattering cross section of HD
at 17 K, as obtained by absorption-subtracted Seiffert’s data [21] (black full squares) and by double
integration of Equation (7) following Equation (9) (red stars), using the GA plus Sköld approximations
for the CM translational dynamics. The blue empty circles represent the self component of σs alone,
as obtained by double integration of the last term in Equation (7). The small effect of the absorption
cross section σa of HD (cyan line) is also shown.
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Figure 5. Black full squares and red stars with thin line represent Seiffert’s data and present calcula-
tions, respectively, like in Figure 4. Empty circles with error bars take the systematic and statistical
uncertainties of the measurements into account, as explained in the text.
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4. Discussion

Trying to explore the reasons for the mismatch in the subthermal region, a possible
effect of sample contamination might be considered. Information on this can be found in
another paper by Seiffert [22], which reports the following composition determined by
mass spectrometry: 94% HD, 5.5% H2 and 0.5% D2. However, it is not specified whether the
systematic error estimated by the author already included the role played by the impurities,
or if these have to be considered as an additional source of error. Moreover, normal H2
cannot be assumed to be part of the mixture, since even a small amount would provide
total cross section values higher than those calculated for pure HD. This can be understood
by considering the cross section monotonic behavior reported for n-H2 in Refs. [20,21].
Conversely, the much lower cross section of para-H2 in the range 1 < E0 < 20 meV might
well explain the discrepancy.

Preliminary calculations for the pure HD and the mentioned mixture were performed
in past years using the Gaussian lineshape of the ideal gas for Ss(Q, ω), finding an overall
disagreement even by accounting for the presence of impurities [42], and which could
not be recovered, even by adding the declared systematic errors. Here, however, we also
adopted the more refined RPMD-based GA approach for HD, so it is worth analyzing the
possible improvements due to the model lineshape. Although the available σs data for D2
and para-H2 are not exactly at 17 K, we combined the various calculations (all based on
the GA and on quantum evaluations of the VAF) according to the declared composition,
and report the results in Figure 6. The agreement is now very good at almost all energies.
These results confirm both the sample contamination (likely not included in the estimate
of systematic errors) but, more importantly, the improvements introduced by the use of
quantum-compliant lineshapes, with respect to the earlier ideal gas modeling [42].
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Figure 6. Black empty circles with error bars are the σs experimental data corrected for the systematic
errors, and pink stars are the GA-based calculations for the hydrogen isotopes mixture reported in
the legend. The contribution of D2 is not shown, since it is negligible on the scale of the figure, while
the para-H2 (dashed cyan curve) and HD (chain green curve) ones are also shown.



Appl. Sci. 2024, 14, 4718 11 of 19

Nonetheless, the impressive result shown in Figure 6 has been obtained by assuming a
well-defined direction of the systematic effects: an assumption the correctness of which we
are, of course, not able to prove. A separate preliminary study [43], based on combining the
earlier work of Ref. [14] with the approaches described in Ref. [6], indicated, on average,
a roughly 10% lower cross section between 10 and 80 meV compared to the results presented
here. Although the source of this discrepancy is under detailed investigation, it anyway
emerges very clearly that new accurate σs measurements, as those performed in recent
years for para-H2, are also highly auspicable for HD.

5. Conclusions

This work completes the picture of the calculation of the neutron double differential
cross section of diatomic molecules, providing formulas for a heteronuclear vibrating rotor
at low temperature. The interest for a treatment of the heteronuclear case, and particularly
for hydrogen deuteride, was triggered by possible applications of this fluid in neutron
moderation. Unfortunately, the lack of experimental DDCS data for HD prevents one from
a stringent test of the calculations. It is, therefore, clear that our capability to predict the neu-
tron DDCS of this cryogenic liquid and the setting up of reliable scattering libraries would
profit from accurate inelastic scattering experiments and improved quantum simulation
methods. Similar importance would have experimental work aimed at the determination
of the thermodynamic properties of HD, at least in the low temperature dense liquid region
useful in applications.
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Appendix A. Explicit Formulas for the Form Factors of Heteronuclear Diatomic Molecules

As reported in Equation (7) of Ref. [19], the form factors can be written as
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u(Q) =

∣∣∣∣∣ n

∑
ν=1

bcoh,ν ∑
u0

pu0⟨u0|eiQ·rν |u0⟩
∣∣∣∣∣
2

(A1)

v(Q, t) =
n

∑
ν,ν′=1

(bcoh,νbcoh,ν′ + b2
inc,νδν,ν′)× (A2)

× ∑
u0,u1

pu0 eiωu0u1 t⟨u0|e−iQ·rν |u1⟩⟨u1|eiQ·rν′ |u0⟩,

where bcoh,ν and binc,ν are the coherent and incoherent scattering lengths of the νth nucleus
in the molecule, which, in the most general case, is assumed to be characterized by a total
of n (not necessarily different) nuclei. In the above equations, rν is the vector defining the
position, at t = 0, of the νth nucleus with respect to the CM of the molecule. Figure A1
summarizes the various definitions in the simple case we are interested in, i.e., n = 2 with
nucleus 1 (e.g., H) different from nucleus 2 (e.g., D).

The form factors are seen to involve the calculation of matrix elements of the kind
⟨u1|eiQ·rν |u0⟩, where |u⟩ denotes a generic rotovibrational state of the molecule. Subscripts
0 and 1 are used to indicate the initial (before scattering) and final (after scattering) molec-
ular state, respectively. This, of course, can be written explicitly by adopting the usual
notation for the rotational and vibrational quantum numbers, i.e., |u⟩ = |JMv⟩ = |JM⟩|v⟩,
with the last equality descending from the mentioned hypothesis of negligible coupling
between rotations and (harmonic) vibrations.
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r2 r1 
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γν = (1 – mν /M12 ) 

M12 = m1 + m2 

Figure A1. Geometry and position vectors defined for the case of a heteronuclear diatomic molecule.
The positions of the nuclei with respect to the CM are expressed by the appropriate fractions γ1

and γ2 of the internuclear distance vector r21 (red arrow) joining the two nuclei of mass m1 and m2,
respectively. M12 is the total molecular mass. Note that r21 is meant to represent the instantaneous
value of the internuclear distance, which can further be written as r21 = req + x, with x the bond
stretching and req the average equilibrium distance.

Equations (A1) and (A2) include the statistical average over the initial state probabili-
ties governed by the Boltzmann thermal distribution. Since the molecules are assumed to
lie initially in the ground vibrational state (v0 = 0), it is possible to write pu0 = pJ0 pM0 pv0

= pJ0 pM0 . Finally, the time dependence in Equation (A2) comes simply from the Heisenberg
representation of rν′(t) as exp(iHt/h̄) rν′ exp(−iHt/h̄), where H = Hrot + Hvib is the total
(rotational plus vibrational) Hamiltonian, h̄ is the reduced Planck constant, and we defined
the transition frequency as ωu0u1 = (Eu1 − Eu0)/h̄. For a diatomic molecule, the latter can
obviously also be written as ωu0u1 = ωJ0 J1 + ωv0v1 = ωJ0 J1 + v1ωv, with ωv the frequency
of the harmonic oscillator of mass µ = (m1m2)/M12, i.e., corresponding to the reduced
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mass of the two-body system of total mass M12 = m1 + m2, and whose energy levels are
given by Evib = h̄ωv(v + 1

2 ).
The rotational energy levels of a free rotor are given by Erot = J(J + 1)[B − DJ(J + 1)],

with B being the rotational constant and D accounting for the centrifugal distortion.
The various parameters and scattering lengths specifically used for HD are given in

Table A1.
Starting from Equations (A1) and (A2), one can explicitly write

u(Q) =

∣∣∣∣∣ 2

∑
ν=1

bcoh,ν ∑
J0 M0

pJ0 pM0⟨J0M0|⟨0|eiQ·rν |0⟩|J0M0⟩
∣∣∣∣∣
2

(A3)

v(Q, t) = ∑
J0 M0

pJ0 pM0 ∑
J1 M1v1

2

∑
ν,ν′=1

aν,ν′ × (A4)

×eiωJ0 J1 teiv1ωvt⟨J0M0|⟨0|e−iQ·rν |v1⟩|J1M1⟩⟨J1M1|⟨v1|eiQ·rν′ |0⟩|J0M0⟩,

where aν,ν′ = bcoh,νbcoh,ν′ + b2
inc,νδν,ν′ [13] results from the average of the scattering length

over neutron and nuclear spin states which, in the uncorrelated case, can be performed
separately from those involving position dependent operators.

Table A1. Basic quantities used in the present calculations for HD.

Parameter Description

B = 5.538 meV [44] Rotational constant in the vibrational ground state
D = 0.003263 meV [44] Centrifugal distortion coefficient in the vibrational ground state
h̄ωv = 450.38 meV [44] Quantum of vibrational energy

req = 0.74142 Å [44] Equilibrium internuclear distance
m1 = 1.00794 a.m.u. Mass of the proton
m2 = 2.01410 a.m.u Mass of the deuteron

γ1 = 2
3 Fraction of the internuclear distance pertaining to the H nucleus

γ2 = 1
3 Fraction of the internuclear distance pertaining to the D nucleus

bcoh,1 = −3.7406 fm [41] Coherent scattering length of the H nucleus
binc,1 = 25.274 fm [41] Incoherent scattering length of the H nucleus
bcoh,2 = 6.674 fm [41] Coherent scattering length of the D nucleus
binc,2 = 4.033 fm [41] Incoherent scattering length of the D nucleus

By following Figure A1, and using the synthetic notation ⟨ f | . . . |i⟩ for ⟨J1M1|⟨v1| . . . |0⟩|J0M0⟩,
Equation (A4) becomes

v(Q, t) = ∑
J0 M0

pJ0 pM0 ∑
J1 M1v1

eiωJ0 J1 teiv1ωvt ×

×
{

a11|⟨ f |e−iQ·γ1r21 |i⟩|2 + a22|⟨ f |eiQ·γ2r21 |i⟩|2 + (A5)

+2a12Re

[
(⟨ f |e−iQ·γ1r21 |i⟩)∗⟨ f |eiQ·γ2r21 |i⟩

]}
,

where, in the last member, we introduced the internuclear vector r21, duly weighted,
through the factor γν = 1 − mν/M12, by the mass of the nucleus under consideration. Note
that in the adopted notation, both γ1 and γ2 are positive. Moreover, a12 = a21 = bcoh,1bcoh,2,
while ajj = b2

coh,j + b2
inc,j when j = 1, 2.
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All terms in Equation (A5) require the evaluation of the generic matrix element
⟨ f |e±iQ·γjr21 |i⟩. In Equation (A5), the vibrational matrix element regarding, for instance,
nucleus 2 (r2 = γ2r12, with γ2 > 0), can be written as

⟨v1|eiQ·γ2r21 |0⟩ = (A6)

= ⟨v1|eiQγ2r21η |0⟩ = ⟨v1|eiQγ2(req+x)η |0⟩ = eiγ2βη⟨v1|eiQγ2xη |0⟩,

where we explicitly wrote the scalar product posing η = cos θ′, θ′ being the angle between
Q and r21. Note that the prime is used here to distinguish the present angular coordinates
from those related to the geometry of a scattering experiment used in the main text. In
Equation (A6), the internuclear distance was also expressed as the sum of the equilibrium
one, req, and the bond stretching x. Finally, we defined β = Qreq. Care must be taken in
the case of nucleus 1, where the change of the sign in the exponential at the first member
of Equation (A6), when γ2r21 is replaced by −γ1r21, with γ1 > 0, is transmitted to both
exponentials of the last member of the equation.

In order to evaluate the last member of Equation (A6), we direct the reader to the
quantum mechanical treatment of a one-dimensional harmonic oscillator [45] of mass µ,

which provides x =
√

h̄
2µωv

(a† + a) in terms of the Bose creation and annihilation operators

obeying the commutation relation [a, a†] = 1. Using the properties eAeBe[B,A]/2 = eA+B

(which is valid in the present case) and a|0⟩ = 0, the exponential of an operator, and con-
sidering the way a† operates on vibrational levels (leading, e.g., to

√
v! |v⟩ = (a†)v|0⟩), it is

possible to find that, for nucleus 2, we have

⟨v1|eiQ·γ2r21 |0⟩ = (A7)

eiγ2βη⟨v1|eiQγ2xη |0⟩ = eiγ2βηe−
(γ2αη)2

2
(iγ2αη)v1
√

v1!
=

(iγ2α)v1
√

v1!
f2(η)

where we defined α = Q
√

h̄M/(2m1m2ωv) and f2(η) = e−
(γ2αη)2

2 eiγ2βη ηv1 . For nucleus 1,
the vibrational matrix element is similar to Equation (A7), with γ2 replaced by −γ1.

The next step consists of the calculation of the rotational matrix element

⟨J1M1|
(iγ2α)v1
√

v1!
f2(η)|J0M0⟩ =

∫
dΩ′(−1)M1YJ1,−M1

(iγ2α)v1
√

v1!
f2(η)YJ0,M0 (A8)

where we introduced the spherical harmonics [45], omitting for brevity their argument
(θ′, ϕ′), and integration is performed over the solid angle dΩ′ = dϕ′dθ′ sin θ′. Well-known
properties (see, e.g., [46]) can be used to rewrite Equation (A8) in terms of appropri-
ate Clebsch–Gordan coefficients, C(J1 J0l; 000), and Legendre polynomials of order l, Pl ,
with |J0 − J1| ≤ l ≤ J0 + J1 (see [42] for further details).

We can finally calculate the self-atomic terms in Equation (A5) according to

ajj ∑
J0 J1v1

pJ0 eiωJ0 J1 teiv1ωvt (2J1 + 1)(γjα)
2v1

4v1!
× (A9)

×∑
l

C2(J1 J0l; 000)

∣∣∣∣∣
∫ 1

−1
dη f j(η)Pl(η)

∣∣∣∣∣
2

,

which is valid for any j. In analogy with Ref. [19], we can here define the integrals A(2)
lv1

for
nucleus 2 as

A(2)
lv1

=
∫ 1

−1
dη e−

(γ2αη)2

2 eiγ2βη ηv1 Pl(η) =
∫ 1

−1
dη f2(η)Pl(η), (A10)
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which will be used in what follows to shorten the notation. Note that the first exponential
in the integrand is an even function of η. So, if the complex exponential is split according to
Euler formula, the former does not alter the well-defined parity of the remaining product
function. Again, for nucleus 1, γ2 must be replaced by −γ1 or, equivalently, we can define

A(1)∗
lv1

=
∫ 1
−1 dη e−

(γ1αη)2

2 e−iγ1βη ηv1 Pl(η). Therefore, the distinct-atomic “cross” term turns
out to be

v(Q, t)cross = 2a12 ∑
J0 J1v1

pJ0 eiωJ0 J1 teiv1ωvt × (A11)

× (2J1 + 1)[(−iγ1)
∗]v1(iγ2)

v1 α2v1

4v1! ∑
l

C2(J1 J0l; 000)Re

[
A(1)

lv1
A(2)

lv1

]
,

Combining Equations (A5), (A9), (A10) and (A11), the intramolecular form factor of a
heteronuclear diatomic fluid turns out to be

v(Q, t) = ∑
J0 J1v1

eiωJ0 J1 teiv1ωvtF (Q; J0 J10v1), (A12)

where

F (Q; J0 J10v1) = pJ0

(2J1 + 1)α2v1

4v1! ∑
l

C2(J1 J0l; 000)×

×
{
(b2

coh,1 + b2
inc,1)γ

2v1
1 |A(1)

lv1
|2 + (b2

coh,2 + b2
inc,2)γ

2v1
2 |A(2)

lv1
|2 + (A13)

+2bcoh,1bcoh,2(−1)v1(γ1γ2)
v1Re

[
A(1)

lv1
A(2)

lv1

]}

denotes the time-independent part of the intramolecular form factor.
It can be shown that Equation (A12) can also be written in a way that disentangles the

roles played by v1 and l, and is governed exclusively by the parity of l, i.e.,

v(Q, t) = ∑
J0 J1v1

pJ0 eiωJ0 J1 teiv1ωvt (2J1 + 1)α2v1

4v1! ∑
l

C2(J1 J0l; 000)×

×
{
(b2

coh,1 + b2
inc,1)γ

2v1
1 |A(1)

lv1
|2 + (b2

coh,2 + b2
inc,2)γ

2v1
2 |A(2)

lv1
|2 + (A14)

+2 bcoh,1bcoh,2(−1)l(γ1γ2)
v1

[
ReA(1)

lv1
ReA(2)

lv1
+ ImA(1)

lv1
ImA(2)

lv1

]}
,

where we recall that, by definition, γ1γ2 > 0.
As mentioned, the advantage of such a formulation for v(Q, t) becomes evident in

the homonuclear case, for which m1 = m2 = m, γ1 = γ2 = γ = 1/2, A(1)
lv1

= A(2)
lv1

= Alv1 ,
bcoh,1 = bcoh,2 = bcoh, binc,1 = binc,2 = binc, and Equation (A14) can be cast in the ele-
gant form

v(Q, t)homo = ∑
J0 J1v1

pJ0 eiωJ0 J1 teiv1ωvt (2J1 + 1)(γα)2v1

4v1! ∑
l

C2(J1 J0l; 000)×

×2

[
(b2

coh + b2
inc) + (−1)lb2

coh

]
|Alv1 |

2, (A15)

which is effectively identical to Equation (31) given in Ref. [19] for the uncorrelated spin
case. We specified effectively because, for the ease of notation here, formal differences appear
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between the formulas in Ref. [19] and the present ones. In fact, the quantities α (when
m1 = m2 = m) and β used here are not the same as in Ref. [19]. In particular, by renaming
those defined in Ref. [19] as αho and βho (the subscript ho meaning “homonuclear”),
we have

αm1=m2=m = Q

√
h̄

mωv
= 2αho

β = Qreq = 2βho

Nonetheless, Equations (A10) and (A15) only depend on the products γα and γβ; that
is, exactly on αho and βho (since γ = 1/2).

The calculation of the intermolecular form factor u(Q) given in Equation (A3) follows
similar steps as before, but is further simplified by the fact that a quantum average of the
exponential operators has to be performed, i.e., v1 = v0 = 0 and |J1M1⟩ = |J0M0⟩ in the
previous formulas. In particular, we obtain

u(Q) = b2
coh,1|⟨e

−iQ·γ1r21⟩|2 + b2
coh,2|⟨e

iQ·γ2r21⟩|2 + (A16)

+bcoh,1bcoh,2⟨eiQ·γ1r21⟩⟨eiQ·γ2r21⟩+ bcoh,2bcoh,1⟨e−iQ·γ2r21⟩⟨e−iQ·γ1r21⟩

where ⟨. . . ⟩ was used to indicate ∑|i⟩ p|i⟩⟨i| . . . |i⟩. The final expression turns out to be

u(Q) =
b2

coh,1

4
|A(1)

00 |2 +
b2

coh,2

4
|A(2)

00 |2 + (A17)

+
bcoh,1bcoh,2

2
Re

[
A(1)

00 A(2)
00

]
.

Note that the Alv1 integrals are real-valued quantities in the case l = 0, v1 = 0.
Therefore, in the homonuclear case, Equation (A17) actually adds up to

u(Q)homo = b2
coh|A00|2, (A18)

in agreement with Equation (27) of Ref. [19].

Appendix B. The Self Dynamic Structure Factor in the Gaussian Approximation

The dynamical information conveyed by the VAF is a keypoint in the development
of models for the self part of the DDCS of viscous dense fluids. In the present case of a
molecular liquid, the considered velocity autocorrelation is that of the molecular centers
of mass

Z(t) = ⟨vCM(0) · vCM(t)⟩, (A19)

which is a complex-valued quantity satisfying Z(−t) = Z∗(t) and Z(−t) = Z(t + i h̄
kBT ),

with the latter property descending from the detailed balance principle.
However, the output of an RPMD simulation is the canonical (or Kubo-transformed [47])

VAF:

Zc(t) = kBT
∫ 1

kBT

0
dλ

〈
eλHvCM(0) · e−λHvCM(t)

〉
(A20)

where H is the Hamiltonian operator of the system. The canonical VAF is a real and even
function of time. By Fourier transformation of Z(t) and Zc(t), the respective frequency spectra
p(ω) and pc(ω) are obtained. Both functions are real and, while pc(ω) is even, p(ω) can be de-
composed into its symmetric and antisymmetric parts, p(ω) = pS(ω) + pA(ω), which are the
Fourier transforms of Re Z(t) and i Im Z(t), respectively. The three quantities just defined
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are all related to each other by the detailed balance requirement, p(−ω) = exp(− h̄ω
kBT )p(ω),

and the following relationships hold [26]:

p(ω) =
h̄ω

kBT[1 − exp(− h̄ω
kBT )]

pc(ω)

pS(ω) =
h̄ω

2kBT
coth

(
h̄ω

2kBT

)
pc(ω) (A21)

pA(ω) =
h̄ω

2kBT
pc(ω)

The link between the above formalism about the VAF and the CM self intermediate
scattering function Fs(Q, t) is easily obtained by recalling that the latter is a Gaussian in
wave vector Q in both the two limiting cases of hydrodynamic diffusion (Q → 0, t → ∞)
and the ideal gas behavior (Q → ∞, t → 0) [25], with exactly known functions of time alone
entering the expression of Fs(Q, t) for a classical system:

Fs(Q, t) = exp

(
− Q2Dt

)
for Q → 0, t → ∞ (A22)

Fs(Q, t) = exp

(
− Q2 kBT

2M
t2

)
for Q → ∞, t → 0 (A23)

where D is the self diffusion coefficient.
The Gaussian Approximation, introduced by Vineyard in 1958 [33], simply extends

the above functionality to any intermediate time and Q value, i.e., it assumes that

Fs(Q, t) ≃ exp[−Q2 γ1(t)] for any Q, any t. (A24)

This assumption was more deeply formalized, even for quantum systems, by Rahman and
co-workers [34], who demonstrated that the self intermediate scattering function can be
expressed as an infinite series of the form

Fs(Q, t) = exp

[
∞

∑
p=1

(iQ)2pγp(t)

]
, (A25)

whose first term, coinciding with Vineyard’s hypothesis, is related to the VAF spectrum.
In particular, the final, and most significant expression of the GA in the Rahman etal.
quantum picture provides the function γ1(t) of Equation (A24) as:

γ1(t) =
2
3

∫ +∞

0
dω

1
ω2

{
pS(ω)[1 − cos(ωt)]− ipA(ω) sin(ωt)

}
. (A26)

Such equations have been used in this work, starting from the RPMD simulation of Zc(t),
and developing the formalism previously described to implement the quantum GA in the
DDCS algorithm.

For the special case of HD at 17 K, from the canonical VAF of Figure 1b, we calculated
Equation (A26) by obtaining the real and imaginary parts reported in Figure A2. Asimp-
totically, Re γ1(t), which is proportional to the mean square displacement [34], tends to
linear behavior with a slope that corresponds to the self diffusion coefficient D, while Im
γ1(t) tends to a constant value, also related to D [34]. The asymptotic trends are shown in
Figure A2 with dotted and dot-dashed lines. In particular, the slope of Re γ1(t) provides
a self diffusion coefficient equal to D = 3.2 ×10−3 nm2 ps−1 for HD, which is compatible
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with that of D2 at a higher temperature (20.7 K), but a greater density (25.40 nm−3) [4],
which was DD2 = 3.8 ×10−3 nm2 ps−1.
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Figure A2. Real (blue solid curve) and imaginary (red solid curve) parts of Equation (A26). The asymp-
totic trends are shown, respectively, as dotted blue and dot-dashed red lines.
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